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Abstract. The complete convergence theorem implies that starting from any initial distribution 
the one dimensional contact process converges to a limit as t--,-oo. In this paper we give a necessary 
and sufficient condition on the initial distribution for the convergence to occur with exponential rapidi- 

ty. 

1. Introduction 
Since Harris (1974) introduced the contact process, many papers have been 

written on this topic, especially for the basic contact process in one dimen- 
sion ( s e e [ l ] ,  [4], [6], [7], and [8]) .  In this paper we will consider the one 
dimensional nearest neighbor case,, that is, a Markov process r  with: 

e ( x ~ , + s l ~ , ) = f i x ( i , ) s + o ( s )  when x ~ , ,  

P(xr162 )=rx(~,  )s+o(s) when xE~, ,  

where the birth and death rates are given by 

0 i f l C n { x -  1, x+  1 } l = 0 ,  

f l x (~ )=  2 i f l ~ n { x -  1, x+  1}1= 1, 

03. ifl ~ n { x -  1, x +  1 }l = 2 ,  

and c S x ( ~ ) = l .  Here 01>1 is considered to be fixed while 3.>0 is varied. When 
0=  2 we get the basic contact process. 

If A c N ,  let ~ denote the process with ~0A=A. We assume that 01> 1 so the 
system is attractive: i f A c B  then we can construct ~t A and ~f  on the same space 
with ~ c ~ s  for all t. A consequence of  attractiveness is that Cf=:,v as t --~ m ,  
where =>denotes the weak convergence, which in this setting is just the 
convergence of finite dimensional distributions, v is a stationary distribution for 
the contact process, but may be the trivial one: c51 = a pointmass on ok. Let 
2 c ( 0 ) = i n f {  3. : v~cS~}. It is known that if 0/> 1 then 3.c(0)-~<3.~(1)~<4, and that 
the following complete convergence theorem holds for 3. > 2c (0):  
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( * ) ~, =>P(z ~ < oo ) 64)+ P ( z ~ = oo )v. 

Here ~ denotes the contact process with initial distribution # and 
z ' =  i n f { t : ~ =  q5 }. This result was proved in [1] for 1~<0<2. Using Theorem 4 
in [5] it is easy to extend the proof to 0> 2. 

The purpose of this paper is to identify the initial distributions for which the 
convergence in (* )  occurs with exponential rapidity, that is, for which the follow- 
ing conclusion holds: 
(** )  For any nonempty finite B c Z ,  there are constants C ,  y E ( 0 , o o )  such that 

I e ( B c ~  ) - e ( z " = o o ) v ( ~ : ~  ~ B )  I<<. Ce -~'.  

Since any event involving finitely many coordinates can be written in terms of the 
events { ~ : B c  ~}, (** )  gives the exponential convergence of finite dimensional dis- 
tributions. 

In [5] (see Theorem 2 on p. 383) it was shown that (**) holds when # = 6 ~ .  
In [6] (seep.  172) it was shown that if # is a product measure with density 
p, i.e. 

#(~:B=~)= plSJ, 
where I B l = t h e  number of points, then (**)holds when 0 = 2  and 2>/14. 

Before this work, the first and third authors showed that (**) holds for one 
dimensional supercritical contact processes (i .  e. 01> 1, 2 > 2 c ( 0 ) )  when /.t=6A, 
where A is a finite set or A D ko Z + for some integer k0 with [ k0 I>t 1. The next re- 
sult shows that exponential convergence always holds for product measures and in- 
cludes the case mentioned above. 

Theorem. Let  2 > 2 c ( 0 ) .  (**) holds  i f  and ony i f  there are constants  C ,  6, 
y ~ ( O , oo ) such that f o r  all n E ~ + , 

/ ~ ( ~ : l ~ n [ - n , n ] l < ~ 6 n ,  ~ n [ - n , n ] ~  #4~ )<~ Ce -~n. 

Before explaining the intuition behind the theorem, we need to state some 
known results: 
(1.1)  Let ~A=in f{ t "  A �9 ~t =~}.  There are C , 7 ~ ( 0 , o o )  such that for all t~>0 and 

A c ~ ,  P ( t < z A < o o ) < ~ C e  -'H. 
(1.2)  There are C, y ~ ( 0 , ~ ) s u c h  that P ( z A < o o ) < ~ C e  -~IAI for all A c Z .  

( -oo, 0l 
( 1 . 3 )  Let r,a=sup ~,~, r t = r ,  , and ~ ( 2 ) = l i m E r - / / t ,  which is > 0  for 

~.>2~(0). Then for any a<c~ and b>0c there are C , y ~ ( 0 , o o )  such that 

for all t~>0, 

P ( r - /  <~at)<~ Ce -'~' and P(r- />~bt)<~ Ce - ~ .  

These conclusions were proved first for 1 ~<0~<2 in [4] and extended to 0 > 2  in 
[5] . Here and in what follows C, 7 denote positive finite constants whose values 
are unimportant and will change from line to line. 

To explain why the condition is necessary we begin by considering what hap- 
pens when #(~ :  I r  and hence ~t~=>v. In this case if # ( ~ :  ] ~ n [ - n ,  
n] I~< fin)~>e -~" then with probability at least e - '~e  -r~" all the particles in [ - n  ,n] 
die by time 1 without giving birth and it follows from (1.3) that with probability 

at least e-~"e - r ~ - 2  Ce-~' /2~ there will be no particles in [ - n / 3 ,  n/3] at time 
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t = n , / 2 ~ .  

The second part of the condition ~r~ [ - n  ,n] c~  4, is needed to take care of fi- 
nite initial configurations. Our  theorem implies that for a fixed finite initial con- 
figuration exponential convergence always occurs. If  for example C0 is a single 
particle at X0,  reasoning as in the last paragraph shows that  exponential 
convergence occurs if and only if P ([ X01> n) <~ Ce-~". 

The proof  of sufficiency, given in Section 2, is more technical. The key to the 
proof  is a coupling result given in (2 .1) ,  from which the conclusion follows in a 
straightforward manner  by using (1 .1)  - ( 1.3 ). The proof  of necessity is given in 
Section 3. 

2. Proof of Sufficiency 
We begin by constructing the process. Define independent Poisson processes 

{ S  x ' n ~ > l } ,  { T ~ "  n>~l}, and { U  x" n>~l} for each x ~ Z  with rates 1, 2 ,  
and ( 0 - 1  )2  respectively. As the reader can probably guess from the rates, at 
times 

S~ we kill a particle at x if one is present, 
T x a particle is born at x if x -  1 or x +  1 is occupied,  
U~ a particle is born at x if x - 1  and x +  1 are both occupied. 

It is easy to see that using this " graphical representation" we can construct for 
each /~ and s the process starting from distribution # at time s :  { ~ . s ;  t>~s}. See 
[5] for more details. In what  follows it will be useful to use also the coordinate 
nota t ion for our  processes: ~f 'S(x)= I if x ~ f ' s , = 0  otherwise. 

To prove that our condition is sufficient we will prove several lemmas. The 
first one is a coupling property that is a special property of the nearest neighbor 
case. Let / ~ = i n f ~ .  

 -oo.-o,1 = { lCOt, o  = { (2 .1)  Lemma. Let E,={r, >~bt}, F, -bt}, G, >t} ,  

where a,b>O. On E, nF, n G , ,  ~ { ( x ) = ~ , ( x )  for xE[ -b t ,b t ] .  
Proof. This follows easily from the proof  of Lemma 13 in [5]. 
Pick e< ~ /4 ,and  let a = ( ~ - 2 e )  and b=e. It follows from (1 .3 ) ,  translation 

invariance, and symmetry that 

[ at ,oo) ~ ( -oo ,  -at] ~ e l  �9 (2 .2)  P ( l ,  ~ - e t ) = P ( r ,  )<~Ce -~' 

If  # satisfies the hypothesis of  our  theorem, then there are q, C , ~ 6  (0, oo) such 
that  

(2 .3 )  #(~ :[ ~ n[-at,at]l<~It, ~n [-at,at] c v~ 4, )<~ Ce -~'. 

With ( 2 . 1 ) -  (2 .3)  being established the rest is straightforward. Let 

M , = { ~ : l ~ n [ - a t ,  a t] l>~lt},  N,={~=[-at,at]}, 

and for i=  1,2,3 let 

p ; ( t ) =  f IP(B= ~, )-P(vA=oo )v(~:O=~ )l~(dA), 
d o  
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where f l l = M ~ c ~ N T ,  f12 = M ` ,  and f13 = N , .  .Clearly p(t)<~pl ( t)+p2 ( t )+  P3(t)- 
Since the integrand is a difference of two probabilities, it is ~<1 and ( 2 . 3 )  
implies 

p l ( t ) ~ C e  -~' 
For the second term we observe 

p 2 ( t ) ~  r { [ P ( B c ~ ) - v ( ~ : B c ~ ) [ + P ( z  A < ~ ) } # ( d A ) .  
d u  t 

I f A ~ M t  then P(zA~I-a""'J<oo)<~Ce -~t b y ( 1 . 2 ) ;  so it follows from ( 2 . 2 ) a n d  
(2.1) that P2 (t)<. Ce -~t. To bound the third term we observe 

p3(t)<~ r {IP(B c ~ ,  A ) -  P (t /2<'c A ) P ( B  c ~,,2 )I+P ( t /2<~  A< oo ) 
ally t 

+ I P ( B =  ) -  �9 B c )l P oo (dA). 

The last two terms in the integrand are ~ C e  -~t by (1. 1) and the fact that 
exponential convergence holds for /~=6z. To estimate the first term, we observe 
that 

I P ( B c  ~a t ) - P ( t / 2 < z  a ) P ( B  c ~z,/2 )1 

= I P ( B c ~ A , ,  z A > t / 2 ) - e ( B c r  ''/~, TA>t/2)I 

because B c ~,,/2 and zA>t/2 are independent. When A ~ N t ,  A c [ - a t ,  at] so 
(2.1) implies the last difference is smaller than 

P ( t / 2  <za<<.t)+ P(E~ )+ P(F~ ). 

The last quantity is <~Ce -'~' by (1.1) and (2.2),  and the proof is complete. 

3. Proof of Necessity 
The main step in proving necessity is to establish 

(3.1) Lemma. Suppose I A c ~ [ - n , n ]  l<<.6n and A n [ - n , n ] ~ : A  4~. Let t=n/2a. 
Then 

7..r/2 A Ke - (oa§ t )~, _ P ( z A > t / 2 ) P ( O ~ ,  ) - P ( O ~ ,  )>>. 2 P(rT>~2o~t), 

where K=e -~ P ( z  ~ oo)v(~ : 0 ~ ) .  
Note. Of course, P (r7 >>- 2 cct)<~ Ce -r` by (1.3). We have written the result in 

the above form to emphasize that the error term, -2P(rT>~2~t ) ,  does not de- 
pend on (5. 

Proof. Let B,={All  particles in A n [ - n , n ]  die by time 1 and do not give 
birth }, 

D.={r(-t ~'-"] < 0 ,  l [7'~)>0} 
x . =  the point in A c~ [ - n  ,n] ~ closest to 1/3. 

Since z ~ > t/2 and 0 ~ ~ z;'/2 are independent, we have 

P (z~ > t/2) P (0 ~ ~:" ,/z ) _ p (0 6 ~a ) = P l  ( t )+p2  ( t )+p~ ( t ) ,  
where 

p ~ ( t ) = p ( v a > t / 2 ,  O~.~t "t/2 ) - p ( z ~ > t / 2 ,  0 ~  z,t/z , B~ ), 
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p2( t )=P(z~>t /2 ,  0 ~ / ' / z ,  B~ ) - P ( z A > t / 2 ,  0 ~ ,  z '`/2, B~uD~ ), 

p3( t )  = P ( z A > t / 2 ,  0 ~ t  ~ ' t / 2  , B~wD~ ) - P ( ~ A > t / 2 , 0 ~  ). 

On B, c3D, or { 0 ~ z ,  ''/2 }, 0 ~ a  SO p3(t)~>0. Clearly 

p2 (t) ~> -P(D~)>~ -2e(r;>>.n), 
by translation invariance. As for the rema!ning term, 

P " ( t ) = e ( z A > t / 2 '  OE~t  ' ' /2 '  B . )  
tgXn , 1 /2. t/2 >/P  (the particle at x ,  does not die by time 1, -,/2 4: 4~, 0 ~ it  , B,  ) 

>~e_te(zo=oo)v(~" 0 ~ ) { e _ 0 ~ ( l _ e _  l )}la~I- , . , l l ,  

since the four events are independent. Replacing 1 -  e -l by e -t gives the desired 
bound. 

to prove necessity now we write 

e ( z ~ = o o ) v ( ~ : O ~ ) - P ( O ~  ~, ) = q l ( t ) + q 2 ( t ) + q 3 ( t ) ,  

where 
q~ (t)=P(z~=oo )v(~ :O~ ~ ) - e ( z ~ >  t/2 )v(~:OE~ ), 

q2(t )  = P(z~ > t / 2 ) v ( ~ "  O ~ ) - e ( z ~ > t / 2 ) P ( O ~ " / 2 ) ,  

q 3 ( t ) =  P ( z ~ > t / 2 ) P ( O ~ " / 2 ) - p ( o ~  ~, ). 

By (1.1), q~ (t)>1- Ce -~' Exponential convergence for the case # =  6~ implies 
that 

q2(t)~> -Ce  -~'. 

Notice that in both cases the constants C,? do not depend on #. Using (3.1)  on 
the third term we see that 

q3 (t)>~Ke-~~ :IA ~ [ - n  , n]l<6n, A c~ [ - n  ,n] ~4 ,  )• 2P(r; ~>2~t) 

and the proof of necessity is complete. 
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