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Summary. Durret t  (1984) proved the existence of an invariant measure for the 
critical and supercritical contact  process seen from the right edge. Galves and 
Presutti  (1987) proved, in the supercritical case, that  the invariant measure was 
unique, and convergence to it held starting in any semi-infinite initial state. We 
prove the same for the critical contact  process. We also prove that  the process 
starting with one particle, condit ioned to survive until time t, converges to the 
unique invariant  measure as t ---, oo. 

1. Introduction 

We consider the one dimensional  contact  process it, a Markov  process with state 
space {0, 1} z, where Z = the integers. For  x e Z ,  i t (x)  = 1 means that  site x is 
occupied by a particle at time t, and i t (x)  = 0 means that  site x is vacant  at time t. 
The contact  process evolves according to the following rules: 

(i) if ~,(x) = 1, then lim 1P(~t+s(x ) = 0]~t) = 1, 
s ~ O  S 

(ii) if it(x) = 0, then lim -1 P(~t+s(X) = 11 it) = 2 ( ~ t ( x  - -  1) + Ct(x + 1)), 
s-~O S 

where 2 > 0 is a parameter.  Liggett (1985) and Durre t t  (1988) are good  references 
for background  on the contact  process. 

For  ~/~ {0, 1} Z let 37 denote the process with initial state q, and let * denote the 
configurat ion which has a single particle located at the origin. Let 

I.1 = Z n(x) 
x ~ Z  
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be the n u m b e r  of  occupied sites and  let 

z* = inf{t > 0:l~*l = 0} 

be the extinction time start ing f rom a single occupied site. There is a critical value 
2c a (0, co ) defined by 

2c = inf{2 > 0 :P(z*  = oo) > 0} . 

Al though relatively little is known abou t  the critical case, it has recently been 
shown (see Bezuidenhout  and Gr immet t  1989) that  the critical contact  process dies 
out, i.e., that  P(z* = oo ) = 0 for 2 = 2 c. 

To  introduce the process seen f rom the right edge define 

r(rl) = s u p { x e Z : q ( x )  = 1}, 

x =  1 } z : l . I -  - o o . r ( , ) <  co}.  

2 = = 0}. 

and let S: X --+ X be the mapp ing  given by 

Sit(x) = , ( x  + r(q)) . 

In words, tO1) is the r ightmost  particle of  configurat ion r/, and St/shifts q so that  the 
r ightmost  particle is at 0. We are interested in the process S~7, which is the contact  
process seen f rom the right edge. 

Durre t t  (1984) proved,  for the critical and supercritical cases, that  S{~ has an 
invar iant  measure  which concentrates  on )~. Schonmann  (1987) showed that  in the 
subcritical case S~, does not  admi t  an invar iant  measure.  In bo th  of these papers  
the discrete t ime version of the model ,  oriented percolat ion,  was  considered. Andjel 
et al. (1989) t reat  a class of  cont inuous time models  which includes the contact  
process. Galves and  Presutt i  (1987) showed that  in the supercritical case the 
invar iant  measure  is unique, and that  for any r/E )~, S~/7 converges in law as t -+ oo 
to this invar iant  measure.  In addition, they proved  a central limit theorem type 
result for the posit ion of the right edge r(t/t). See Kuczek  (1990) for a nice p roof  of 
this in the discrete t ime setting. 

Our  first result is that  the Galves-Presut t i  result (concerning the process seen 
f rom the right edge) holds true in the critical case. Here  and  in what  follows we 
suppose 2 = 2~. 

Theorem 1. There is a unique invariant measure ~ for S~ r. For every q ~.~, 8~7 
converges in law to fi as t --+ co. 

The proof  of this result relies on some ideas f rom a construct ion in Galves  and 
Presutt i  (1987) and an est imate for the tail of z* due to Durre t t  (1988): 

(1.1) lim x / t P ( z *  > t) = + oo . 
t--+ oO 

We remark  that  if fix denotes the invar iant  measure  for S~, with pa ramete r  2, then 
fiz is cont inuous  on [2 c, co ). To  see this, first note that  S~, is a Feller process on X. 
Next,  it follows f rom Propos i t ion  1.2.14 of Liggett  (1986) that  if fiz ==> g on { 0, 1 }z as 
2--+ 20 > 2 c and ~()7) = 1,~then g is invariant  for S~t. Uniqueness then implies 

= fi~o at  2o. To  show 9(X)  = 1 we use an inequality f rom Andjel et al. (1989): 

'fi't(Ai'J) <= ipa(j) 
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H e r e A ~ , ~ = { t / e J f : ~ = ~ _ ~ r l ( x ) < j } , c ~ ( 2 ) > 0 a n d  

px( j )  -- (1 - e - l )  J-1 exp(2 - 22 j ) .  

Thus  ~ ( A i , j ) <  2o/iPzo(j) ,  and letting i-- ,  oo and then j---, oo 
argument .  

Our  second result is 

completes  the 

T h e o r e m  2. L e t  v, be the distribution o f  S~* condit ioned on { ~ * >  t}. Then v t 
converges in law to fi as t --* oo. 

Our  work  gives some new informat ion abou t  the critical contact  process not 
seen f rom the right edge: 

C o r o l l a r y .  (i) For  L < oo, 

lira P([~**I ~ L l z *  > t) = O . 
t -*cO 

(ii) For  s < oo 
P(~* > t + s) 

lira - 1 . 
~ P(z* > t) 

In view of (1.1), the last result should not  be surprising. 
Theo rem 1 is proved  in Sect. 2, and Theo rem 2 is proved in Sect. 3. We complete  

this section by giving Harr is '  graphical  construct ion of the contact  process. Fo r  
each x,  y e Z  such that  I x -  yl = 1 let {S. ~'y, n > 1} be the points  of a Poisson 
process with rate 2, and let { U~, n > 1 } be the points  o f a  Poisson process with rate 
1. Assume the Poisson processes are independent  of each other, and let ~ be the 
collection 

~ =  {(sx,').>_l,(u.%__>l, x,y,z~z}. 
We call N a percolat ion substructure.  For  (x, s) and (y, t ) 6 Z  x [0, oo-I, with s < t, 
say that  there is a pa th  f rom (x, s) to (y, t) in N if there is a sequence of times 
{ u , } , U o = S < U l < . . . < u , = t ,  and a sequence of sites {z i } ,  Z o = X ,  z n = y ,  
I z i - zi_ 11 = 1, such that  for i = 1 . . . . .  n, 

(i) ui = Sf, . . . . . .  for some k 
(ii) no Uf, ' -1E [u i -1 ,  ui) .  

For  t/~ {0, 1 }z and s < t define ~7 's by setting ~]'~(y) = 1 if there is a pa th  f rom 
(x, s) to (y, t) in N for some x such that  t/(x) = 1, and ~ '~ (y )  = 0 otherwise. Then 
~7,o is a version of ~t, and we will use ~7 to denote  ~7 '~ 

2. P r o o f  o f  T h e o r e m  1 

We begin by using an idea of Galves  and  Presutt i  to construct  ano ther  version of 
the contact  process on ~ .  Define the sequence { Tk, k > 0 } by T O = 0 and 

T k = i n f { t >  T k _ l : l ~ * ' r k - l [ = O } ,  k > l .  

For  ~ ~)~ define the process ~7 by the following prescription: for t ~ [ T k_ 1, Tk) and 
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= ~}~ , let 
~. = C s~,T~ , + r ( : ) .  

(For  a configurat ion r /and an integer x define r / +  x by ( r / +  x) (y) = t/(y - x).) In 
words, at the times T k _ 1 we shift the configurat ion ( = ~}~_~ so that  its r ightmost  
particle is at the origin, then use ~ to obta in  S~ s~' r~- ~, and then shift back by r(~). 
Thus  ~t" is a version of the contact  process start ing f rom I/, and hence S ~  is a 
version of the contact  process seen f rom the right edge. Note  that  if t e [ Tk- ~, Tk), 
and I~*'T~-'[ > L, then for all t/~)~, S~7(x) = S ~ ' T k - ' ( X )  for all x e [ - L ,  0]. 
Finally, for i > 1 let z~ = T / -  T/_ 1 and let 

N(t )  = ~ l~T~<t~. 
i = 1  

The { z i} form an i.i.d, sequence, and the distr ibution of T~ is the same as that  of z*. 
Fix L < oo, ~c e )~, and define C = { r/~ )~: r/(x) = ~c(x), x e [ - L, 0 ] }. Fo r  any t/ 

and t/' in X 

[P(S~7~ C) - P ( S ~ ' e  C)l _-< P(Sx  ~ E - L ,  03, S~7(x) # S f7 ' ( x ) ) .  

Using the coupling proper ty  in our  construct ion of ~,, this last expression is no 
larger than 

P( I~  *'r~r(,,] <= L ) .  

The fact that  Ez 1 = oo implies t - TN( o c o n v e r g e s  in probabi l i ty  to 0% so the 
desired result would follow if we could show 

P ( l ~ * l < L l z * > s ) - ~ O  as s ~  oo. 

The reader can see from Corol la ry  1 that  this is true, but  we do not  know how to 
show this directly. Instead,  we show convergence to 0 along a subsequence, which is 
easy to do and good  enough to prove Theorem 1. The first step is to observe that  if 
P([~*I < LIz* > t) > ~ too often then P(z* > t) would go to zero exponential ly 
fast, which would contradict  (1.1). 

L e m m a  1. For any L <  ~ there is a b = b(L)  > O such that if 
P(I~*[ <= L I t*  > t) >= e then 

P ( z * > t + l ) _ < l  & 
P(z* > t) - 

Proof  Since the probabi l i ty  that  a particle dies in unit  t ime and is not  reinfected by 
a neighbor  is at least (1 - e - 1 ) e  -2z~ it follows that  

P(z* <= t + l l z*  > t, I~' l  _-< L) > [(1 - e-1)e-2Zc] L =_ b . 

By hypothesis,  P(lr  < Llz*  > t) > e, thus 

Pfz* < t + l l z*  > t) > P(z* < t + 1 I1~*1 < L ,v*  > t)P([~*[ < Llz*  > t) > be.  
[] 

L e m m a  2. For every L < ~ there exists a sequence of  integers Jn /~ oo such that 

lim P(I~*2 rN'~o'l _--< L) = O. 
n ~ o o  
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Proof  Let e(t) = (log(1 + t)) -1 and l e t f ( t )  = P([r ~ L i t *  > t). 
deterministic set 

A = {s > 0 : f ( s )  > e(s)} 
and the r andom set 

Define 

B = { r > O : r -  Tm~)~A } . 
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the 

Let 
a(n) = sup{k: 3 tl . . . . .  t k~A C~[O,n] , t l - -  t i_l  > 1  f o r 2 _ < i _ < k }  

and let b(n) be the number  of integers in B c~ [0, n]. 
The first ingredient in the proof  is an upper  bound  on a(n). If t l , .  �9 �9 t,(,) are as 

in the definition of a(n), then 

m = a ( n )  

P ( ' c * > n ) = < P ( z * > t , ( , ) ) _ <  l~ P ( z * > t m [ z * > t m _ 0 .  
m = 2  

Since m --~ e(m) is decreasing it follows from Lemma 1 that  

P(z* > n) <- (1 - re(n)) a(")- 1 . 

With this inequality and (1.1) a little algebra shows 

K 
(2.1) a(n) < e2(n ) 

where K denotes a positive finite constant  whose value is unimportant .  
The  next ingredient is 

2n 
(2.2) E g ( n )  < 

E(zl  ^ n)" 

To see this notice that  for any ~ > 0 the sequence z'~ = z I A (n + e) has the same 
number  of renewals in [0, n] as does the r~ sequence. Letting T', = r'~ + . . .  + ~', 
and using Wald's  equat ion at the stopping time N(n)  + 1 gives 

E ( N ( n )  + 1)E(zl /x (n + e)) = ETa(n)+1 ~ ET'N(.) + n + e <- 2n + e .  

Rearranging and letting e--* 0 gives (2.2). Since (1.1) implies E(z 1 /x n ) / x / ~  ~ 0% 

(2.3) EU(n)  <= x /n  

for large n. 
A little thought  reveals that b(n) <_ (N(n)  + 1)a(n) a.s., so (2.1) and (2.3) imply 

(2.4) Eb(n) x /n  -< Ke2~-  ) 

for large n. On the other  hand, 

n m i n { P ( j e B ) :  n �9 Eb(n) > ~ ~ <=j <= n} . 

By combining this fact with (2.4) we can find integers j ,  such that  j ,  ~ [~, n] and 

(2.5) P ( j ,  e B )  < _2 Eb(n) --* O. 
n 
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It remains to show that for this sequence j , ,  P(] ~*- TN~J~ I < L) ~ 0. To do this, 
note  that 

(2.6) p([ ~, ,  TN,,.,] < L) < P( j ,  e B )  + P(j , (~B,  I~*" rN,j~ < L ) .  

The second term on the right side above equals 

Jn 

(2.7) ~ ~ P ( j , r  = m, I~j. [ < L, Tmeds) .  
0 m > O  

Given that N(j . )  = m and Tm= s, j .  ~ B is jus t j .  - s ~ A, and the distribution of ~*'~ 
, is the same as that of ~ j _ s  condit ioned on {~* > j .  - s}. Thus, 

P(I~j .  I < L,j,4sBI T,, = s, N(j,,) = m) 

= I{j.-~r <= LIz* > j ,  -- s) <= e( j ,  -- s) 

by the definition of A. This implies that  (2.7) is no larger than 

J. 
~ e( j ,  - s ) P ( N ( j , )  = m, TmSds ) . 

0 m>_O 

Fix 0 < k < j .  and break the above integral into two integrals, one over [0, j .  - k] 
and the other  over [ j .  - k , j . ] .  Since e(t) is decreasing, we easily bound  these two 
integrals by 

e(k) + P( j ,  - Tmj,) <= k) 

for any positive k. But E ( r l )  = 0% so t -TN( o converges in probabil i ty to infinity. 
Thus for any k < oo 

lim P(I~*" TN(j.)[ <= L) <= e(k) . 
n-*~o 

Letting k ~ oo completes the proof. [] 

Proof of Theorem 1. Fix L < 0% let j ,  be the sequence constructed in Lemma 2, 
let ~ e J ( ,  and define C =  { t l e X : r l ( x ) = ~ ( x ) , x e [ - - L , O ] } .  For  any t/ and t/' 
in X 

]P( S ~ ,  e C) - P( S~I  ' e C)l <= P(?x  e [ - L, 03, S ~ . ( x )  se S f f . ( x ) )  . 

Using the coupling proper ty  in our  construct ion of ft, this last expression is no 
larger than 

P(I~*z rN.-,I < L ) .  

F rom Lemma 2 it now follows that  

(2.8) lim sup IP(S~ 'JeC)  - P(Sf 's  e c ) [  = 0 .  

Suppose now that ~ and ~' are in )~ and t > j , .  By the Markov  property,  

P ( S ~  e C) = t P ( S ~ _ j ,  ed,1)P(S~y, e C) . 

Since a similar decomposi t ion holds for P ( S ~ [ e  C), (2.8) implies 

(2.9) lira s u p . I P ( S ~  e C )  - P(S~[  eC)[  = O . 
t ~  r U e X  

Finally, we use the fact that there is an invariant measure fi for Sit.  Invariance 
of/2 and (2.9) imply 

I P ( S ~  e C) - /~(C)I  ~ 0 
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as t--* oc. Since this is true for any cylinder event C we have proved 
Theorem 1. [] 

3. Proof of  Theorem 2 

Recall that/~ is the unique invariant measure for S~t that concentrates on )~, and v t 
is the law of~* conditioned on {z* > t}. Fix e > 0, L < 0% and ~ceX and let C be 
the cylinder event C = { tt E X: t/(x) = ~c(x) for all x e [ - L ,  0] }. We will construct 
an initial configuration r/e X and a version of the contact process t/7 such that 

(3.1) lP (Sr l t  , E C )  --  vt(C)J <= 2e . 

Since by Theorem 1 &lt" converges in law to fi as t --* oo, this is enough to prove 
Theorem 2. 

Our construction begins with a collection {~i,i=> 0} of i.i.d, percolation 
substructures, 

" x , y  z ~i = { ( S . , i ) . ~  1, ( U . , 3 . ~  2, x,  y, z~Z}. 
Let x~ be a decreasing sequence of integers with x o = 0, and let k~ be any sequence 
of positive integers such that 

(3.2) ( x , - 1  --  k , - 1 ) -  (x, + k,) > L .  

Let {[ denote the contact process defined using the percolation substructure ~ ,  
starting with a single particle at x~. Note that the ~ are independent, and each S{~ is 
a version of Sd*. Using I({) to denote the leftmost position of a particle in {, define 

G , = { r ( ~ i ) < x , + k ,  and l ( r  for all t > O }  

and 

G =  ~ G  i . 
i = O  

On G~ the process ~i lives entirely in the space-time region [ x i -  k~, x~ + k~] 
x [0, oc]. Since the critical process dies out we can make P(Gi )  close to one by 

choosing k~ large. Thus a simple Borel-Cantelli argument shows that there are 
sequences xi and k~ satisfying (3.2) such that 

P ( G )  > 1 - e . 

Having fixed the x~ and k~ we now define a percolation substructure N in terms 
of the ~i- For  x > x0 - ko let 

x , y  x x S:~ 'y = S , ,o ,  U ,  = U, ,o  

and f o r i >  1 a n d x s ( x  i - k i , x i _ l - k i _ l ] l e t  

S~ 'y = S , , i ,  U ,  = U , , i .  

We take ~ to be the collection of these Poisson processes. Let t h denote the contact 
process constructed using ~ and let ~/be the configuration with particles located 
precisely at the points x~. 

In order to prove (3.1) we compare r/7 with the ~ .  The idea is that the particles x~ 
are so far apart that r/t" is essentially the same as the union of the ~ ,  so Srlt , should 
be the same (locally) as S~  where i is the smallest i such that ~i is still alive at time t. 
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Thus, the law of St/7 should  be the same as the law of Sr cond i t ioned  on r being 
alive at  t ime t, i.e. vt. To make  this precise define 

K t = inf{i > 0:1411 > 0} 
and  

~ , = S ~ I  on { K ~ = i } .  

Observe  that  on G, for all t and  x, ~/t(x) = 1 if and  only if ~i(x)  = 1 for exact ly  one i. 
Thus,  on G, SqT(x) = ~t(x) for - L  _< x _< O, so 

(3.3) 

N o w  

(3.4) 

P( Stl~t ~ C, G) = P(~tE C, G ) . 

P ( ~ , ~ C ) =  ~, P ( K , = i , S ~ I ~ C ) .  
i>o 

Since the 41 are cons t ruc ted  using the independen t  ~ i ,  

P(S~I~CIKt  = i) = P ( S r  I~l > 0) = vt(C) . 

This fact and  (3.4) imply  P(~, e C )  = vt(C ). Using this with (3.3) we ob ta in  

I P ( S t l T e C ) -  v,(C)l <-_ 2P(G C) _-< 2e .  

This proves (3.1), so we are done. 
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