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Summary. In this paper we consider a hierarchical competition model. Durret t  
and Swindle have given sufficient conditions for the existence of a nontrivial 
stationary distribution. Here we show that under a slightly stronger condition, 
the complete convergence theorem holds and hence there is a unique nontrivial 
stationary distribution. 

1. Introduction 

In this paper we consider Markov processes in which the state at time t is 
(t: Z e ~  {0, 1, 2}. We think of 0=grass ,  1 =bushes,  and 2=trees,  and formulate 
the evolution as follows: ( i )  l 's and 2's each die (i.e., become 0) at rate 1. 
(ii) l 's (resp. 2's) give birth at rate 21 (resp. 22). (iii) If the birth occurs at 
x, the offspring is sent to a site chosen at random from { y : y - x e ~ # } ,  .At=the 
set of neighbors of 0. (iv) If (t(y)>(~(x) then the birth is suppressed. That  
is, trees can give birth onto sites occupied by bushes but not conversely. Since 
2's can replace l 's or 0's, it should be clear that ~t={y: (t(y)=2} is a Markov 
process. In the terminology of Liggett [10] or Durrett  [4], it is the contact 
process with neighborhood set .At. 

It is not hard to show that there is a constant c~ so that if 22>cK then 
l's die out. That  is, if I~o]--=oo, then ( t ~ # 2  the limit starting from all sites 
= 2. Here ::~ denotes weak convergence, which in this setting is just convergence 
of finite dimensional distributions. Durret t  and Swindle [-7] showed that the 
other alternative can occur. 

Theorem 1. Suppose Jg '=  {y: [lyllo~ ~ M }  where IlylL~ =suplyi[. If)~l > 2 ~ >  1 then 
coexistence occurs for M>Ml(21, ,~2).  That is, there is a translation invariant 
stationary distribution #12 that concentrates on the configurations with infinitely 
many 1 "s and 2's. 
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When coexistence occurs, the process has four stationary distributions. One 
is trivial fro, the pointmass on the - 0  configuration. Two are not interesting: 
f~, i=  1, 2, the limit starting from all sites = i. (The limits exist since in this 
case the process reduces to a one type contact process). The main result of 
this paper shows that under the hypotheses of Theorem t, flag is the only interest- 
ing stationary distribution and is the limit starting from any initial configuration 
with infinitely many l's and 2's. To state that result we need some notation. 
Let t/t= {y: ~t(y) = 1}. Let ~ =inf{t:  t h=0  } and -c 2 =inf{t:  ~t= 0}. 

Theorem 2. Suppose W = { y :  Iry[Io~_<M}. I f  21 > 2 ~ >  1 and M>M2(21 ,22)  then 

~t~P('Cl < 00, r 2 < 00) f o  q- P ( ' c l  = 00, "c 2 < 00) f l  

+ P(v, < 0% z 2 = oo) f2 + P( r l  = m, "C2 = 00) f12" 

The last result, called the "complete convergence theorem", implies that 
all stationary distributions are convex combinations of #o, fit, #2, and #tz,  
or less formally, there is only one interesting stationary distribution - f 1 2 .  The 
constant M2 in Theorem 2 is somewhat larger than M1, which is enormous. 
With more work we might be able to take M2 = M~, but the interesting problem 
is to show that the complete convergence theorem holds whenever there is 
coexistence. 

The first step in proving Theorem 2 is to give a definition of ff~2. Let [~,8 
be the process that starts with l 's on A, 2's on B, and O's on ACr~B C. Let 
~12 denote the special case in which A = B  c and B is random with distribution 
f z ,  let rh~2={y: ~12(y)=1} and ~lZ={y:  ~t~2(y)=2}. (In general, we will use 
and ~ to denote the set of l 's and 2's in the corresponding ~.) Since the 2's 
are in equilibrium and the l 's initially occupy all the other sites it should not 
be surprising that for all finite sets C and D, 

(2.3) t--.P(tht2c~C=O, ~)2 c3D =0) 

is increasing. Since these probabilities determine the finite dimensional distribu- 
tions, it follows that y12==>~-12 As in the case of the contact process, ~2  is 

~ l  b o o  �9 

a translation invariant stationary distribution and coexistence occurs if and 
only ifP([~Z(x)=i)>O for i=  1, 2. 

The key to the proof of (2.3) (and to the proof  of Theorem 2 itself), is duality. 
Recall that when the contact process is defined on a graphical representation 
then by working backwards in time we can define dual processes ~'~'~, 0_< s < t 
that have the property 

{~ta" n B , O } =  {An~t~=[=O} 

(If you don't  recall this, it will be explained in Sect. 2.) In the same way we 
can define dual processes qs'̂ A' B, ~, 0 < S <--t that have the property 

c , e }  = {.4 O} 

Notice that here B is the set of sites occupied by 2's at time 0. One way of 
thinking about this relation is that we first go forward in time to determine 
the sites occupied by 2's, then work backwards to see if A x {t} can be reached 
by a path that avoids the set of 2's. 
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With our two dual processes defined, the proof  of the complete convergence 
theorem follows the same general approach as for the ordinary contact process. 
For  that process one begins with Griffeath's observation that it is enough to 
show that if 4: and ~ are independent 

Then one uses the fact that a supercritical contact process, when viewed on 
suitable length and time scales, dominates oriented percolation with parameter 
p close to 1. (See Bezuidenhout and Grimmett  [2] or Durret t  [5] for more 
details.) Here, we follow the same outline, In Sect. 2 we construct the process 
on a graphical representation, define the dual processes, and prove (2.3). In 
Sect. 3 we reduce the proof of Theorem 2 to showing 

(3.4) ^,, A=,~+~4= A, A2C~0B1.A2.r+s = lira l imP(t/~l '~2#O, qr ' O,~s " 0)=0.  
r - - ~  oo 8 -- .  oo 

To prove (3.4) we show in Sect. 4 that the forward and dual one processes, 
when viewed on suitable length and time scales, dominate oriented percolation 
with parameter p close to 1, and then in Sect. 5 use some results for oriented 
percolation to show (3.4). The arguments in Sect. 4 and 5 follow the approach 
of Durret t  and Schonmann [63 but use a new trick to avoid the "restar t"  
argument. 

As the reader can tell from the last sketch, much of the paper is an application 
of "s tandard techniques". What then is new here? The main theoretical advance 
is the introduction of the dual process, which allows us to prove the existence 
of the stationary distribution #12- The dual is constructed by running the 2's 
forward in time and then working backwards to see if the l 's can survive in 
the spaces left by the 2's. Most of the work in this paper is to adapt existing 
theory to deal with this evolution in a random environment. 

2. Construction and duality 

We construct the process from a graphical representation that is like the usual 
one for the contact process but has indices to keep track of the type of particle. 
To facilitate letting M--> oe we will scale space by dividing by M. For  each 
site x~Zd/M={z/M: zsZe}, we have rate one Poisson processes U~ and U~. 
At time U~ we write a 61 which kills a type i particle at x. Turning to the 
births, for each ordered pair of neighbors (x, y), with 11 x - y  II ~_-__ 1, we have 
Poisson processes Tffy and Tffy with rates 21/ (2M+1)  d, and 22/(2M+1) d. At 
time T/y we draw an arrow from y to x to indicate if ~(y)=i and ~(x)<i  a 
particle of type i will be born at x. 

Even though there are infinitely many Poisson processes and hence no first 
arrival, an idea of Harris [8] allows us to construct the process starting from 
any initial configuration. Consider a random graph in which x and y are con- 
nected if there is a potential birth from x to y or from y to x before time 
z. If z is small enough a simple argument (compare with a branching process) 
shows that all the components of our random graph are finite. The evolution 
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of each component  can be computed separately. In this way we can construct 
the process up to time r, and iterating constructs the process for all time. 

Our main tool will be two dual processes that generalize the one for the 
contact process. The " two-dua l"  {~A,~, 0 < S <  t} is obtained by asking the ques- 
tion " Is  there a 2 in A at time t?"  and working backwards in time. The answer 
to our question is "Yes if there is a 2 at some site in ~A,t at time t - - s " ,  so 
a little thought  reveals that our dual should evolve as follows. If  we encounter 
a 52 at x at time t - s ,  we remove x from ~-~,t. If  there is a 2-arrow from 
y to some point in ~s A'~ at time t - s  then we add y to ~'a,t. As the verbal 
description of our dual suggests, it has the property 

(2.1) P (~'~ c~ B q=O)= P( r c~ A =t=O) 

c AA,B t 0 The "one-dual"  ltl~ ' ,  < s < t }  is obtained by asking the question "Is  there 
a 1 in A at time t when we start with B occupied by 2's at time 0?"  To answer 
this question, we first let the 2-process evolve up to time t, starting from B 
at time 0. Then we work backwards in time to see if there is a 1 in A. The 
first step is to discard all the points of A that are occupied by 2's at time 
t. The set of points that  remain, A', is the starting point for the one-dual. As 
before if we encounter a 5~ at x at time t - s  then we remove x from 0 A'''t. 
If we encounter a 5 2 at x at time t - s  then we remove x if there was a 2 
at x just before time t - s .  Finally, if there is a 1-arrow from y to some point 
in Off 'B't and y is not occupied by a 2 then we add y to O~,B,t. Again it is 
an immediate consequence of the definition that 

(2.2) p (0t a, B,~ C~ C # 0) = P (t/c, B c~ A 4: 0). 

After seeing the last definition, the reader probably  has her own question: 
"What  is it good for?"  The first answer to this is that it follows us to define 
the stationary distribution called #~2, in the introduction. To construct it, let 
~ z  be the process starting from 

~~ xq~x~ 

where ~ has distribution/~2- (Two's start in their stationary distribution, one's 
are filled in between). First we observe that if we use our convention of letting 
t / s tand  for the process of one's, and ~ stand for the process of two's the weak 
limit of ~t exists if 

(2.3) lim P (qt 12 c~ B 1 = 0, ~t 12 c~ B2 = 0) exists 
t --+ oo  

This is sufficient because all the finite dimensional distributions can be computed 
from the ones just given by applying the inclusion-exclusion formula. 

Proof of  (2.3). Note  that 

th Z 1 2 ~ B  -O~-pua12~B2=.O)__p(lltt2(3B14:O,~12~B2_=O) P( t l~2nBl=Y ' ,~  2 -  J -  t~t 

Since the 2's start in equilibrium p(~]2 r i B 2 = 0 )  is independent of t. It  suffices 
then to show that pt=P(t / r  2 c~B1 =#0, ~ 2  c~B2 =0)  is decreasing in t. Let ~)z, - r  
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be the process that at time - T  has all sites occupied by two's, and at time 
0 one's are filled in on all vacant sites. Let 0ff ''~' 2, - r  be the one-dual of {~2,-r, 
starting at time t with Ba occupied by one's. Define pts(T)=P(O~ ~'t'z'-y 
4:0, ~ 2 ' - T ~ B 2 = 0 ) .  We begin by observing that 0 is an absorbing state for 
the dual so for s < t, 

ptt( T ) <= pt~( T) = p] ( T + (t-- s)) 

The equality follows by constructing ~r 2, --T and ~)2,- T- (t-,) on the same graphi- 
cal representation with their all 2's configuration at the same place. The second 
step is to notice 

(2.4) ptt(T)--*p~ as T ~ o o .  

To show this, view ~ 2 , -  r for all T on the same graphical representation. Then 
using the definition of the upper invariant measure for the contact process, 
it is easy to see that ~ z , -  T decreases to a limit that has distribution/~2. With 
(2.4) established it is easy to see that p~ is decreasing in t because for t > s 

p t -p~= lim ptt(T ) -  lira p~(T+(t--s))<O 
T ~  T ~ c o  

and this gives that the limit in (2.3) exists. 

3. The easy pieces 

In this section we will do the easy parts of the proof of Theorem 2. We can 
suppose without loss of generality that the process starts from a nonrandom 
initial configuration with l 's on A1 and 2's o n  A 2. Let rl=inf{t:~/A"A2=0} 
and %=in f{ t :  ~A2=0}. Here and in what follows we omit the superscript A1 
from the two process since the initial configuration of l 's does not affect its 
evolution. Let t/~ (resp. 4 2) denote the limits when we start with all sites = 1 
(resp. =2). For  reasons indicated in the discussion of (2.3), it suffices to show 
that for B~ and B2 nonempty finite subsets of Za/M the following three results 
hold. 

(3.1) 

(3.2) 

(3.3) 

lim p(~A~ n B24= 0) = p(~2 n B24= 0) P(za = oo) 
t ---~ oo 

lim p(qa, ,  A2 (-~ n l  =# 0 )  = P(~L n B~ 4= 0) P(-c~ -- oo, ~2 < oo) 
t-* oo 

+ P(r/~ 2 c~B14=0) P(z I = ~ ,  z2= oo) 

lim P(r/A~' A2 ("h 3 1  =~ 0 ,  ~A2 ~ 3 2  =# 0)  
t--v oO 

= P ( q L  2 n B  1 4=0, ~L 2 c~B24=0)P('c I = oo, "r 2 = ~ )  
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(3.1) follows from the complete convergence theorem for the one-type long range 
contact process. (See [2] or [5].) We claim that to prove (3.2) and (3.3) it suffices 
to prove 

(3.4) lim lim P(tlA' 'A2 @= 0, tlr^Bl"A2"r+s JKO,~sA1 ' ( - ' ~ t l r  A2 ^Bi'A2' r+s = 0 ) =  0 
r ~  oo s--+ co 

~B2,r+s-4- 0 JzA2,-a~-B2, r+s fh~ (3.5) lim lim P (~r ~a O, ~ + s/z -1- , ~ / 2 ,  . ~ + , / z  = w = 0 

(3.6) lira lim P(~I~"A~#O, O~"a2""§ 
r--+ oo s---~ oo 

= P(~L n B t 4:  O) P ( z l  = o G  r 2 < oo) 

+ P(OL z a e~ #0 )  P(*~ = oo, ,z  = co) 

(3 .7 )  lim lim P(qAs ~,& 4:O,O~,A~,~+,#O, ~s/2=~O,A2 ~r+s/2ffBz'r+s=~O]? 
r~ oo s~  oo 

= P(t/L 2 c~ B 1 #0 ,  *L 2 c~ B 2 #0)  P(*I = o% % = ~) .  

To check our claim, observe that if r + s = t  and r, s=>0 then the probability 
in (3.2) can be rewritten as 

p(tla,,& ~ B1 ~=O)= p(tlAs "A2FlOBr "Az'r+s=t=O) 

= p (t/a,, A~ # O, q~',a~,"+' # O) 

-- p(tlAt,A2=t=O, oB"A~-'r+s @=O, t]A~,A2 c3 Oer , ,A2 , r+s=O)  

(3.6) implies that the first term has the desired limit. (3.4) says the second term 
converges to 0. Similarly, the probability in (3.3) is 

P ( t l a ~ ' a 2 ~ n l = ~ O , ~ A 2 c s n 2 = l = O ) = P ( t l A ~ ' A 2 r - ~ r  4=0,  ss /2  ' '"~r+s/2 -I-,~,] 

and 

;~Bz,r+s4= IP(tl~"A~c~tlY"A~"+~#O, GA/~ c~ ~+~/z O) 

,v ,-O,,t, n ~  - 0 )  

+p(GJi_~a e,z,r+s # a  ;Aa ,-,~,~,~+~_m "l-~%r+s/2 ~%s/,a' '~r+s/2 --'~'! 

(3.4) and (3.5) imply that the right hand side converges to 0, so (3.7) gives 
(3.3). 

We will now show that (3.5)-(3.7) hold. The proof of (3.4) is the hard part 
and will be done in Sects. 4 and 5. 
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Proof of (3.5). This is an immediate consequence of the complete convergence 
theorem for the one-type process 

f-~ ~B2,r+s__ P ( ~  ::t = O, ~-n~,~-~ =i = O, ~3., ,'~,-+~/2 - O) 

A2 ~B2,r+s A2 B2,r+s =P(~,/2:4=0,,,,+,/2 =t=O)-- P({,/2 ch ~',+sl2 q=O) 

= P(~,+~/2 c~B2 

n ( ~  c~ S 2 # O) n(% = 00)-  P(% = 00) p(r c~ B2 =~ O) = 0 

as s-+ oo. 
To prove (3.6) and (3.7), we need three preliminary results. 

(3.8) Lemma. Given r > 0  and e>0,  there is a q that depends on IBll but does 
not depend on A2 so that the dual *BI,A2., t b , will with probability at least 1 - e  
not inspeez any particle outside B1 + I--q, q]e. 

Proof. The number of particles we start off with is [Bll. Each time either a 
one-arrow or a two-arrow points towards the present configuration, we must 
inspect the two-dual starting from the endpoint of the arrow to see, if it emanates 
from a two at time 0. Thus, at most ~ particles are to be inspected, where 
W~ is a branching process with birth rate 2~+22 and death rate 0. (To get 
an upper bound we ignore deaths.) Chebyshev's inequality implies P(W,>q) 
<=EW~/q<e for q large enough. Starting from Ba, these q particles are all con- 
tained in B~ +l---q, qjd, since arrows have length (in the supremum norm) less 
than or equal to 1. 

(3.9) Lemma. For q and A 2 fixed, there exists an S such that for s> S 

P({a~2(x)q={~'*/2(x) forsome x s B l  +[--q,q]d, z2>s/2)<e 

where ~2,s/2 is the process that starts at time s/2 with all sites occupied by two's, 
and we write ~(x )= 2 if x~ ~s, ~ (x )=  0 otherwise. 

Proof. The complete convergence theorem for the contact process implies 

{~a==>6 0 P(% < oo) + ~ P(% = oo). 

Since we can construct the two-process starting from A 2 at time 0 and {2,~/2 
on the same graphical representation with {~_c ~t~'2'*/2 for all times t>s/2, and 
disjoint pieces of the graphical representation are independent, we get 

P (~ A2 (X) * ~2, S/2 (X), "~ 2 > s/R) = e (~ A2 (X) = O, ~2, S/2 (X) = 2, ~2 > s/R) 

= p ( r  (x) = 2, % > s /2)  --  P ( r  = 2) 

= P(r  = 2) e ( * ~  > s / 2 ) - -  e ( r  = 2) 

__+ p ( { 2  (x) = 2) P ( %  = o o ) - -  p ( { 2  (x)  = 2) P ( z  2 = oo) = 0 
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as s goes to infinity by the complete convergence theorem for the one type 
process. Thus for s large enough 

e ( ~ ( x )  2 ~/~ 4=~' (x)forsome x~Bl  +[--q,q]a,%>s/2)  

=< F, P(~A2(x)*~"/erx~ , , ,~2>s12)=<~. 
x~B, + [ - q ,  q]a 

The last preliminary we need is the following trivial observation. 

(3.10) For all s large enough, P(s/2 <= ~1 < oo)< e. 

Proof of (3.6). This is just a question of combining the above observations. 
First 

IP(tlAl"A2 4=O, O~"A2"r+~ 4= O)-- P(zl > s/2, 0fi"A2'~+'* 0)l =<e 

by (3.10), and 

(3.11) P(zl>s/2,0~'a~'~+~4=O)=P(zl>s/2, rz<=s/2,0~,"(o'~/2)'r+~4=O) 

+ P ( ~  > s/2, ~ > s/2, 0~" ~2.r +~ 4= O) 

where as the reader can probably guess, O~ ~'(r is the one-dual starting 
with B 1 occupied at time r + s  when there are no 2's at time s/2. The first 
term on the right is easy to deal with 

P(z 1 > s/2, % <=s/2, O~rl'(O's/2)'r+s,O)=P('Cl > s/2, ~2 <=s/2) P(O~"(O'~/z)'r+s #O) 

since disjoint pieces of the graphical representation are independent, and 

- P ( t  b , , #O)=P f fb  c~B~#O) 

where t/) is the set of l's at time r when initially all sites are occupied by 
l's. So letting s ~ ~ and then r ~ oo 

P(rl >s/2, z2 <--_s/2, 0fi"(0'~/2)'r+~ # 0) ~ P ( ~  = ~ ,  z2 < oo) P(t/~ rn B 1 4=0) 

As for the second term on the right in (3.11), (3.8) and (3.9) imply that for 
s > S  

]P(rl > s/2, ~2 > s/2, OBr~'Az'r+s 4=O)-- P($l > s/2, r 2 > s/2, 0~"(2' ~/2)'~+' 4= 0)1 < 3e 

The last step decouples what happens after time s/2 from what happened before 
and we can write 

P(~ ~ > s/2, ~2 > s/2, 0~ ~' (2, ~/2),,+, 4= O) 

= P ( r  > s/2, z2 >s/2) P(0~"(2"~/2)'~+'4=0) 

= P(~I > s/2, ~2 > s/2) P(tl~ 2, -,/2 c~ B1 * O) 
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where t/TM -s/2 is the set of l 's  in the process that starts with all 2's at time 
- s /2  and has l 's  filled in at the vacant sites at time 0. Letting s ~ oo and 
recalling the proof  of (2.3) we see that the last quantity 

--* P(% = 0% 722 = oo) P(t/~: c~ B1 :# 0) 

Letting r ~ oo now gives (3.6). 

Proof of (3.7). (3.8), (3,9) and (3,10) apply as before to show that for large 
S 

^Bt ,A2,r+s A2 B2,r+s IP(~{"A24:0, ~r 4= 0, ~s/2 * 0, ~'~r+,/2 4=0) 
- P ( %  >s/2, 0~,'(2'~/2)'r+* , 0 ,  "C2 > 8 /2  , ~Ba'r+s*O)l <4g  ~r+s/2 

The last step decouples what happens after time s/2 from what happened before 
and we can write 

~B2,r +s  P(% >s/2, O~"(2"~/z)'~+~+O, % > s / 2 ,  ~'t~+~/2 =#0) 

= P ( f l f f  *'(2"s/z)'r+s:[=O, 5"B2'r +'s ~- ait P(721 > s/2, 722 >s/2)  %r+s/2 m-w) 

= p (~]I r 2, - s/2 ~ B 1 * O, {it 2, - s/2 (.~ B 2  ~ O) P (72 1 ~> s /2 ,  ~2 > s /g)  

where in the last step we have again rewritten the event in terms of the process 
{~2,-,/2 that starts with all 2's at time - s /2  and has l 's  filled in on the vacant 
sites at time O. Letting s--+ 0% recalling the proof  of (2.3), and then letting r-+ 0% 
we get the desired limit 

P(t/~ 2 c~ B, * 0, ~ 2  c~ B 2 4= 0) P(% = 0% 722 = 00). 

4. The block construction 

To prove (3.4) we will show that (i) the forward and dual one processes, when 
viewed on suitable length and time scales, dominate supercritical oriented site 
percolation and then (ii) use some results for percolation to show (3.4). In 
this section we carry out (i). We begin by reviewing the block construction 
of Durret t  and Swindle [7] for the forward one-process and generalize it to 
the one-dual. As in that paper  we first define mean field (i.e., M = oo) versions 
of the processes under consideration, show that when viewed on suitable length 
and time scales they dominate supercritical oriented site percolation, and then 
use "cont inui ty"  to show that the last conclusion holds for the processes of 
interest. 

To define the mean field version Xt of the process of two's ~ we recall 
that the contact process can be thought  of as a branching random walk in 
which two particles that  occupy the same site coalesce to one. If we start with 
a finite number  of particles then the probabil i ty of a collision before some 
fixed time goes to 0 as M ~ oo so we define X~ to be the branching random 
walk in which 

(i) Particles die at rate 1. 
(ii) Particles give birth at rate )~2. 
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(iii) The offspring of a particle at x is sent to a y chosen uniformly from 
{y:llx-yll <=l}. 

To define the mean field version Yt of the process of one's qt we begin by 
observing that Bramson, Durrett, and Swindle [1] have shown that the upper 
invariant measure 112 for ~ approaches a product measure with density (22 - 1)/22 
as M ~ c~. We will therefore define Yt to be the branching random walk in 
which 

(i) Particles die at rate 1 +22(22-1 ) /22=22 .  (l's die when they meet 6l's or 
a 2 branches onto their site.) 
(ii) Particles give birth at rate 21/22. (New l's are born at rate 2~, but the 
site to which they are sent is occupied by a 2 with probability ( 2  2 - -  1)/22 .) 
(iii) The offspring of a particle at x is sent to a y chosen uniformly from 

In the mean field version Zt for the one-dual process, we will again assume 
that the two's at each fixed time are distributed as a product measure with 
density (22 -  1)/22. The first step is to thin Z o by flipping coins with probability 
(22-1)/22 of heads to remove the sites in Z o that are occupied by 2's. We 
claim that after the initial thinning, Zt is the same branching process as Y~. 
To check (ii) and (iii) we observe that births occur at rate 21 but are suppressed 
if they land on live two's, so births occur at rate 21/22, and in the limit M ~  oo 
the new particle is displaced from the parent site by an amount  uniformly distrib- 
uted over [ - 1 ,  1] d. (i) is much more subtle. Particles in Z~ die when meeting 
c51's, but also when meeting 62's with live two's on the other side. An occupied 
site clearly encounters 61's at rate 1 but somehat surprisingly encounters 62's 
at rate 22. To see the second claim note that if (x, r) is not occupied by a 
2 then working backwards S=inf{s:  there is a 6 2 at (x, r - s ) }  must occur before 
T=inf{ t :  there is a 2-arrow from an occupied site attacking x at time r - t }  
and 

P(S= s < TI S < T)=e-Se-(~2-1)s/(1/22)= 22 e - ~ 

Since the probability we will find a two on the other side of a 62 is 6 2 is 
( 2  2 - -  1)/22, the total death rate is thus 1 + (22 - 1) = 22. 

Oriented site percolation. Before we proceed to the description of the block 
construction, we will say a few words about oriented site percolation. For  more 
details, see Durrett  [33. Let 

5 f =  {(m, n)~Z2: m + n  even} 

and draw arrows from (m, n) to ( m -  1, n+  1) and to (m+ 1, n +  1). The site percola- 
tion system is constructed from independent random variables 
{co (m, n):(m, n)~ ~ ,  n > 0} taking values 1 with probability p and 0 with probabili- 
ty 1 - p .  co(m, n) indicates whether the site (m, n) is open (co(m, n)= 1) or closed 
(co(re, n)=0). We write (ml,nl)--~(rn2,n2) if it is possible to get from (ml,nl)  
to (m2, n2) following the arrows and only passing through open sites, with (ml, nl) 
and (m2, n2) open as well. The cluster containing (0, 0) is C =  {(m, n )e~ : (0 ,  0) 
~(m,  n)}. We will call the sites in C wet and use O~ to denote 
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the set of wet sites at time n. Finally, g2oo={ICl=oo}={O~ for all n} is 
the event "percolation occurs" and p~ = inf{p: Pp(Ooo)> 0} is the "critical proba- 
bility". 

The block construction for the forward process. We will now describe in some 
detail the block construction for the one-process as done in Durret t  and Swindle 
[71, We do this not only to save the reader a trip to the library, but also 
because the proof  for the one-dual is almost the same. Let el =(1, 0 . . . .  ,0) and 
T = L  z. Let B = ( - - 2 L ,  2L] d x [0, T], and for (m, n ) e s  a, let cp(m, n )=(2mLe l ,  nT), 
Bm,,=q)(m,n)+B. We will say that B ..... is good and set co(re, n)= 1 if certain 
good events happen in the graphical representation in that box. Note that the 
boxes B,~,, are disjoint. We do this so that the co(re, n) will be independent. 
Let I = [ - L ,  L] a, I '=  I - - L +  1, L -- 1] d, and for (m, n ) e s  ~ let I,, = 2mLe ,  + I, and 
I ~ = 2 m L e l  +I'.  We will say (m, n) is occupied if I,, contains N one's at time 
n T. The good events will be designed so that if (m, n) is occupied and Bin,, 
is good then (m + 1, n + 1) and ( m -  1~ n + 1) will be occuppied. 

We begin by proving the corresponding statement for the branching process 
Yt with I replaced by I'. The shrinkage by one unit at the edges of I is to 
leave room for the limit M--+ oo. Here and in what follows, X~ and y A will 
denote the mean field processes starting with A occupied at time 0. The first 
step is to introduce a truncation designed to make the good events independent. 
Let/~ be chosen to sat isfy/*>(22-1)/22,  and 

1 +(t +,~2 ~)/*<& (1 -/~). 

To see this is possible and to prepare for our use of this condition in the 
next paragraph, note that (1 + 22/,) > 22 and is an equality when / ,  = ('~z -- 1)/22. 
Having picked # the next step is to note 

(4.1) 1 can be chosen large enough to make the probability that XI ~ survives 
until time l or reaches a point outside [ -  1 + 1, I -  1] ~ less than/*. 

In view of (4.1) and the choice of/* we will declare a site y to be occupied 
by a two at time t if the two-dual starting from y at time t does not die out 
before it reaches the boundary of the space-time box (y, t )+ [ - I ,  lid• [-0,-1]. 
To make events inside two disjoint boxes independent, let Yt be the modification 
of Y, in which 

( i )  Particles die at rate I + 22 #. 
(ii) Particles give birth at rate (1 -/~) ,~2- 

(iii) The offspring of a particle at x is sent to a y chosen uniformly from 
{y:Nx-y l loo<l} .  
(iv) Particles that land outside ( - 2 L +  1+ 1, 2 L - 1 - 1 )  d are killed. 

We shrink ( - 2 L ,  2L] a by I so that when we follow two-duals backwards we 
will stay in B,,,,. We shrink by 1 more to allow for the limit M--+ oo. Let 

be ~ modified so that in the first 1 units of time no particles are added, 
and every particle that is hit by a 61 or a two-arrow is killed. When we are 
within I time units of the bot tom of the box we cannot follow the two-duals 
backwards for l units of time so we take the pessimistic view that all sites 
we investigate are occupied by 2's. E 1 ~l is reduced by a factor o f e x p ( - ( I  +2z) I) 
in the first l units of time but this deficit can be made up by Y,. Let T' = T--  l. 
A simple calculation shows 
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(4.2) L can be chosen large enough to make inf E[ ~'T{, ~/C~ I'11 ----> 4 exp ((1 + 22) l). 
x~[ L ,L]  d 

Fix ~ to make 1 - ~ > Pc, where Pc is the critical value for independent oriented 
site percolation. 

(4.3) N can be chosen large enough to make P(rYAr~I'II>=N)>I--~/3 for all 
A~_ I--L, L] d with IA] >-N. 

Sketch of proof If N is large then with high probability there will be at least 
N e x p ( - ( 1  + 2z) l)/2 particles alive at time I. In view of (4.2) the expected number 
of particles in I'1 is at least 2N. The desired result now follows by computing 
second moments and using Chebyshev's inequality. See Sect. 3.1 of Durrett  and 
Swindle [7] for more details. 

Finally we have to show that the last result holds for the real one-process. 
Let t~, be a modification of q, in which we assume that all sites outside ( - 2  L, 2 L]d 
are always occupied by 2's. 

(4.4) M can be chosen large enough to make P(IqA'Bc~III>=N,]qaT'B ~I_II>>N) 
> 1 --~ for all A and B disjoint with A ~_ I - L ,  L]d and N <  ]AI _-<2N. 

Sketch of proof Without loss of generality we can suppose B = A  c. The trick 
here is to construct the real process from the mean field version. We define 
a function nM that maps a uniform distribution on [ - 1 ,  lJ d to a uniform on 
[--1,1]dc~Zd/M and has []nM(X)--xJlo~<--_l/m for all x ~ [ - -1 ,  1] d. If U/ is the 
ith displacement in the mean field dual, we let ~M(U~) be the ith displacement 
in the real process. We have a huge number of particles to keep track o f -  
the one-dual and all the two-duals of particles that branch onto it. However, 
the number of particles does not depend on M, so it is easy to show that 
if M is large then with high probability there is no collision (branch onto an 
occupied site) and all the particles in the real one-dual and the associated two- 
duals are within one unit of their analogues in the mean-field version. 

(4.4) shows that if (m, n) is occupied then with probability at least 1 -  e >Pc, 
( m -  1, n +  1) and (m+ 1, n +  1) will both be occupied. A simple induction argu- 
ment now shows that the set of occupied (m,n)eSf dominates the set of wet 
sites in oriented percolation with parameter 1 - e .  The details are spelled out 
in Sect. 3.2 of Durrett  and Swindle [7]. 

The block construction for the one-dual process. We will show that with small 
changes, the block construction just described can be extended to the one-dual 
process. We begin, as before, by considering the mean field version Z t of the 
one-dual, which after the initial coin flips decimate Zo has the same distribution 
as Yr. To make the events inside disjoint boxes independent we let Zz be the 
modification of Z~ in which 

(i)  Particles die at rate 1 + (1 + 22 p) #. 
(ii) Particles give birth at rate ( 1 - # )  21. 

(iii) The offspring of a particle at x is sent to a y chosen uniformly from 
{y:Nx-y l]~<l} .  
(iv) Particles that land outside ( -  2 L + 1 + 1, 2 L--  l -  1) e are killed. 

Here # is the number chosen earlier to satisfy # > ( 2 2 - 1 ) / 2 2  and 1 +(1 +22 #) p 
< 2 1 ( I - # ) .  To explain the birth rate in (i), recall our discussion of the mean 
field dual Zt and observe that now 2-arrows from occupied sites occur at rate 
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22#. Repeating our previous argument shows that sites occupied by l 's 
encounter 62's at rate 1 + 22/~ and with probability/~ we find a 2 on the other 
side. 

Again when we are within I time units of the bot tom of the box, we cannot 
follow the two-duals backwards for l units of time, so we take the pessimistic 
view that all the sites we investigate are occupied by 2's. This leads us to define 
Zt, which is Zt modified so that at times T'<_ t<_ T no particles are added, 
and every particle that is hit by a 6t or a 62 is killed. 

The proof  of (4.2) generalizes easily to show 
(4.5) L can be chosen large enough to make inf E IZ~, } c~ 1'11> 4 exp(21). 

x ~[ - L ,  L] a 

To explain the choice of the constant in (4.5), note that if we start the one-dual 
with N particles, then (4.5) shows that the expected number of particles in I't 
at time T' is at least 4N exp(2t). The factor exp(2t) is there because the probabili- 
ty that a site will not be hit by a ~ or fi2 in l units of time is e x p ( - 2 t ) .  
Computing second moments and using Chebyshev's inequality leads as before 
to 

(4.6) N can be chosen large enough to make P(IZA~I ' I I>=N)>I--e/3  for all 
A ~_[--L,L] a with IAI>_> N. 

Finally we have to show that the analogue of (4.6) holds for the real one-dual. 
Let g/~'*' r be the modification of the one-dual in which we decide that a site 
we investigate is occupied by a 2 if the two-dual escapes from the space-time 
box Bo, o and we do not add a site unless there is a c5 z there before the site 
is first attacked by a 2-arrow from an occupied site. The continuity argument 
used to prove (4.4) generalizes easily to show 

(4.7) M can be chosen large enough to make P( I~ '* 'Tc~II[>N,  IO~C'*'TC~I_ll 
> N ) >  1 - - e f o r  all B ~_ [ -  L, L] a with N <  IBl<2N.  

5. Proof of (3.4) 

In the last section we showed that the two processes of interest dominate oriented 
site percolation with p close to 1. The first step in using this to prove (3.4) 
is to give some results that say when p is close to 1, oriented site percolation, 
~b~, survives with high probability and is thick. Proofs of all the facts cited 
can be found in Durrett  [3]. Let ~b z (resp. 0~) denote the state at time n when 
oriented percolation starts with all sites occupied (resp. x occupied). 

(5.1) I f  1~ = inf 0 ~ and r,, = sup 0 ~ then t) ~ = 0 z c~ [1~, rJ  on {0 ~ :# 0}. 

(5.2) I f  p > pc then there is a constant a(p)>0  so that 

rJn-*a(p),  t , ]n~--a(p)a .s ,  on f2o~. 

(5.3) {l(x~of.), x e 2 Z }  a {1~,~.,o), x ~ 2 Z }  

(5.4) Let ~b(x)= l(o~,OioraU. ) for x e 2 Z .  4) is stationary and ergodic with 

Pv(qS(x)--1)=Pv(t2~o)~l as p--* l. 
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Let 6 = e/100 and pick p so that Po (~oo)> 1 - 6 / d .  Having fixed p choose parame-  
ters L, T, and N for the block construction so that the forward and dual one 
processes dominate oriented percolation with parameter  p. We call the box 
4 z L + [ - - L , L ]  a a source for the block construction if it contains at least N 
particles. The first phase of our construction is to wait long enough so that 
with high probabili ty either our processes have died out or have enough particles 
to make a source for the block construction. The first step is to decide how 
many particles are "enough".  

If there are K particles, then there are at least K/(4LM)  a boxes 4 z L + -  
( - -2L,  2L] a, z ~ Z  a, that contain at least one particle. Let ~t A be our process 
starting with l 's  on A, 2's everywhere else and modified to always have 2's 
outside ( - -2L,  2L] a. Let 0t A be the set of sites occupied by l's. It is easy to 
see that 

(5.5) inf P(IoAc~[--L,L]a[>N) >0 
A ~ _ ( - 2 L ,  2 L ]  a 

and hence K can be chosen large enough so that if we start with K particles 
at time 0 then with probabili ty > 1 - 6  there will be a source at time 1. 

The next step in setting up our construction is to show that if we wait 
long enough then our processes will with high probabili ty either be 0 or have 
K particles. We start  with the forward one-process. Here and in what follows 
A1, A2, and B 1 are fixed. 

(5.6) Lemma.  I f  6 and K are given there is a a so that 

P(0<I~A"A~I<K)=<c~ for s>=a. 

Proof Let zl(C, D)=inf{t :  tlCt'n=O}. It  is easy to see that there is a constant 
? > 0 so that P(vl(C, D) < oo) > ?K whenever [C[ < K. (Consider the event that 
all the particles die before they give birth.) Now 

p(s<~l (A1 ,  A2)< oo)> P(0 < ]/7 AI'A2 ] < K )  y~ 

and the left-hand side ~ 0 as s ~ oo, so the desired result follows. 
The last argument  generalizes easily to show 

(5.7) Lemma.  I f  6 and K are given there is an S > a so that 

p(0<10sBI '~  
P(O<lO~l'u2't]<K)<=g). 

We do not worry about  other initial configurations of l 's  because the proof  
of (3.6) shows that if t is large then the dual will see a collection of 2's that 
looks like 0 or #2. The third and final step in the setup is to localize the 
last two results. Let D• - {Y:][ Y [1 Go =< Q}- 

(5.8) Lemma.  I f  S is f ixed then we pick Q = ( 4 R  + 2) L large enough so that 

P(@~'A~ + O,I~7~ ''A2 n Del <K)_<_23 

pw, B~,~ lO~,,~ ~pol<K)<=2~5 t ' l S  -r" 

p(o~,,u2,t +O,[OB,'u~'t ~Do[ <K)=<26. 
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At this point we have shown that if we wait S + 1 units of time then our processes 
will with probabil i ty at least 1 -  3fi either (i) have died out or (ii) have N 
particles in 4zL+ I--L, L]e for some z s Z  d with I]zHo~ < R .  (5.1)-(5.4) guarantee 
that the construct ion will succeed with high probabil i ty and that most  of the 
boxes that can be reached from the source will contain N particles. This will 
enable us to conclude that when the forward and dual one processes do not 
die out they both have N particles in a large number  of boxes. To turn this 
into an actual intersection of the two processes, we observe that if, as in the 
proof  of (5.5), we let <A be the process starting with l 's on A, 2's on A C, and 
modified to always have 2's outside ( - 2 L ,  2L]  d then 

(5.9) Lemma.  There is a to>0 so that P(qac~BOeO)>tc for all t e [2T,  6 T ]  and 
A, B c  I--L, L] a with IA], IBI > U .  

Hav ing  identified a positive probabil i ty of success, our  next step is to pick 
J large enough so that 

(5.10) I f  X1, ... X s are independent with P (Xi > O) >->_ ~c then 

P(X t +. . .  +Xs>O)> l - 6  

(5.11)/f  ~b(x)= l~0~.<ror~Un) then 

(" ) P; ~, %(2x)<(1-2fi /d)(2J+l) <6/d 
\ X ~  - - J  

To prepare for the later use of (5.11) the reader should recall 6=~/100<0.01  
so 1 - 2 6 > 0 . 9 8 .  

Having finally made all our choices, it is time to prove that if r = r o and 
s__> So (r) (i.e., s o may depend on r) then 

(5.12) p(t/~l, a~ =~ 0, O~,,A2,r+s=l=O, tlAl,a2 c~tl Ŝ 81,A~, r +~ - - 0 ) < e  

We carry out the argument  first for d = 1. By (5.3) we can pick n o so that 

(5.13) P(I ,<--J- -R,r ,>J+R)>=1--26 for n>no 

Let t o = S +  1 + n  o T. As we remarked after (5.8) at time S +  1 the one-dual will, 
with probabil i ty > 1 - 3 6 ,  either (i) be empty or (ii) have N points in 
4mL+[- -L ,L]  for some integer m with ]ml<=R. Using (5.13), (5.1), (5.3), and 
(5.11), we see that in case (ii), at time r o the dual will with probabil i ty > 1 - 3 6  
have N points in 4jL + [ - L ,  L] for 98% of the j e { -  2J,  ..., 2 J}. 

Fix r___ r o. The reasoning in the last paragraph  applies to the forward one 
process but this time we cannot just set so = S + 1 + no T. We need to pick so (r), 
which depends on r, large enough to guarantee that for times t < r, the one-dual 
will with high probabil i ty see a collection of 2's that looks like 0 or/~2. The 
proof  of (3.6) shows that this is possible. 

Given r>r o and S>so(r), pick nl even so that r - ( S +  1 +n l T)~[T, 3 T) and 
pick n2 even so that  s - ( S +  1 +n2 T)s [T,  3 T). We have shown that when the 
forward one process does not die out, then with probabil i ty at least 1 - 6 f i  
there is a set G1 of integers j ~ { - J ,  ...,j} with [G~[>0 . 98 (2J+ l )  so that at 
time S + 1 + n2 T there are N ones in 2jL + [--L, L]. Likewise, with probabil i ty 
at least 1 - 7 6  there is a set G2 of integers j ~ { - J  . . . .  , J} with [Gz[ =>0.98(2J+ 1) 
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so that  at time S + l + n  1 T there are N ones in 2mL+E--L,L ]. (We have an 
extra probabil i ty 5 that  the one-dual  sees a collection of 2's that  does not  look 
like 0 or #2.) N o w  I G, c~ G21 > 0.96(2J  + 1)> J so (5.9) and (5.10) guarantee  that  
(5.12) (i.e., (3.4)) holds (recall (5 = e/100). 

The last a rgument  does not  work  in d = 2 .  The block cons t ruc t ion  makes 
the processes grow in a strip Z x (4kL+[-2L,  2L]), so if the sources for the 
forward and dual one processes occur  in boxes 4zL+[--L,L] 2 and 4 z ' L + [  
- -L,  L] 2 with z 2 =~ z~ the p roof  given above does not  guarantee  an intersection. 
The remedy is simple though.  We pick n 1, n2 > 2 no to be multiples of  4 (replacing 
3 by 5 in their definition and  6 by 10 in (5.9)). We let the processes grow 
in the first direction for the first nil2 steps and then employ a modif icat ion 
of  the const ruct ion that  interchanges the roles of  the two coordinates  to get 
g rowth  in the second direction. A s t ra ightforward generalization of  the argu-  
ments  above shows that  if the forward one process does not  die out then with 
probabi l i ty  1 - 6 6  at time S+l+nz  T there are N ones in 4zL+[-L ,L]  for 
98% of the z e { - J  .... ,j}2. (Here we use the fact that  P~(O~)>l-6/d and 
the errors in (5.11) have the form 6/d.) A similar s tatement  holds for the dual 
one-process and the desired conclusion follows in the same way. The extension 
to d > 2 is straightforward.  Fur ther  details are left to the reader. 
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