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In this paper, we obtain some rigorous results for a cellular automaton known 
as the Greenberg-Hastings Model. The state space is {0, 1, 2} zd. The dynamics 
are deterministic and discrete time. A site which is 1 changes to 2, a site which 
is 2 changes to 0, and a site which is 0 changes to a 1 if one of its 2d neighbors 
is a 1. In one dimension, we compute the exact asymptotic rate at which the 
system dies out when started at random and compute the topological entropy. 
In two or more dimensions we show that starting from a nontrivial product 
measure, the limit exists as 3 m~  m and is Bernoulli shift. Finally, we 
investigate the behavior of the system on a large finite box. 
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1. I N T R O D U C T I O N  

W e  cons ide r  the  fo l lowing cel lu lar  a u t o m a t o n ,  k n o w n  as the Greenberg-  

Hast ings  M o d e l  (see Refs. 6 a n d  12), which  is a s implif ied m ode l  for cells 
in a n  exci table  m e d i u m .  The  state  space is X =  {0, 1 ,2}  z~. Sites x ~ Z  a 

represen t  cells which  c an  be exci ted (1), t i red (2), o r  res ted (0). W i t h  these 
i n t e rp re t a t i ons  in  m i n d  we cons ide r  the fo l lowing de te rmin i s t i c  discrete 
t ime d y n a m i c s  o n  X. A n  excited cell is a lways  t i red at  the next  t ime  step. 

A t i red cell a lways  becomes  rested. F i n a l l y  a rested site becomes  exci ted if 
a n  o n l y  if at  least  one  of its 2d  n e i g h b o r s  is excited. 

A l t h o u g h  o u r  d y n a m i c s  are  comple te ly  de terminis t ic ,  we can  o b t a i n  a 

s tochas t ic  process  by  s ta r t ing  wi th  an  in i t ia l  p r o b a b i l i t y  d i s t r i b u t i o n  o n  X 
a n d  le t t ing  the  system evolve. Let  r/, ~ X d e n o t e  the s tate  of the process at  
t ime n, i.e., r/n(x ) deno tes  the state of the cell at  l oca t ion  x at t ime  n. O u r  
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first step is to investigate the behavior of r/*, the system starting from a 
product measure in which the states 0, 1, and 2 each have probability �89 In 
Sec. 2 we prove the following theorem: 

Theorem 1. In d =  1, Prob{r/*(0) = 1 } ~ xf2-/(27~n). 

Here, a n ~ bn is short for limn_~ ~ a,/bn = 1. In view of the dynamics, 
Prob{~/*+ 1(0) = 2} = Prob{t/*(0) = 1 } and hence 

Prob{q*(0)  4= 0} ~ x ~ 2 7 ~ z n )  

Note that this implies that r/,* ~ 0 in distribution as n ~ oo. 
In Ref. 4, an analogous result is obtained for a very similar system 

called the cyclic cellular automaton. The method of using random walks to 
analyze certain cellular automata  is introduced in Ref. 4. 

From the last result the reader might leap to the conclusion that there 
are no nontrivial stationary distributions in one dimension. However, there 
are a large number of them. To see this, observe that a configuration that 
looks like 

...01200012000012012000... 

i.e., a collection of 12s separated by at least one 0, just moves to the left 
at rate 1, so if the locations of the ls are a stationary sequence we have a 
stationary distribution. Faced with this bewildering variety of stationary 
distributions, it is natural to try to identify some with special properties. To 
do this we turn to the notion of topological entropy, which we will now 
describe. 

Let T denote the transformation T: qo~r /1 .  It is clear that T is 
continuous when X is given the product topology. Because of this we can 
define a notion called the topological entropy, denoted by h(X, T). h(X, T) 
is the supremum over all the stationary distributions of the entropy of the 
corresponding stationary sequence {r/n, n ~> 0}. To compute the topological 
entropy of T, we will use an equivalent definition that counts, in some 
sense, the number of possible evolutions of the system. 

For  d =  1, let an. m be the number of 0, 1, 2-valued configurations o on 
[ - m ,  m]  x [-0, n - 1] that can be extended to a possible evolution of the 
dynamics, that is, such that there exists 6~{0 ,  1,2} z: with 6 = ~  on 
[ - m , m ]  x [0, n - 1 ]  and with T (ith row of 6 ) = i +  1st row of 6. The 
topological entropy is equivalently defined to be SUpm lira sup, ~ ~(ln an.m)/n. 
Notice that we do not divide by m. 

In Sec. 3, we prove the following theorem: 
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Theorem 2. In d =  1, the topological entropy of the Greenberg 
Hastings Model, h ( X ,  T), is 2 In p where 

p = 1/3 (\ 3X/29 + 9 x / ~  + 3x/29- 9x/31/3 ~- 1 ) 2  2 

is the positive root of x 3 -  x 3 -  1. 

Some of the ideas of the proof of Theorem 2 come from Ref. 8 where 
a somewhat similar system is analyzed. To explain the source of p, consider 
the stationary distributions we described above. A general result implies 
that within this class the largest entropy occurs for a Markov chain (see 
Ref. 11). The only available parameter for the Markov chain is p = the 
probability the chain stays at 0. Optimizing over p gives a stationary 
measure with entropy lnp. Intuitively, the entropy can be doubled by 
putting a copy of the Markov chain on x > 0 and an independent copy of 
its reflection on x < 0. The distribution just described is not stationary but 
there is a sequence of stationary distributions that converge to it and have 
entropy approaching 2 In p. 

In Sec. 4, we show that the qualitiative behavior of the system in d~> 2 
is much different than in d = 1. Let # be an arbitrary translation invariant 
product measure on J( in which each state has positive probability and sup- 
pose that t/o has distribution/~. It is easy to see that in d = 1 the system dies 
out, i.e., converges in distribution to the all 0s state. Our next result implies 
that if d>~2, then the system settles into a nontrivial cycle with period 
three. This theorem is completely analogous to a theorem proved in Ref. 5 
for the cyclic cellular automaton. To state this result we need a definition 
that is copied from Ref. 5. We call a set of distinct points Xo, xl ..... x , _ l ,  
x ,  = x o a c lock  for r/ if x i+  1 is a neighbor of x i for each i and r / ( x i ) - i  
(rood 3) for each i. Clearly, n must be a multiple of 6. It is easy to see that 
a clock has period 3 no matter what the rest of the configuration looks like, 
and it is not much harder to show 

Lemma 1. If qo contains a clock then lim, ~ co r/3n exists. 

Lemma 1 implies that if ~/o contains a clock with probability 1, then 
r/3n has a limit a.s. The last result gives an enormous collection of period 
3 limit states, so it is again natural to try to single out some that are 
special. The definition of topological entropy generalizes in a straight- 
forward way to d >  1 but is oo for trivial reasons, so we turn to another 
approach to construct nice limits. 

If ~/o has distribution # where /~ is a translation invariant product 
measure, then Lemma 1 implies that ~/3n has a limit a.s., which we denote 

860/4;4-3 
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by v. Our next result says that the v's obtained in this way are very nice 
measures. To state that result we need a definition. Let ~ denote the Borel 
field on X generated by its topology and let #p0, p~, p2 be product measure on 
X in which the i's have density Pi. A translation-invariant measure rn on 
X is a Bernoulli shift if for some Po, Pl,  P2, there is a bimeasurable 
measure-preserving transformation 

f :  (X, N, m) ~ (X, .~, #p0,pt.m) 

which commutes with all special translations. 

Theorem 3. The limit measure v is a Bernoulli shift. 

If # is any translation invariant product measure, we conjecture that 
the corresponding limit distribution v satisfies Tv = v, that is, v is actually 
stationary. In support of this conjecture, we note that computer simula- 
tions indicate that the density of 0s, ls, 2s approach �89 under iteration. 

Our final topic, which is treated in Sec. 5, was motivated by simulating 
the system on a computer. If we consider the model on BL = {0 ..... L -  1 }d 
with periodic boundary conditions and initial state #1/3,1/3,1/3 then with 
high probability the system settles rapidly into a period 3 state. To get 
more interesting pictures, it is natural to start with #1 2~,~,~ where 6 is 
small. A little experimentation reveals that depending on the size of 6 we 
get one of three limiting behaviors: (a) The system dies out, (b) it 
approaches a period 4 state, or (c) it approaches a period 3 state. Denote 
the events in (a), (b), and (c) by D, E4, and E3, and let F= (D w E3) c. 
Writing ProbL to indicate the dependence on L, our result can be stated as 
the following: 

Theorem 4. Let d~>2, /?(d)= 12(d)+60(~) and L ~  oo with 6 c ~ 0 .  

If (~L Ld/4 ~ J.E (0, 00], then 

ProbL(E3) --* 1 - e -~d);'` 

PrObL(F) --* e - ~(a);" 

IffzLa/4--*O and g)cLa/2~2e [0, oo], then 

Probr (F)  --, 1 - e - 2a~'-' 

ProbL(D) ~ e 2a~.2 

To explain the first pair of results, we observe that the shortest clock 
has length 6 (when L ~> 4) and requires four nonzero sites. It is easy to see 
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that there are C(d)L d ways to find a clock in B L. Since the occurrence of 
clocks in disjoint sets of sites are independent, it should be easy to believe 
that when 6L~2/L a/4 the limiting number of clocks is Poisson, and the 
Chen-Stein method as explained in Ref. 1 allows us to easily prove this. 
Finally we show that E 3 occurs if and only if there is a clock initially. 

To prove the second pair, we show that the system dies out if there are 
no 12 pairs (i.e., a 1 and a 2 at adjacent sites). Calculating the probability 
of this event and applying the Chen-Stein method gives the rest of the 
conclusion. We believe that this result holds with F replaced by E 4. The 
last conjecture is supported by simulations but we do not know how to 
prove it. Finally, it is interesting to compare the result in Theorem 4 with 
the pictures in Ref. 10. On p. 50 of Ref. 10, the authors consider L = 256 
and 6 =.03 in d =  2. In this case 6L1/2= 0.48, so our theorem predicts a 
Poisson number of clocks with mean about 12/16, while the picture shows 
two clocks. 

The remainder of the paper is devoted to proofs. Sections 2-5 are 
almost independent of each other and can be read in any order. 

2. ASYMPTOTIC RATE OF DYING OUT F O R  d-- 1 

In this section, we prove Theorem 1. Before starting the proof, we need 
to review some results concerning general random walks on Z. Let F be 
a distribution on Z which has mean 0 and finite variance. Let {X1, X2,...} 
be an i.i.d, sequence of random variables with distribution F. Then 
S o = 0, $1 = X1, $2 = X1 + )(2 .... is called the random walk with step size 
distribution F. By combining Theorems XII.7.1a, XII.7.4, XIII.5.5, and 
XVIII.5.1 in Ref. 3, one obtain the following theorem: 

Theorem 5. If S, is the random walk with step size distribution F, 
then Prob{S1 > 0, S 2 > 0,..., Sn > 0} ~ a((27rn)l/2E[SN])-t where ~ is the 
standard deviation of the distribution F, N is the stopping time corre- 
sponding to the first entrance into (1, 2,... ), and E denotes expected value. 

We can now proceed with the proof of Theorem 1. 

Proof of Theorem 1. We write qn for q*. We first need to construct 
an auxiliary random walk. The distribution for the steps of this walk, 
which we will still denote by F, will be the distribution of 1 - # of 01s 
between two successive 10s when we choose a random element r/0 from X. 
Clearly this distribution is concentrated on { 1, 0, - l ,  -2,.. .}. The mean 
and variance of F can be explicitly computed. This is stated in the following 
lemma which will be proved later. 
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Lemma 2. The mean and variance of F are 0 and 32-, respectively. 

Let  Sn denote the r andom walk whose steps are distributed according 
to F. Clearly S'N = 1 where N is the first entrance into (1, 2,... }. It then 
follows from Theorem 5 that 

Prob{S1 > 0, $2 > 0,..., S ,  > 0} ~ 1 / 3 ~  (2.1) 

Returning to our  original system, it there is a 1 at lattice point  0 at 
time n, it clearly must  have originated either from lattice point  - n  or n. 
Let E ,  denote the event that  there is a 1 at lattice point  0 at time n that  
originated from lattice point  - n .  So 

E , =  {~/0(-n)  = 1, q l ( - n  + 1 ) =  i, q 2 ( - n +  2) = 1 ..... q,(0) = 1} 

We first show that 

P r o b ( E , )  .-~ 1 / ~  (2.2) 

which is the heart  of the argument.  
The method by which we will analyze our  system is by constructing an 

induced process on the shifted lattice Z + �89 that  takes values in { r, l, 0 }, r 
for moving right and I for moving left. Given an element q of X, we 
construct  a configuration on the shifted lattice with values in {r, l, 0} as 
follows. At n + �89 we place an r if r / (n)= 1 and q(n + 1 ) =  0, and l if i / (n )=  0 
and ~/(n + 1 ) =  1, and a 0 otherwise. One can easily see that the events E ,  
and 

{at time 0, there is an r at - n  + �89 and there are always strictly 

more  r's than l's on [ - n  + �89 n - ~] counting from the left} 

are the same. When an element ~/0is chosen at r andom from X, we obtain 
an induced measure v on the {r, l, 0} process. These configurations lie on 
the shifted lattice, but by moving everything over by �89 our  induced 
measure sits on {r, l, 0} z. Clearly v is a stat ionary ergodie measure but  
moreover  it can be easily seen to be a Markov  renewal process with the 
process restarting itself whenever an r or l is hit. Let Yk denote this 
Markov  renewal process taking values in { r , / ,  0 }. F rom the above discus- 
sion and translat ion invariance, we have that 

P r o b ( E , )  = Prob{  Yo = r and on [0, 2n - 2] ,  the Yk process always 

has strictly more r's that  l's counting from the left } 

Condi t ioning on Yo = r, we let ro = 0 and zl ,  z2, T3 .... be the successive 
times at which an r occurs. Since the process restarts itself whenever an r 
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is hit, it is clear that conditional on Y0 = r, the differences zi+ 1 - zi's form 
an i.i.d, sequence. Since Prob~]f0=r  } = 1, it follows from a standard 
argument, using the stationarity, that the mean of the differences is 9. 
Moreover the common distribution of the differences is clearly stochasti- 
cally dominated by a geometric random variable and hence the moment 
generating function exists in a neighborhood of 0. It follows from large- 
deviation theory that for all e > 0, there is a C~ > 1 such that, for all n, 

Let Sn = # of r's - # of l's on [0, n]. We have that 

Prob(En) = Prob{So, $1 ..... S2n 2 > 0} 

and so we want to compute the asymptotics for Prob{So, $1 ..... S , > 0 } .  
Let ~ > 0. We then have that 

Prob{So, $1 ..... Srgm+m~ n > 0} 

= Prob{ Yo = r} Prob{So, $1 ..... Sr9m+ m,q > 0[ Yo = r} 

~< 1 Prob{[zm-9ml ~>m~l Yo=r} 

+ -~ Prob{So, S~_1,..., S~m_ ~ >0[  Yo=r} 

Hence by (2.1) 

lira sup 9(3~m) 1/2 Prob{So, S~ . . . . .  S[-9m+meq > 0} ~< 1 (2.3) 
m ~  

Now going the other way around, 

Prob{So, $1 ,..., St_9 . . . .  j > 0} 

= Prob{ Yo = r} Prob{So, S~ ..... SL9 . . . . .  j > 0[ Yo = r} 

- ~  Prob{Izm-9m] >~mel Yo=r} 

+ ~ Prob{So, S~_I,...,S,~_~ >0]  Yo=r} 

since the events {So, S~, $2 ..... S~ >0}  and {So, S~_~ ..... S ~ _ ~ > 0 }  are 
the same. (The S~'s taken their lowest values one step before the z,,'s.) This 
last sum is in turn 

~ - - ~  c t - m  __ ~J Prob { ~1, $2 ..... ~m>O } 
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Hence 

lira inf 9(3rEm) 1/2 Prob{So, S~ ..... SL9 . . . .  j > 0} ~> 1 (2.4) 
m ~  

Since ~ > 0  is arbitrary and using the substitution n = 9 m ,  Eq. (2.3) and 
(2.4) give 

Prob{S0, S1,...,S. > 0} .-~ 1/2x/~--~ 

and hence 

P(E.) = Prob{So, $1 ..... $2._2 > 0 } ~ 1/~/54rcn 

which demonstrates (2.2). 
Let F.  denote the event that there is a 1 at lattice point 0 at time n 

that has come from lattice point n. Clearly P r o b ( E . ) = P r o b ( F . )  and 
{ r / . ( 0 ) = I } = E . • F .  and we therefore have that P r o b { r / . ( 0 ) = l } =  
2 Prob(E. )  - Prob(E.  m F.). If Prob(E.  c~ F.)  is of smaller order than 

n -~/2, we would obtain Prob{t / . (0)= 1} . - . ~ ( 2 7 z c n ) ,  as desired. In this 
regard, for n even, we let E" be the event that there is a 1 at lattice point 
-n /2  at time n/2 that has come from - n .  So 

E.' = {t /0(-n)  = 1, r /~(-n  + 1)=  1, q 2 ( - n  + 2 ) =  1 ..... tl./2(-n/2 ) = 1} 

Analogously, we let F" be the event that there is a 1 at lattice point n/2 at 
time n/2 that has come from n. Since E,, ~_ E',  F. ~_ F', and E,~ and F" are 
independent events, it follows that Prob(E.  ~ F.)~< (Prob(E,~)) 2. Now, the 
asymptotic formula ~/~ P r o b ( E n ) ~ a  limit implies that Prob(E,',)~< c/n m 
for some constant c. For  n odd, a simple modification can be made. [] 

Proof of Lemma 2. Instead of computing the distribution of 1 - # of 
01's between two successive 10s, we compute just the distribution of Z = # 
of 01s between two successive 10s, which has the same variance. We will 
show that P r o b ( Z = n )  is �88 if n = 0  and 9 t ~ . - ~  ~ a ,  for n ~> 1. From this, it is 
straightforward to compute the mean and variance of F to be 0 and 2, 
respectively. 

Let p be the probability that the first 10 or 01 after a 10 is a 10, which 
is just P r o b ( Z = 0 ) .  By conditioning on the lattice point after 10 one 
obtains 

1 1 p =  

which gives p = �88 Next, since lOs and Ols are renewals, one obtains using 
an obvious symmetry that for n ~> 1 

P r o b ( Z =  n) = (1 _p)2p. -1  9:1_.~n--I ~] 
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3. T O P O L O G I C A L  ENTROPY FOR d = l  

In this section, we compute the topological entropy of the one-dimen- 
sional Greenberg-Hastings Model. We have a space X =  {0, 1, 2} z and a 
transformation T defined on it. If (M, S) is any pair consisting of a 
compact metric space M together with a continuous transformation S from 
M to M, there is a notion of the topological entropy of such a system, 
which is defined in Ref. 11. We will not give this general definition here but 
mention that, for the case (Z, T), it coincides with that given in the 
introduction. We denote this number by h(Z, T). 

If F is a finite set, S a continuous mapping from F z to itself, and W 
a closed S-invariant subset of F z, then we can define the topological 
entropy of such a system in a way which is completely analogous to our 
definition of the topological entropy for the Greenberg-Hastings Model. 
We denote this number by h(W, S). 

As discussed in the introduction, if we consider the closed T-invariant 
subset L of X consisting of all configurations where every 1 has a 2 to its 
right, every 2 has a 0 to its right and every 0 has a 0 or a 1 to its right, 
then it is clear that T acting on this subset is exactly the same as shifting 
the configuration to the left, and hence the notation L. 

A topological Markov shift is a system (W, S) defined by a 0, 1 matrix 
A = {ai, j}~i = 1 as follows. W is the subset of { 1,..., k} z consisting of sequen- 
ces {xn},~z with the property that a . . . . . .  1 = 1 for all n and S is simply the 
transformation that shifts a sequence one unit to the left. By Theorem 7.13 
of Ref. 11, the entropy of any irreducible topological Markov shift is ln(2) 
where 2 is the largest positive eigenvalue of the corresponding matrix. This 
theorem follows fairly easily from the spectral radius formula. 

Now, L above is exactly the set of configurations which are associated 
to the topological Markov shift 

(i 1 i)00 
Since T acting on L just shifts a configuration to  the left, the above 
theorem gives h(L, T ) = l n ( p )  where p is the positive root of x 3 - x  2 -  1 
and in particular h(X, T)>t In p. 

Proof of Theorem 2. One first notes that if a e {0, 1, 2 } z2 is a possible 
evolution of the system, then each row of a is in the eventual image of T, 
N ~ I  T~(X) - Y. Hence we have h(X, T)= h( Y, T). The following lemrna is 
easy to verify and left to the reader. 
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L e m m a  3. t/~ X is in the eventual image Y of T if and only if there 
exists n e Z w { - 0% oo }, such that: 

at n and to the left on n, 

every 1 has a 2 to its left 
every 2 has a 0 to its left 
and every 0 has a 0 or 1 to its left 

and to the right of n, 

every 1 has a 2 to its right 
every 2 has a 0 to its right 
and every 0 has a 0 or  a to its right 

Note  that  the configurations in L define above are those with n = - ~  
in this lemma.  Now,  let Y' be the closed subset of  {0, r , / } z  consisting of 
all configurations for which there exists an n e Z w { -  ~ ,  oo } such that  at 
n and to the left of n, there are only r's and 0s with at least two 0s between 
r's and to the right of n, there are only l 's and 0s with at least two 0s 
between l's. Let T '  m a p  {0, r , / } z  to itself by having the r's move  right, the 
l 's move  left, and an r and an l annihilate each other  when they meet  or  
cross. It  is easy to see that  Y' is invariant  under  T' .  There is a natural  
m a p  U from Y to Y' as follows. Let 

ifr/(x) = 2 and q ( x +  1 ) =  1 o r 2  

if~/(x) = 2 and r / ( x -  1 ) =  1 o r 2  

otherwise 

This is a slight modificat ion of what  we did in Sec. 2. Since UT = T 'U and 
U is surjective, h(Y' ,  T')<<.h(Y, T) by Theorem 7.2 in Ref. 11. On the other  
hand using Theorem 17 of Ref. 2, one can show that  h(Y',  T ' ) = h ( Y ,  T). 
Hence we need only consider the simpler system (Y',  T ' ) .  

Definition 1. Let Bn, m be the collection of r, l, 0-valued configurations 
a on [ - m ,  m ]  x [0, n -  1] that  can be extended to a possible evolut ion of 
the dynamics  for T' ,  that  is, such that  there exists 6 ~  {r, l, 0} z2 with 6 = 
on I - m ,  m ] x  [0, n - 1 ]  and with T '  (i th row of 6 ) = i +  1st row of 6. 

Our  p rob lem has been reduced to comput ing  SUpm lira s u p , _  oo(ln bn, m)/rl 
where bn, m = IB,,,ml. The fact that  supra lim s u p s _  ~( ln  bn, m)/n = 2 In p 
is contained in Propos i t ion  1 and 2 where the two inequalities are 
proven. [] 
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Let 7n, g be the number  of ways of putt ing down gl's on [0, n -  1] with the 
l's separated by at least two 0s and let 7n=Sng=o]~n,g. By the discussion 
given earlier in this section, we have that  

lim sup In y_____e~ = In p 
n ~ o o  F/ 

L e m m a  4. 

1 _  " ~  n 2 

lira sup m 2..g=o Tn, g._= 21n p ,  

Proof Since 

?.,g<~ 7n, g ~<(n+ 1) 2 3~n, g 
g = O  \ g = O  g = O  

it follows that 

72 n n 2 " 1 ( E g - o  Y.,g) in E g = o  ,,,g 
lim sup - lim sup 

n ~ o o  F/ n ~  n 

which is 2 In p by above, recalling that  Y~g=O 7.,g = 7.. [] 

Proposi t ion 1. h(Y', T ' )~<21np .  

Proof Fix m. We shall show that  lim supn ~ co (In bn, m)/n ~< 2 In p, Let 
Cn, m be the set of configurations ~ in {0, r, l} E-m , ,+1,m+,-1] such that  cr 
extends to a configurat ion in Y' and such that  there are no l's to left of 
- m  and no r's to the right of m. 

We shall first show that  there is a surjection of C,,m onto Bn, m and 
then we will obtain a bound  on IC,,ml. There is an obvious m a p f  from 
C,,m to B~, m as follows. If a ~ C . . . .  then we evolve a up to time n -  1 and 
restrict to [ - rn ,  m ] x [ O , n - 1 ] .  The fact that  a is defined on 
[ - m - n +  1, m + n - 1 ]  implies that  the evolution of o- in [ - m , m ]  is 
defined up to time n -  1. Next  given ~ 4= B ..... by definition there is some 
~E {0, r, l} [ -m ,+1,re+n-13 which extends to an element of Y' and which 
has the proper ty  that  when evolved and restricted to [ - m , m ] x  
[0, n-13 ,  ~ is obtained. We can now modify ~ so that it lies in Cn, m 
and such that  its evolution restricted to [ - m ,  m]  x [0, n =  1] is still 6. 
If in a there are x /'s to the left of - m ,  then remove these l 's together 
with the x r ightmost  r's or whatever number  of r's there are if there are 
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fewer than x. In a similar fashion, remove all r's f rom a that  are to the 
right of  m. It is clear that  this modificat ion lies in Cn,,~ and that  its 
evolut ion in [ - - m ,  m ] x  [0, n -  1] is not  changed. Hence f is surjective. 
Finally it is clear that  

and hence 

2 IC~,ml ~ ( ~ n + 2 m )  

lim sup(ln bn, m)/n ~ lim sup(In 2 ~n+2m)/n = 2 In p 
n ~ o o  t t ~ 3  

[] 

Proposition 2. h(Y', T')/> 2 In p. 

Proof Let e > 0. Using L e m m a  4 choose m such that  

m 2 
l n ( ~  = 0 Ym, ~)/> 2 In p -- 

m + 2  

Let n = t(m + 2) with t a positive integer. Then bn, m is at least the number  
of ways of put t ing down 0s, r's, and l 's on [ - n ,  n]  such that  there are 
0s at 0, h ( m + 2 ) + m +  1, h ( m + 2 ) + m + 2 ,  - h ( m + 2 ) - m - 1 ,  and 
- h ( m + 2 ) - m - 2  for h = 0,..., t - l ,  there are no l 's to the left of 0, no r's 
to the right of 0, both  the l 's and r's are separated by at least two 0s, and 
the number  of r 's in [ - h ( m + 2 ) - m ,  - h ( m + 2 ) - 1 ]  is the same as the 
number  of l 's in [h(m + 2) + 1, h(m + 2) + m ]  for h = 0,..., t -  1. This is 
because different such configurations when evolved differ at some point  in 
[ - m ,  m l x [0, n - 1 3  as long as m~> 1. The latter number  is given by 

( Z g = 0  2 , " 7re, g)" Hence 

n m . 2  )t 
l n b , , m > l  (~-.,g=O'~m,~. > / 2 1 n p - - e  

n n 

and so h( Y', T ' )  ~> lira supn _. ~(ln bn,,~)/n ~> 2 In p - ~. [] 

4. THE LIMIT D I S T R I B U T I O N S  FOR d~> 2 ARE 
B E R N O U L L I  SHIFTS 

Let /,t denote  a fixed translat ion invariant  p roduc t  measure  on 
X= {0, 1, 2} zd in which each state has positive probabil i ty.  Restricting 
ourselves to d~>2, we demons t ra te  in this section the existence of a non-  
trivial limit measure  when # is the initial distr ibution and show that  this 
measure  has the strongest  possible ergodic behavior  with respect to spatial 
translations. 
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We now give the proof of Lemma 1 which follows exactly the proof 
given in Ref. 5 for the cyclic cellular automaton. 

Proof of Lemma 1. Let 7o contain the clock Xo, xl ..... x ,_  1 as defined 
in the introduction. Clearly each of these xi cycles around at period 3. We 
show all lattice points eventually cycle at period 3. If not, there is a closest 
point y to the clock which does not eventually cycle at period 3. Since it 
is closest, it has a neighbor x which does eventually cycle at period 3. If y 
does not cycle at period 3, then at some point in time, x will be a 1 and 
y will be a 0. At this point, it is clear that y will be "caught by x" and then 
also begin to cycle at period 3. [] 

We let Tk# denote the distribution on X at time k when # is the original 
distributions. Since under /~ a clock will exist a.s., Lemma 1 gives the 
following: 

Theorem 6. limn~ o o  T3n~ exists. 

Letting v denote the above limit measure, we clearly have T3v = V and 
v is translation-invariant. Theorem 3 states that v is a Bernoulli shift. Being 
a Bernoulli shift is the strongest ergodic theoretic property a measure can 
have. In particular, it implies mixing of all orders and ergodicity (see 
Ref. 11). 

Before proceeding with the proof of Theorem 3, we define a metric on 
translation-invariant measures on X. It is called the d-metric and has been 
discussed in many places (see, e.g., Ref. 7). 

Definition 2. If m 1 and m 2 are translation-invariant measures on X, 
then 

d(ml, m2) = inf Probm {~/(0) ve 6(0)} 

where the infinum is taken over all translation invariant couplings m of m 1 
and m 2 and Prob m denotes probability with respect to the measure m. 

Proof of Theorem 3. First, factors of Bernoulli shifts are Bernoulli 
shifts (see Ref. 7); that is, if (X, ~3, ml) is a Bernoulli shift and 

f:  (x, ~, m~) --~ (x, ~,  m~) 

is measurable, measure-preserving (but not necessarily invertible), and 
commutes with spacial translations then (X, ~ ,  m2) is a Bernoulli shift. 
Hence for all n, T3~# is a Bernoulli shift. Next, a d-limit of Bernoulli shifts 
is a Bernoulli Shift (see Ref. 7). Hence, to prove the theorem, we need only 
show that the weak limit v is actually a d-limit. This however is very easy. 
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There is a canonical coupling of T3n# and v. Pick a configuration q from 
X according to /~. Let 6 = T3nq and let 7 = limn ~ ~ T3nrl, which we know 
exists from Lemma 1. Clearly the distributions for c5 and 7 a r e  T3n,/~ and v, 
respectively. Moreover, Lemma 1 also implies that these couplings 
demonstrate the d-convergence. Z] 

5. CRITICAL PROBABILITIES FOR d i> 2 

Theorem 4 demonstrates the fact that there are three distinct regimes 
where distinct behavior occurs. The transition points are ~5 c = e/(L d/4) and 
6L = c/(La/2), where c is any constant. Above c/(La/4), the system eventually 
enters a periodic 3 state. Below c/(La/2), the system eventually dies out 
(enters the only fixed point of all 0s.) Above c/(L a/2) but below c/(Ld/4), the 
system does not die out nor enter a periodic 3 state. 

We will prove Theorem 4 by establishing a number of lemmas. The 
first two, Lemmas 5 and 6, are purely deterministic statements concerning 
how one determines the eventual fate for a certain large collection of 
configurations. Lemmas 7 and 8 establish a Poisson approximation for 
dependent events using the Chen-Stein method. The remaining lemmas 
allow us to put together a proof of Theorem 4. First, clocks are defined 
exactly as they were in the previous section. The only difference is that 
while clocks on the infinite lattice must have length a multiple of 6, the 
length need only be a multiple of 3 on the finite lattice because of the 
periodic boundaries. We give another relevant definition here. As in Ref. 5, 
we call a set of distinct points xo, xl ..... xn 1, xn = Xo ~ BL a defect for q if 
xi+ 1 is a neighbor of xi for each i and 

n l  

k = 0  

where the summands are all chosen (mod 3) to be - 1 ,  0, or ! and the sum 
is ordinary addition, not (rood 3). Intuitively, if we view 0, 1, and 2 as 
sitting on a cirle, then as we go along the points Xo, Xl,..., xn_ 1 and return 
to xo, the corresponding path on the circle has nonzero index. For easy 
reference, we put together a list of definitions, some of which are already 
given. 

Definitions 3. We have the following: 

Let E 3 denote the event that a periodic 3 state is eventually entered. 
Let D denote the event that the system eventually dies out. 
Let F =  (D w E 3)q 
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Let Ck denote the event that  there is a clock of length 3k initially. 

Let  C = U i% 1 Ci. 
Let R denote the event that  there is a 2 x 2 box with a defect initially. 
Let  G denote the event that  there is an adjacent  12 pair  initially. 

L e m m a  5. A configurat ion eventually dies out  if and only if it does 
not  contain a defect. 

Proof. We first show that  for any t / a n d  any distinct Xo, x 1,..., X n _  1, 
Xn = X0 with xi and xi+ 1 neighbors for i = 0,..., n - 1, 

n - - 1  

X 
k = 0  

is invariant  under  the dynamics;  that  is, 

n - - I  n 1 

E E (5.1) 
k = 0  k = 0  

Here,  as in the definition of a defect, the summands  are all chosen (rood 3) 
to be - 1 ,  0, or 1 and the sum is ordinary  addition, not  (mod 3). One  
proves  this as follows. Let  S be the subset of {Xo, Xl,..., x , _  1} consisting of 
those points  x with Trl (x )= r/(x). Clearly it must  be the case that  r / (x )=  0 
for x e S. Now,  it is easy to check by cases that  

( Ttl(xk + 1) -- T~l(xk)) -- (rl(xk + 1) - -  i"](Xk)) 

0 if xk,  x k + l e S o r x k ,  x k + l r  

= 1 if x k e S ,  x k + l r  

- 1  if X k + I ~ S ,  xk4~S 

Since the number  of pairs (xk, xk + 1) with xk e S and xk + 1 ~ S is the same 
as the n u m b e r  of pairs with xk ~ S and xk + 1 E S, (5.1) follows. We therefore 
obta in  the fact that  , / h a s  a defect if and only if T t /has  a defect. It  follows 
that  if q eventually dies out, it cannot  contain  a defect. 

Fo r  the converse, we need to show that  a periodic configurat ion r/ 
which is not  all 0s has a defect. In  this regard,  one first notes that  every 1 
must  have a neighbor  which is a 2 (since r /=  T6 for some 6), and every 2 
must  have a neighbor  which is a 0 (since ~/= Tz6 for some 6). At the end, 
we show that  every 0 can reach a 1 by moving  through 0s. Assuming this, 
one constructs  a defect as follows. Let  Xo be such that  t/(Xo) = 1. Let  x 1 be 
a neighbor  of  x o such that  r / ( x l ) =  2. Let x2 be a neighbor  of x,  such that  
rl(x2) = 0. F r o m  Xz, j u m p  along neighbors which are 0 until a 1 is reached. 
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Cont inue  the process until a 1 is reached twice using the fact that  B L is 
finite. Removing  an initial segment and other  intermediate  segments if 
necessary, one obtains a defect. 

Finally, to clean up the last point,  we show that  if t / i s  periodic, then 
there cannot  be a set A such that  q is 0 on A and 2 on 0A where c~A is the 
set of points which are not  in A but  are adjacent  to some point  in A. 
Lett ing A be the set of 0s which can be reached by moving  only through 
0s f rom some fixed 0, we have as a consequence of this fact that  for a 
periodic configurat ion which is not  all 0s, every 0 can reach a 1 by moving  
only through 0s. 

Choose  6 so that  6 is periodic and To5 = r/. 6 must  be 1 on 0A, 2 on 
those points  in A which are adjacent  to some point  in OA, and 0 or 2 
elsewhere in A. Since every 2 is adjacent  to a 0 in a periodic configuration,  
6 must  be 0 somewhere  in A. Letting B be those points  in A where 6 is 0, 
we have that  6 is 0 on B and 2 on ~?B with IBI < IAI. I terat ing this, we 
finally obtain  a periodic configurat ion which has a 0 all of  whose neighbors 
are 2. But such a configurat ion cannot  be T37 for any 7. [] 

L e m m a  6. A configurat ion eventually reaches a periodic 3 state if 
and only if it contains a clock initially. If a configurat ion initially contains 
a 2 x 2 box with a defect but  not  a clock, then the system does not  die out  
nor  reach a periodic 3 state. If  there are no adjacent  12s in a configurat ion 
initially, then it dies out. In the above notat ion,  E3 = C, CCc~ R_~ F, and 
GC~D. 

Proof  First, if there is a clock, then the system eventually reaches a 
periodic 3 state. This is just  a finite version of L e m m a  1. Next,  let t/ be a 
periodic 3 configuration.  We claim that  t/ has a clock. One  first needs to 
observe that  any 0 must  have a 1 next to it (since t/ has period 3). As in 
the p roof  of L e m m a  5 any 1 in q must  have a 2 next to it and any 2 in t/ 
must  have a 0 next to it. N o w  letting xl  be an arbi t rary  point  in BL, let 
x 2 be a neighbor  of  xl  such that  r / ( x z ) -  q(x~)+ 1 (mod 3). Similarly, let x 3 
be a neighbor  of  xz such that  t/(x3) -- rt(xz) + 1 (mod 3). Cont inuing in this 
way, we get a sequence xl ,  xz,.... Since BL is finite, we can stop the first 
t ime a lattice point  is repeated. If  x j=x j+ k is the repeated site, then k is 
a multiple of 3 and moreove r  some rota t ion  of {xj, x j+ l  ..... x j+k i} is a 
clock for t/. One  next shows that  if Tr/ has a clock, then t/ must  have a 
clock at  the same lattice points. Let x0, xl,..., x , _  1 be a clock for Tq. We 
claim that  xl  ..... xn_ 1, Xo is a clock for r/. If  Ttl(x~) is 1 or 2, then clearly 
rl(x~) must  be 0 or  1, respectively. If Ttt(x~)=0,  then Ttl(xi 1 ) = 2  and so 
q(X~_l) = 1. Therefore if r/(xi) were 0, then Ttl(xi) would be a and hence it 
must  be the case that  t/(xi) is 2. Hence xl  ..... xn_ l ,  x0 is a clock for q. 
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Hence clocks cannot be created unless they are there initially and so if a 
configuration eventually reaches a periodic 3 state, it must have had a 
clock initially. 

The second statement follows from the first statement and Lemma 5. 
Finally, if t /has no adjacent 12s pairs, it is easy to see that t /has no defects 
and hence dies out by Lemma 5. [] 

The next lemma gives a Poisson approximation for the number of 1, 2 
pairs in the initial configuration. 

Lemma 7. Fix 6LE(0, 1) and let L~>3. Let the random variable XL 
denote the number of adjacent 1, 2s in BL where the distribution on 
{0, 1, 2} a~ is product measure with 1 and 2s each having density 6L and 0s 
having density 1 - 2 6  L. Then for some constant K (depending only on d), 
kIXL- Yl[ <~ KLan3 where Y has a Poisson distribution with mean 2dLd6 2 
and I[ IJ denotes the total variation norm given by I [ W - Z ] ] =  
2 supA ~ z LP(We A ) -  P(ZE A)I. 

Proof Let I be the set of pairs of adjacent points in BL. Clearly, 
III= dL a if L >~ 3. For i E/, let Si be the subset of I consisting of pairs of 
adjacent points which have at least one point in common with i and let 
C =  ]Sil, which is independent of i. For iEL let A~ be the event {i has both 
a 1 and 2 initially}. Clearly, Prob L(A~)= 262. 

It is easy to check that 

and that 

b l -  Z Z erob L(A~) Prob L(Aj)=4dCLd6~ 
i E l  j E S  i 

d 3 ~  d 3 b2-=~ ~ PrObL(Ai~Aj )=Zd(C-1)L  6L..~ZdCL 6 L 
i c l  j ~ i ~ S  i 

We clearly also have that Ai and a(Aj: j E S  c) are independent. Since 
X L =~2i~iI~  and 5Zi~l Prob L(Ai)= 2dLa62, it follows from Theorem 1 in 
Ref. 1 that 

I[XL -- rtl ~ 2(4dCLd6)_ + 2dCLd6 3) <~ 12dCLa6 3 

where Y is Poisson with mean 2dLd62. Now let K =  12dC. 

We next want to obtain a Poisson approximation for the number of 
clocks of length 6. Any such clock either sits inside a 2 x 3 rectangle or 
inside a 2 • 2 x 2 cube if d > 2. There is however a problem in applying the 
Chen-Stein method as before because the degree of dependence between 
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different clocks can become too large. This is because it is possible that two 
clocks intersect in five places; for example, in d =  3, there might be clocks 
at both ((0,0,0) ,  (1,0,0),  (1,1,0),  (1,1,1),  (1,0,1),  (0 ,0 ,1))  and at 
((0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, i), (0, 0, 1)), differing only in the 
fifth location. This problem does not occur for d = 2 .  The way to get 
around this is to count the number of 2 x 3 rectangles and the number of 
2 x 2 x  2 cubes which contain a clock rather than counting the total 
number of clocks. In this way, if we have 

{q(0, 0, 0 ) =  1, t/(1, 0, 0 ) =  0, q(0, 1, 0 ) = 0 ,  t/(1, 1 ,0) - -2 ,  

tl(0, 0, 1 )=2 ,  t/(1, 0, 1 )=0 ,  t/(0, 1, 1 )=0 ,  q(1, l, 1 )=  1} 

we count this only once even though it actually contains 4 clocks. 

Lemma 8. Fix 6Le(0,  1) and let L~>4. Let the random variable XL 
denote the number of 2 x 3 rectangles plus the number of 2 • 2 x 2 cubes 
which contain a clock of length 6 where the distribution on {0, 1, 2} 8L is 
product measure with 1 and 2s each having density 6L and 0s having 
density 1 - 2 6 L .  Then for some constant K'  (depending only on d), 
IIXL-Yll <-.. K'La65 where Y has a Poisson distribution with mean L~ 

12(~) L664(l - 2 6 c )  2 + (3 a) LazL, where 

664(1 - 26L) 2 ~< zL ~< (16) 664(1 - 26L) 2 

and lim~ L ~ o zc/fi4 = 60. 

Proof Let I be the set of 2 x 3 rectangles and 2 x 2 x 2 cubes in B L. 
We leave to the reader to show that II[ = (2(2 d) + (~))L a (the second term 
being 0 by convention if d =  2) since there are 2(~)L d rectangles and (3a)L d 
cubes. Here one uses the fact that L~>4. Let 7(d) denote 2(26)+(3d). For  
i e L  let Si be the subset of I consisting of sets which have at least one 
lattice point in common with i. ISil can only take to two possible values 
depending on whether i is a rectangle or a cube, and we let C' be the larger. 
For ieI ,  let Aik be the event {i has a clock initially}. Since there are six 
ways to put a clock in a rectangle, Prob L(A~) = 66~(1 -- 26L) 2 when i is a 
rectangle. Let z L = Prob L(Ai) when i is a cube. Since there are 16 possible 
subsets of a cube where a clock can sit (a fact easily checked), we have that 
664(1 - 26L) 2 ~<zL ~< (16) 664(1 - 26c) 2. Hence 

b l = - ~  ~ ProbL(Ai) P robc (Aj )4 (16)236~(d)CL '  66c8 
i E I  j ~ S i  
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The computation of 

b2 = ~ ~ Prob L(Aic~Aj) 
iE1  j ~ i ~ S i  

is as follows. 
One can see geometrically that for j ~ i 6 S~, 

A~nAj~_Aic~ {there is a 1 or 2 i n j ~ i  ~} 

Hence 

Prob L(Ai c~ Aj) ~< (16) 634(1 - 2 3 L )  2 103 L 

by independence and so 

,ida 5 b2 ~< 960e(d) C - v L 

We clearly also have that Ai and o-(Aj: j e  S~) are independent. Since XL = 

~ie i IAi and 

Prob L(Ag)=12 (~) La34(1- 23L)2 + (3~ LazL 
i ~ L  

it follows again from Theorem 1 in Ref. 1 that 

]IXL - Y]] ~< 2[(16) 2 36~(d) C'La3Sr + 960~(d) C'La35L] <~ 20, 352~(d) C'La3~ 

where Y is Poisson with mean 12(~)La64(1--23L)2+(3a)LazL. NOW let 
K ' = 2 0 ,  352~(d)C'. Last, we need to show that l i m L ~ Z L / 3 4 = 6 0 .  
Neglecting terms of the form (1 - 23z) which approach 1, it is clear that zL 
is a polynomial in 3L with terms involving only 3~, 3~ and 36 L, and hence 
this limit is just the coefficient of 34. Now, this coefficient is the number of 
ways of assigning 0s, Is, and 2s to the vertices of a cube such that there are 
four 0s, two ls, and two 2s and such that there is a clock. We claim there 
are 60 such ways. 

First, the two ls must be either adjacent or on opposite corners in 
order to have a clock. There are 12 ways to have them adjacent as there 
are 12 edges. Then for one of these ls, it must have a 0 and 2 as its other 
two neighbors. Each of these extend uniquely to an allowable assignment, 
which gives 24. Next, there are four ways to put the ls on opposite corners. 
Then for one of these ls, it must have two 0s and a 2 as neighbors, giving 
12 ways. Finally, any way of filling in the final three places with a 2 and 
two 0s gives an allowable assignment, giving 36 of this type and hence 60 
altogether. [] 

860/4/4-4 
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Lemma9 .  Of l i m L ~ c o f L = 0  and l i m L ~ o o P r o b L ( G ) < y ,  
limL ~ co Prob L(R) = 7 where G and R are defined in Definitions 3. 

then 

Proof Straightforward. [] 

L e m m a l 0 .  If l i m L ~ 6 L  = 0 and l imL~co6cL a/2 = 0% then 
limL~ co Prob L(R)= 1. 

Proof Applying Lemma 9, it suffices to show that if limL_ o~ 6c = 0 
and limc_~ ~ 6cL d/2= 0% then limL ~ ~ Prob L(G)= 1. If limz ~ o~ 6 3La= O, 
then this is immediate from Lemma 7. If the 6L's are larger such that 
l i m s u p r ~  33Ld>O, it is even easier to have an adjacent 12 pair and 
limL~o~ Prob L(G)= 1 is proved in this case by a simple coupling argu- 
ment using the first case. [] 

L e m m a  11. If limL~oo 6L = 0 and limL~oo ~L Ld/4 = (X3, then 
limL_ ~ Prob L(E3) = 1. 

Proof If limL~o~ 65oLd=O, then using Lemmas 6 and 7, we have 

Prob L(E3)/> Prob L(C2) which ~ 1  as L ~ oo 

where we recall that C2 is the event that there is clock of length 6 initially. 
if 5 d giLL does not tend to 0, then, as in Lemma 10, it is obvious that it is 
even easier to have ls and 2s in the desired locations and so, in this case, 
we also have limL~ co Prob L ( E 3 ) =  1. [] 

Lemma 12. If limL~oo (~LLa/4=),E(O, o0), then limL~ ~ Prob/.(E3) 
= 1 - e  -~(a)~" and l i m L ~  Prob L ( F ) = e  fl(d)'~4 where fl(d) is defined in 
Theorem 4. 

Proof We first note that when the length L of B c is at least 4, then 
there cannot be a clock of length 3; that is, C1 is impossible. Using 
Lemmas 6 and 8, we have 

Prob L(E3) ~> Prob L(C2) which ~ 1  - e -#(d)24 as L ~ oo 

and 

Prob L(E3)~< Prob z.(C2)+ Prob L(;=03 Ci) 

Hence, to prove the first claim, we need only show that 

 rob (0 
i = 3  



Rigorous Results for the Greenberg-Hastings Model 689 

which follows from 

Prob L(CK)~< ~ Ld(2d)3k6b~=6Ld ~ ((2d)362) k 
k = 3  k = 3  k = 3  

=6U((2d)36~)3(1-(2d)362L) ~ 0  as L ~ o e  

The second claim follows immediately from Lemmas 6 and t0. [] 

Lemma 13. If limr~g)f~o~bLLd/2=oO but limL~m~LLd/4=O, 
then lim L ~ ~o Prob L(F) = 1. 

Proof First limL_~ 3LLd/4=O implies that limz~ ~ Prob L ( E 3 ) = 0  

by following the proof of Lemma 12. Then Lemmas 6 and 10 again finish 
the proof. [] 

Lemma 14. If l imz.o  ~ 6LLd/2=2S [0, o0), then limL~ ~ Prob L(F) 
= 1 - - 8  -2d22 and limL~ co Prob L(D) = r -2d22. 

Proof. By Lemmas 6 and 7, 

Prob L(D) >~ Prob L(G C) --* e-2d22 as L -~ oo 

On the other hand, by Lemmas 6 and 9, 

Prob L(Fw E3) >~ Prob L(C w R)/> Prob L(R) 

which ~1 - e  -2d;~2 as L-~ or. Since limL~ ~ Prob L(E3) = 0 by the proof of 
Lemma 12, the inequalities derived above prove the lemma. [] 
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