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Summary. Reaction-diffusion processes were introduced by Nicolis and 
Prigogine, and Haken. Existence theorems have been established for most 
models, but not much is known about ergodic properties. In this paper we study 
a class of models which have a reversible measure. We show that the stationary 
distribution is unique and is the limit starting from any initial distribution. 

1. Introduction 

We need some notation to describe our model. Let Z d be the d dimensional integer 
lattice, 7/+ = the nonnegative integers, and X = {r/: 7/d ~ Z§ }. The reaction dif- 
fusion processes considered in this paper are continuous time Markov processes 
with state space X that evolve in the following way: 
(i) at rate fl(q(x)) a particle is born at x, 
(ii) at rate 6(q(x)) a particle at x dies, 
(iii) at rate q(x) p(x, y) a particle jumps from x to y. Here p(x, y) is the transition 
probability of an irreducible symmetric random walk on Z d with p(x, x) = O. 

The formal generator is: 
/ 

Ifl(rl(x)) [f01 + ex) - f (q)]  + 6(q(x))[fO1 - ex) - f(r/)] Qf(~) 

+ ~t l (y )p (y ,  x ) [ f ( t / +  ex - e , ) -  f ( t / ) ]~ .  (1.1) 
Y / 

Here the sums are over all x and y in Z d, and e ~ e X  has e~(x) = 1 and ex(y) = 0 
for y ~ x. 

* The work was begun while the first author was visiting Cornell and supported by the Chinese 
government. The initial result (for Schl6gl's first model) was generalized while the three authors were 
visiting the Nankai Institute for Mathematics, Tianjin, People's Republic of China 
** Partially supported by the National Science Foundation and the Army Research Office through the 
Mathematical Sciences Institute at Cornell University 
*** Partially supported by NSF grant DMS 86-01800 
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In the cases we will consider 

k k + l  

/~(x) = y~ bjx~ '  a(x) = Y~ cjx~J~ 
j = 0  j = l  

where x Cj~ = x (x  - 1 ) . . .  (x - j + 1), the coefficients bj and cj are nonnegative, 
k > 1, and e k + 1 > 0. Three concrete examples are: 

1. Schl6gl's first model, k = 1. 
2. Schl6gl's second model, k = 2, bl = 0, c 2 = 0. 
3. Autocatalytic reaction, k = 1, bo = 0, el =O. 

Here the coefficients not mentioned are assumed to be > 0. 
Reaction-diffusion systems have been studied extensively in the physics liter- 

ature, but only recently have been studied by probabilists. The first step in their 
analysis was to construct the process. Since we have supposed that the transition 
probability is symmetric, it follows from results in Liggett (1973) that there is a 
positive function p(x) on Z d and a finite M so that 

~ p ( x , y ) p ( y )  < Mp(x )  for all x 6 Z  a, 
Y 

Z p(x) < o0. 
x 

In what follows we fix a p with these properties and let 

and (1.1) 

(1.2) 

x0  = {. E x I I  ~ II = Z . ( x )  p(x) < ~ } .  
x 

The construction of the process on X o, which we will denote by qt, can be found in 
Chen (1985, or 1986b, or 1987). If we let E, denote expected value for the process 
starting from % = q, then Theorem 1.1 in Chen (1985) implies that the semigroup 
Ptf(~l) = E . f ( t l ,  ) defined on functions f with I f 0 / ) - f ( ~ ) ]  =< c ( f ) l l r / -  (11 has 
generator Y2 and the following Feller property: 

[P, f (q)  - Pt f(()[  < c(f)[[ r / -  ~ H exp (Tt), (1.3) 

where 7 is a constant which is independent of f Precise statements and further 
properties can be found in the paper cited. 

With the existence of the process established, it becomes natural to ask about its 
stationary distributions and asymptotic behavior as t --* ~ .  It has been known for a 
long time (see e.g. Janssen (1974)) that if 

(B) there i s a 2 > 0  so that b~ = 2c i + l  for 0 < j < k ,  

then v, the product measure in which each coordinate has a Poisson distribution 
with mean ~,, is a stationary (and reversible) distribution for the process, The main 
result of this paper is: 

Theorem. Assume (A), (B), and b o > O. Then v is the only stationary distribution and 
is the limit starting from any initial distribution. 
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If bo = 0 then 6o, the pointmass on the configuration q(x) - -0 ,  is also a 
stationary distribution. Shiga (1988) (see pp. 350-351) has conjectured that if (B) 
holds for the autocatalytic reaction (Example 3 above), then t h =~ v whenever 
P(~lo =- O) = O. (ca = bo/2 = 0 so an isolated particle cannot die.) Our techniques 
allow us to conclude that in this case the only translation invariant stationary 
distributions are convex combinations of 6o and v (see the remark at the end of 
Sect. 3), but we have not been able to prove Shiga's conjecture. (After the original 
version of this paper was written, Mountford (1989) proved this conjecture under a 
first moment assumption on p(x,  y).) 

It would be interesting to know whether uniqueness of the stationary distribu- 
tion always holds when (A) holds and b o > 0. Neuhauser (1988, 1990) has shown 
that if the particles jump from x to y at rate etl(x)p(x,  y) then uniqueness holds for 
e < to (depending on fl and 6, but not on p). By rescaling time one can, of course, 
reformulate her theorem for e = 1. In general the condition on fl and 6 that results 
is somewhat complicated, but in the case of Schl6gl's first model it is very simple: 
bl < ca. Intuitively, when bl < ca the process with b o = 0 is subcritical, so the 
influence of the initial configuration disappears. 

The rest of the paper is devoted to the proof of our theorem. In Sect. 2 we will 
show that if(A) holds it is possible to define the process starting from tTo -= c~. Since 
the process is attractive (see (2.2)), using ideas of Holley (1972) we see that the 
limiting distribution of iT, exists. Call it ft. A similar and easier argument shows that 
if we let q, denote the process starting from t/o = 0 then the limiting distribution of 
_q, exists. Call it ~. Attractiveness implies that for any initial distribution qo we can 
construct t/,, t/,, and 6, on the same space with q,(x) < t/,(x) < f/~ (x). To prove our 
theorem then, it suffices to show that /2 = #. Let I be the set of stationary 
distributions (invariant measures), and let S be the set of translation invariant 
measures. Since/2, ~ ~ S, it suffices to show II n S] = 1. This is done in Sects 3 and 4 
using the free energy technique developed in Holley (1971), and Holley and Stroock 
(1977). See Sect. IV.5 of Liggett (1985). 

2. Implosion, Construction of//and 

The first word in the title of the section refers to the fact that here we will show that 
it is possible to start the process from qo (X )=  0% and when we do this, 
E(tl,(x) k) < oo for all t > 0. At the end of the section we will use the last conclusion 
with k = 1 to construct the stationary distributions /2 and ~ mentioned in the 
introduction. Let r/~' denote the process starting from t/o(X ) - n. 

(2.1) Lemma. For  m < n < oo, we can construct tlT' and tl7 on the same space in 
such a way that  tl7 < tl~ for  all t > O. 

P r o o f  We use the obvious coupling. At sites with q'~(x) < qT(x) we allow the births 
and deaths to occur independently. When tl~(X ) = t/~(x) the births and deaths occur 
simultaneously. Finally, we move a particle from x to y in both processes at rate 
tlr"(x)p(x, y) and in the second process only at rate (t/"(x) - qm(x))p(x,  y). Further 
details are left to the reader. 



16 W.-D. Ding et al. 

(2.2) Remark. F r o m  the p roof  just  given it should be clear that  if~(x) < ((x) then 
we can construct  t/, and (7 with these initial configurations so that  qt(x) < ~,(x) for 
all x and t, i.e. the process is attractive. 

L e m m a  (2.1) implies that  t/~ increases to a limit as n Too. To  prove that  the limit 
is not  - oo we will prove: 

(2.3) Lemma.  Let E" indicate expected value for the process with q(x) =- n. There is 
a decreasing function ~o(t) on [0, oo) which is independent  of  n and finite for all t > 0 
so that  

E"qt(x)<~o(t) for all t > O .  

Proof We begin by comput ing  formally, i.e. we will assume that  all momen t s  are 
finite etc., and at the end we will give the addit ional  a rguments  needed to make  our  
computa t ions  rigorous. To  simplify the expressions we drop  the superscript  n from 
the expected value. 

d { 
d5 e(n , (x) )  = e /~(. ,(x)) - a(n,(x))  - . , (x )  + ~y qt(Y)P(Y, x ) } .  (2.4) 

Since ~ p(y, x) = 1, the last two terms cancel by t ranslat ion invariance. Now,  
Y 

k k + l  

f l (x )= ~ b jx  (j) and ~ ( x ) =  ~ cjx ( i ) ,  
j = 0  j = l  

SO 

[3(x) - 6(x) = ~ ajx j < ao + lajI xk - -  C k + l  x k + l  for x e Z  . 
j=O j=1 

Setting a = a o, b = ~ lajl, and c = Ck+~ gives a differential inequality: 
l ~ j ~ k  

d 
dt Eth(X) < a + bE(th(X) k) - cE(th(X) *+ 1) (2.5) 

where a, b, c > 0. If k > 1 we write k = 1/k + (k z - 1)/k and use H61der's inequal- 
ity with p = k and q = k/(k - 1) to get 

E(n,(x)k) __< (En,(x))l /~(E ~,(x)k + 1)(k- 1)/~. (2.6) 

N o w  let f (u ,  v) = a + but/kv (k- 1)/k _ CV, and compute  

~ f _ _ _ k -  lbul/kv_l/k__c__<O if U=< V. (2.7) 
OV k -- 1 

Taking  u =  Eth(x), we see that  f ( u , v )  is decreasing in v for v>(Et l~(x) )  k+l, 
provided that  u > b(k - 1)/ck. Since 

E(q,(x)k + 1) > (Eth(X) ), + t (2.8) 
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it follows that  as long as Etl~(x) > b(k - 1)/ck 

d 
dt  E~It(x) < a + b(E~l,(x) )l/k(E~h(X) k+ 1)(k- 1)/k _ cE(tlt(x)* + 1) 

= f (E t l t ( x )  ' Etlt(x)k+ ~) < f(E~lt(X) ' (Etlt(x))R+ 1) 

= a + bEtlt(X ) - c E ( t l t ( x ) k + l ) .  (2.9) 

Writ ing u(t) = Etl t(x ) gives 

u'(t) < a + bu(t) k - cu(t) k+ l whenever u(t) > b(k - 1)/ck . (2.10) 

All of the analysis since (2.5) has been for the case k > 1. When  k = 1, (2.5) 
and (2.10) are the same so (2.10) is true for all k. Let  u o be the largest root  of 
O = a + b x k - - c x  k+l, and to prepare  for a later p roof  let e = k + l .  If 
u(t) > u o (which is >__ (b/c) > b(k - 1)/ck) for all t e [ 0 ,  T ]  then 

T 
(a + bu(t) k - cu( t )~) - lu ' ( t )d t  >= T .  (2.11) 

0 

Let F ( x ) =  i ( a + b v  k - c r y )  - ldv<-_O for x > u  o + 1 .  
Uo+ 1 

If  e > 1 then F(x)  decreases to a finite limit F(oo) as x T c~. Substi tuting the 
definition of F into (2.10) now gives 

F ( u ( T ) ) - F ( u ( O ) ) > T  i f u ( t ) > u o + l  f o r a l l  t e [ 0 ,  T ] .  (2.12) 

Since the left-hand side can be at most  - F ( o o )  we conclude that  u(t) < Uo + 1 for 
some t < - F(oo). Since a + by k - cv ~ < 0 when v = u o + 1, (2.10) implies that  u(t) 
cannot  rise above  u o + 1 once it falls below it. 

The last observat ion  and (2.12) combine  to give the desired conclusion, so it 
remains  to show that  all the computa t ions  are justified. To  avoid the problems that  
come from unboundedness ,  we consider a system in  which there can be at mos t  m 
particles per site and a particle which jumps  onto  a site with m particles disappears.  
If  we call this process Or(X) then results in Chap te r  1 of Liggett  (1985) imply 

(( ) } d~ E ( t l t ( x ) )  = E f l ( t ] t ( x ) )  + ~, t l t ( Y ) P ( Y ,  x )  l(o,(x) < m) - 6(~] t (x) )  - Ot(X) �9 (2 .4 ' )  
y 

Since #,(x) < m there is no question abou t  the existence of momen t s  and repeat ing 
the p roof  above  leads to an upper  bound  on O(t) = E ~lt(x) that  is independent  of the 
t runcat ion level. Observing that  Chen 's  construct ion implies P(Ot(x) 4 = th(X)) --+ 0 
as m ~ oo and using the m o n o t o n e  convergence theorem gives the desired result. 

Fo r  computa t ions  in Sects 3 and 4, it is impor tan t  to obta in  a similar est imate 
on the higher moments .  

(2.13) Lemma.  Le t  E"  indicate expec ted  value for  the process with ~l(x) - n. There 
is a decreasing funct ion r on [0, c~) which is independent o f  n and f ini te  for  all 
t > 0 so that 

En(tlt(x) m) < q~m(t) for all t > 0 .  
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Proo f  The computa t ions  we are about  to do can be justified by an argu- 
ment similar to the one given at the end of  the last proof, so we will leave those 
details to the reader. As before we will drop the superscript n on the E. Let 
& ( x )  = ( x  + 1)  ~ - x ~ 

d t E ( q t ( x )  ' ')  = E fl(qt(x)) + ~ r l t ( y )p (y , x )  A,,,(th(X)) 
Y 

- ( ~ ( , 7 , ( x ) )  + ,h(x))A.,(,7,(x) - 1)~ (2.t4) 
) 

We use the fact that  - rh(X)Am(qt(x ) - 1) < 0 to drop that  term. To deal with 
the sum over y we observe that using H61der's inequality with p = j + 1 and 
q = ( j  + 1)/j  shows 

E(qt(Y)rlt(X ) j) <= E( th(y ) j+ 1)1/(j+ 1)E(r/t(x) j+ 1)j/(j+ 1) = E(qt(O ) ~+ 1) 

by translation invariance. Using the last inequality in (2.14) and applying the 
reasoning used to convert  (2.4) into (2.5) gives 

d 
dt  E(q t (x )~)  < a + bE(~h(X)m+k-1) - cE(rh(x )m+k)  , (2.15) 

where a, b, c > 0. Writ ing m + k -  1 = m/k  + (k z + k m -  m -  k) /k  and using 
H61der's inequality with p = k and q = k/(k - 1) gives 

E (~t(X )m + k-  1 )  ~_ E (?]t(x )m)l/k E (?]t(x )m + k )(k- 1)/k (2.16) 

Combining (2.15)-(2.16) with (2.7), using E(r l , ( x )m+k)~E(rh (x )m)  (rn+k)/m and 
writing u(t) = E(~l~(x)") gives 

u'(t) < a + bu(t)  ("+k-1)/m - cu(t)  (m+k)/" when u(t)  > cm, k (2.17) 

where c,,,k is a constant  that  depends on m and k. ~ = (m + k) /m > 1 so the rest of 
the argument  is the same as before. 

Turning to the question of existence of s tat ionary distributions, we observe that 
Lemma (2.1) implies that  q~ increases to a limit ~/~ as n ~ ~ ,  and from Lemma 
(2.3) it follows that  E q~(x) < ~0(1) < ~ ,  so Fubini 's  theorem implies that  r/~ ~ X o 
with probabili ty 1. Let ~ X  o and let ff~ denote the process starting from 
~"o(x) = ~(x)/x n. By (2.2) we can construct  ff~ and q~ on the same space in such a 
way that  ~ (x )  < r/7(x) for all t. (1.3) implies that as n ~ 00, ~ =>~,, the process 
starting from fro = ~, so we have 

r/~ ~ and ~1 can be constructed on the same space with r/~(x) > ~l (x) .  (2.18) 

Applying the last conclusion to the process 0t starting from 0o = q~, we see that  
~o and a copy of f/1 can be constructed on the same space with f/o(X ) > f/l(X). 
Iterating shows that if f is a bounded  mono tone  function then 

lim E f ( f l , )  exists,  
n ~ Q o  
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and from this it follows easily that q, =~ a limit we call ft. (Here =~ denotes weak 
convergence, which in this setting is convergence of finite dimensional distribu- 
tions.) Since P~ is Feller, a standard result (see Liggett (1985), Prop. 1.8) implies that 
fi is a stationary distribution. A similar and easier argument shows that if we let _qt 
denote the process starting from q_ = 0 then q_ =~ a limit ~ that is a stationary 
distribution. 

3. Free Energy Computations 

Let v be the product measure in which each marginal has a Poisson distribution 
with mean 2. The aim of this section is to show 

Theorem. Le t  # ~ I c~ S then # = v. 

To begin the proof, let [ - n ,  n] d = {Z~2d:  -- n <= z i <= n}, let X ( A )  = Z A, and 
let X ,  = X ( [ - - n , n ] d ) .  If ~ X ( A ) ,  let A s = {t/: t / (x)= ~(x) for x ~ A } ,  let 
#(~) = #(A~), and letf~(t/) = 1 on A~, 0 on A~. We begin our proof with what may 
be a puzzling observation: If # ~ I then 

0 = ~ ~ #(dr/)(2fc(r/)][log #(~') - log v(~)] ,  (3.1) 

where the sum is over all ~eX , .  (3.1) is trivial to verify, since 

0 =  S#(dr/)~2f~(r/) for all ~. 

To explain why we want to look at this quantity, and to show the reader that 
our proof will not suddenly self-destruct if a minus sign is wrong somewhere, we 
will now give an abstract description of the proof. Suppose we have a system in 
which t / -  ~/+ v at rate c(v, rl) where v is a vector in which only finitely many 
components are nonzero. In the example under consideration we have 

v c(v, ~) 

e~ fl(~/(x)) 

- e ~  6(t/(x)) 

e,, - ey ~I(Y)P(Y, x)  

Ignoring boundary terms (i.e. summing only over v for which the support of v is 
contained in I - n ,  hid), we have 

#(d~l) g2 f (~l) = ~ [c(v, 4 - v )#(4  - v ) -  c(v, 4)#(4)] 
V 

Multiplying by log #(~), summing over 4, and changing variables ~ = 4 - v and 
= ~ in the two parts of the sum gives 

~ #(dr/)Off(r/)log #(~) = ~ ~" c(v, ~)#(~)log#(~ + v) /# (~) .  
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Subtracting the corresponding expression with log v(() gives 

~(~ + v) v(~) 
~/~(d~/) f2f~ (r/) [ log  #(~) - log v(~)] = ~ ~c(v, () t t(()log - -  

~ ~ ~(~) 

Symmetrizing, the right hand side becomes 

1 
~ { c ( v , ( ) g ( ( ) - c ( - v , ~  + V)l~(( + v)} log #((  + v) v(() 

~(~) v ( ~ + v )  

v(( + v) 

If v is a reversible measure, which it is in our  application, c(v,q)v(q) 
= c( - v, tl + v)v(tl + v) and using (3.1) we have 

2 (v ( ( )  v ( ( +  U(() v ( ( +  v~ boundary  t e rms .  

The key feature of the left hand side is that  it is a sum of terms which all have the 
same sign ((s - t)log(t/s) < 0), so if we can conclude that the sum is 0, then all the 
terms in the sum are, and/~ = v. To show that the sum is 0 we prove that  if it is not  
then the left hand side ~ Cn d but the right hand side = o(n d). 

We will now compute  the right hand side of (3.1). This involves a lot of algebra. 

We will prove in Sect. 4 that all the sums are absolutely convergent.  Let ~ ~ denote  
x 

a sum over x ~ [ - n, n] d and ~ o a sum over x r [ - n, n] a. (i is for in, o for out.) To  
x 

split the expression into a more  manageable size we will treat separately the terms 
that correspond to births and deaths and the ones involving mot ion  of particles. 

~2f~ff/)#(d~/) = (3.2a) + (3.2b) 

~ i  [ f l ( ( ( x ) -  1)/~(~ - ex) - fl(~(x))/~(~) + 6(((x) + 1)/~(~ + e~) - 6(~(x))#(~)] 
x 

(3.2a) 

Y~ i Y~i p(x, y){(~(x) + 1 1 ~ ( ~  + e~ - e , )  - -  ~ ( x ) ~ ( ~ ) }  
x y 

+ Z ~ Z  ~ p ( x , y ) { ( ( ( x )  + 1)/~(( + e x ) -  ~(x)#(~)} 
x y 

+ ~ o ~  p(x ,y )  ~ k { # ( ~ -  ey x k ~ ) - / ~ ( ~  x kx)} (3.2b) 
x y k = O  

Here ~ -  ey x k x ~ X ( [ - n ,  n]dw {X}) = ( - -  ey on I - -n ,  n] ~ and = k at x. Multi- 
plying (3.2a) by log #((), summing over (, using 

fl(((x) - 1))/~(( - ex)log/~(() = ~ fl(((x))/~(()log/~(( + ex) ,  

and making a similar change of variables in the fourth term converts (3.2a) into 

~ ' ~  { fl(~(x))#(~) -- 6(if(x) + 1)#(~ + ex)} log(/t((  + ex)//~(~)). (3.3a) 
x 
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To deal with (3.2b) we notice that changing variables ( = r + e r and ( = ~ + e~ 

{(((x) + 1)#(( + ex - ey) - ((x)/~(~)} log #(() 

= (~(x) + 1)#(r + e~)log/~(~ + er) - (~(x) + 1)/t(~ + e~)log/~(~ + e~) 

With similar changes of variables in the second two sums we can rewrite (3,2b) as 

~ , ,  p(x, y)(~(x) + 1)#(g + e~)log#(( + e,)/#(~ + e~) 
x y 

+ ~i  ~o ~,p(x, y)((x) g( ( ) logp((  - e~)/p(() 
x y 

+ ~o L i E  p(x, y) ~ k#(( x k~)log/~(~ + er)/tt(O (3.3b) 
x y ~ k=O 

Here and below O logO--O, e.g., in the second term the summand is 0 when 
( ( x )  = o. 

To compute the second term in (3.1) we observe that by almost the same 
computation which led to (3.3a) and (3.3b) 

J'f2f~(r/)/~(dr/) log v(O = 

= 2 ' ~  { fl(((x))/~(~) - a(((x) + 1)p(( + ex) } log(v(( + ex)/v(()) 
x g 

+ ~ i ~ i ~  p(x, y)(((x) + 1)#(( + e~)log v(( + ey)/v(( + e~) 
x y 

+ ~i  ~o ~ p(x, y) ~(x)#(()log v(( - e~)/v(~) 
x .v 

+ Z ~ Z i 2 p(x, y) ~ kp(( x kx)log v(( + ey)/v(() (3.4) 
x y ~ k=O 

By (3.1), we have (3.3a) + (3.3b) - (3.4) = 0, so 

i (it(( + e~) _v(~)_ "] 
O= Z~ E~ fi(((x))#(()-6(r 1 ) p ( ( + e ~ ) } l o g \  - ~ )  .v(( + ex)j 

( p ( (  + ey) v(~ + e~)~ 
+ 2'x E'Ey r p(x, y)(((x) + 1)/~(( + ex)log \ ~ ( (  + e~)" v(( + e , ) /  

+ 212OEp(x,y)((x)#(()log(P((_~e~). v_(() 
y ~ \ I~(r v ( ( -ex) /  

+ y,o i x (#( (  + er) v(() ~ (3.5) E Yp(,y) Z k#(( • v( L-e,5; 
x y ~ k = O  

Using reversibility fl(((x))v(() = 6(((x) + 1)v(( + ex) in the first sum and using 

v(() = 1-[ {e-~2r !} 
x 
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in the last three gives 

0 = 2 ' 2  ~(((~))~(() ?(() #(( + ex)~ (~(~ + e~) ~(() 
x ~ (v(()  v ( ( + e ~ ) j l ~  #~)- v((+e~)J 

, (#( (+ey)  ( ( y ) + l )  
+ E E '  E p(x, y)(((x) + 1)#(( + ex) log \ ~ -  + e~)" ((x) + i- 

x y 

+E~ ~ k~(( • kx)log ( #(c + e').((y) + 1) (3.6) 

Rearranging now and using symmetry p(x, y) = p(y, x) in the second sum gives 

where 

~ i  Dn(x) + ~ i  i , Dn(x , y) -- R n (3.7) 
X X y 

D,(x) = 2fl(((x))v(()(#(~) #(( + e~)'] log (~(~- ~-e~) v(() 
\v(() v(( + e~)] \ #(() v(( + e~)J 

1 
D'. (x, y) = ~p(x, y)Y~ {(((x) + 1)#(( + ex) 

- (((y) + 1)#(( + ey)} log ( # ( (  + ex)(((x) + 1)) 
\ # ( (  + e,)(((y) + 1) 

R, = E ' Z  ~ p(x,y) E ((x)#(f)log(#(~2-ex). 2 ) 

+E~ r ~ k=O ~ k # ( ( x  k~) log(  #(~--+er) ' \  #(() ( (y )2+ l )  

The summands in D and D' have the form ( s -  t)log (s/t)> O, so they are 
nonnegative. A second crucial property is 

(3.8) Lemma. If m < n and x, y ~ [ -  m, m]d then 0 < Om(x ) < O,(x) and 
t t 0 < O,,(x, y) < D,(x, y). 

Proof ~p(s, t) = (s - t)log(s/t) is convex and homogeneous of degree one so it is 
subadditive. The result now follows from the fact that if x ~ [ -  m, m] a and r e Xm 
then 

(~(x) + 1)/~(~ + ex) = ~ (((x) + 1)#(( + ex) 
~ X m , ~ = ~  on I -m,  ml a 

and two similar identities. 
IfD,(x) 4:0 for some x and n, (3.8) and translation invariance imply that the left 

hand side of (3.7) is > An ~ for large n. To rule out this possibility we will show that 
R,, which only involves terms across the boundary, is = o(nd). There are four 



Ergodic i ty  of Reversible React ion Diffusion Processes 23 

terms to estimate. Since - x log x < e -  x for x > 0. 

- ~ ( ( x ) ~ ( ( )  log #(( ) /#((  - ex) < e -  1 ~ ( ( x ) # ( (  - e x ) .  (3.9) 

Throwing away a negative term 

~(x)#(~) log (2/~(x)) < (log 2) ~ ( (x )~ ( ( ) .  (3.10) 

Using log a = 2a~/2( - a - U 2  log a - ~/2) < a ~/2, 

x k,)log + ex)/#(O _-< 
k = O  

=< ~ ~ k#(~ x k,)~/2{#(( x k , )#( (  + G)/p(~)} ~/2 
~ k = 0  

__< k2/~(~ x ky) #((  x ky)#(( + e~)//~(~) 
k = O  k = O  

< (E~((y)2) 1/2 (3.11) 

Again throwing away a negative term 

~ k#((  x ky) log (~(x) + 1)/2 < EU(~(y) log (~(x) + 1)). (3.12) 
k = O  

The results in Sect. 4 will show that  the right-hand sides of (3.9)-(3.12) are finite so 
using symmetry again 

R, < C ~ ' ~ ~  
x y 

To estimate the double sum we let e > 0, pick K so that ~ p(0, x ) <  ~, and 
observe Ixl > K 

~ ,  ~o  p(x, y) < (2n + 1)% + I[--n,  n] a - [ - - (n  - K), (n - K ) ] a l .  
x y 

Since the second term is o(n d) and e is arbitrary,  we have shown that R', = o(n d) and 
it follows from the last observation that  D,(x) = 0 for all x and n. When fl(y) > 0 
for all y > 0 the last conclusion implies that  for all n 

I~(()/v(() = #(( + G)/v(( + G) for all ( ~ X ( [ - n ,  n]a) ,  

and it follows that # = v. 

Remark. If fl(O) = 0 but  fl(y) > 0 for y > O, then we only get 

I~(()/v(() = It(( + G)/v(( + ex) for all ( E X ( [ - n ,  n] d) with ((x) > O. 

Now R. -- o(n a) also implies D',(x, y) -- 0 for all x, y. Using this and recalling 

v(( + G)/v(~ + e r) = (if(y) + 1)/(ff (x) + 1) 

gives the result we claimed in the introduction:  # = 06 o + (1 - O)v. 
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4. Finiteness Lemmas 

In this section we complete the proof by proving some results that show that all the 
sums which appear in the last section are absolutely convergent. Inspecting the 
terms that appear in the proof, we see that the worst one is 

6(( (x )  + 1)#(( + e~) log #(~), 

which appears when we go from (3.2a) to (3.3a). The first step in bounding this is to 
write 

log p(ff) = log/z(( + e~) + log #(()/#(~ + e~). 

To bound the second term we imitate (3.9) 

- ~" 6( ( (x)  + 1)#(~ + e~) log #(~ + ex)/#(~) < e -~ ~ 5( ( (x)  + 1)kl(~) < oo 

by results in Sect. 2. To bound the first term we need to show 

tl(x) k+ ~#(t/) log #(t/) < oo . 

To do this we begin by-proving 

(4.1) Lemma. L e t  pj be a probabil i ty  densi ty  on 7/+. For  any 6 > 0 and ~ > O, 

"ol+6 j p j < o o  implies - - ~ j ' p j l o g p ~ < o o .  
J 

P r o o f  Let e = 6/(~ + 1). 
1/r + 1/s = 1. We begin by 
Since 

log j  = 

the second term is trivial to 

- pj log (j"Pj) 

J 

Let r = ( l + e ) / e  and s =  l + e ,  so r e >  1 and 
observing that - p j  log p j = - p j log ( f f  p j) q- gp ) log j. 

1 X -  1 d x  ~ (~X ~ - 1  d x  < ~ , 

deal with. To bound the first we observe 

= ( j .p j ) i / s{  _ r(j~pj)l /r  log ((j~pj)X/r)}/j .  

< r(j~pj)l/~ e -  1/j~, 

since - x  log x < 1/e for 0 < x < 1. Using the last result and HSlder's inequality 
we get 

\ l / s /  \1/, 
- Z J ' P J  l~ =< re-1 ~J'(J~PJ)I/~9~ <= re-1 J PJ J , 

J J k J  / x j  

and the proof is complete. 

(4.2) Lemma, Let # be a probability measure on X ( A )  -- (Z+) A, where A is a 
finite subset of Z. For each x e A  let fix denote the distribution of t/(x). Then for 
~ > _ 0 a n d 6 > 0  

~ J ~ + ~ # x ( J )  < oe for all x e A  
i 
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implies - ~ ((x)~/~(~)logp(~) < ~ ,  

where the second sum is over all (eX(A) .  

Proof. Let F: (Z+)A--* Z+ be any function that is 1 - 1, onto, and has 

F(x) < F(y) when ~ xi < Y', yl . 
i ~ A  i ~ A  

If  we let  I'n:fX~(~-+)A:E)ci'~n t i ~ A  

then IL-11 = f (x)  < ILl for xeAn.  

To compute IGI, notice that if • = IAI then mapping (xl . . . . .  xe) ~ (sl . . . .  , st) 
wheres k = ( l + x l ) +  . . .  + ( l + X k )  Shows 

IF.I = I { ( S l , . . . ,  s,): 1 < s l . . .  < st < n + f } [ =  = (n + f ) f  

so 

n~/f! < F(x) < (n + d): for x s A , .  (4.3) 

To get from the last inequality to the desired conclusion, observe that if #* is the 
distribution of F(~) then changing variables k = F(~) and using (4.3) gives 

( ; 2 kC~+~ = ~ F(~)<~+6)/~#(~) < ~ ~ + ~ ~(x) #(~) < oo, 
k ~ ~ x~A  

by hypothesis since 

E + ~(x < (f(1 + max ~(x))) ~§ < (E(1 + ~(x))) ~§ . 
x x 

Using (4.1) and (4.3) now gives 

oo >(E!) ~ k~/t#*(k) log/~*(k) __> ~ ~(x) t~(~)log#(~). 
k g 

Acknowled~emems.  The second author (R.D.) would like to thank Claudia Neuhauser for several useful 
discussions and Andreas Greven for pointing out an inaccuracy in the introduction of a previous 
version. 

References 

Boldrighini, C., DeMasi, A., Pellegrinotti, A.: Non-equilibrium fluctuations in particle systems model- 
ling diffusion-reaction systems (preprint 1989) 

Boldrighini, C., DeMasi, A., Pellegrinotti, A., Presutti, E.: Collective phenomena in interacting particle 
systems. Stoch. Proc. Appl. 25, 137-152 (1987) 

Chen, M.F.: Infinite dimensional reaction diffusion processes. Acta Math. Sin. New Set. 1, 261-273 
(1985) 



26 W.-D. Ding et al. 

Chen, M.F.: Coupling for jump processes. Acta Math. Sin., New Ser. 2, 123-126 (1986a) 
Chen, M.F.: Jump processes and particle systems. (In Chinese) Beijing Normal Univ. Press (1986b) 
Chen, M.F.: Existence theorems for interacting particle systems with non-compact state space. Sci. Sin., 

Ser. A, 30, 148-156 (1987) 
Chen, M.F.: Stationary distributions for infinite particle systems with noncompact state space. Acta 

Math. Sci. 9, 9-19 (1989) 
Dewel, G., Borckmans, P., Walgraef, D.: Nonequilibrium phase transitions and chemical instabilities. J. 

Stat. Phys. 24, 119-137 (1981) 
Dewel, G., Walgraef, D., Borckmans, P.: Renormalization group approach to chemical instabilities. Z. 

Phys. B 28, 235-237 (1977) 
Ding, W.D. and Zheng, X.G.: Ergodic theorems for linear growth processes with diffusion (preprint 

1987) 
Feng, S. and Zheng, X.G.: Solutions of a class of nonlinear master equations. Carleton University 

Preprint no. 115 (1988) 
Feistel, R.: Nonlinear chemical reactions in diluted solutions. In: Ebeling, W., Ulbricht, H. (eds.) Self- 

organization by nonlinear irreversible processes. Proceedings, Mfihlungsborn 1985. (Springer Ser. 
Synergetics, vol. 33) BerIin Heidelberg New York: Springer 1985 

Grassberger, P.: On phase transitions in Schl6gl's second model. Z. Phys. B 58, 229-244 (1982) 
Grassberger, P., Torre, A. de la: Reggeon field theory (Schl6gl's first model) on a lattice: Monte Carlo 

calculations of critical behavior. Ann. Phys. 122, 373-396 (1979) 
Haken, H.: Synergetics. Berlin Heidelberg New York: Springer 1977 
Hanuse, P.: Fluctuations in non-equilibrium phase transitions: critical behavior. In: Vidal, C., Pacault, 

A. (eds.) Nonlinear phenomena in chemical dynamics. Proceedings, Bordeaux 1981. (Springer Ser. 
Synergetics, vol. 12) Berlin Heidelberg New York: Springer 1981 

Hanuse, P., Blanche, A.: Simulation study of the critical behavior of a chemical model system. In: 
Garrido, L. (ed.) Systems far from equilibrium. Conference, Barcelona 1980. (Lect. Notes Phys., vol. 
132, pp. 337-344) Berlin Heidelberg New York: Springer 1980 

Holley, R.: Free energy in a Markovian model of a lattice spin system. Commun. Math. Phys. 23, 87-99 
(1971) 

Holley, R.: An ergodic theorem for interacting systems with attractive interactions. Z. Wahrscbein- 
lichkeitstheor. Verw. Geb. 24, 325-334 (1972) 

Holley, R., Stroock, D.: A martingale approach to infinite systems of interacting particles. Ann. Probab. 
4, 195-228 (1976) 

Holley, R., Stroock, D.: In one and two dimensions every stationary measure for a stochastic Ising 
model is a Gibbs state. Commun. Math. Phys. 55, 37-45 (1977) 

Janssen, H.K.: Stochastisches Reaktionsmodell ffir einen Nichtgleichgewichts-Phasenfibergang. Z. 
Phys. 270, 67-73 (1974) 

Janssen, H.K.: On the nonequilibrium phase transition in reaction diffusion systems with an absorbing 
stationary state. Z. Phys. B 42, 151-154 (1981) 

Liggett, T.M.: An infinite particle system with zero range interactions. Ann. Probab. 1, 240-253 (1973) 
Liggett, T.M.: Interacting Particle Systems. Berlin Heidelberg New York: Springer 1985 
Liggett, T.M., Spitzer, F.: Ergodic theorems for coupled random walks and other systems with locally 

interacting components. Z. Wahrscheinlichkeitstheor. Verw. Geb. 56, 443-468 (1981) 
Mountford, T.: The ergodicity of a class of reaction diffusion processes (preprint 1989) 
Neuhauser, C.: Untersuchung des Einflusses yon Wanderung auf nichtlineare Dynamiken bein Ising- 

Modell und bein Schl6glmodell. Diplomarbeit thesis, Heidelberg (1988) 
Neuhauser, C.: An ergodic theorem for Schl6gl models with small migration. Probab. Th. Rel. Fields 

85, 27-32 (1990) 
Nicolis, G., Priogogine, I.: Self-organization in nonequilibrium systems. New York: Wiley 1977 
Ohtsuki, T., Keyes, T.: Nonequilibrium critical phenomena in one component reaction diffusion 

systems. Phys. Rev. A 35, 2697-2703 (1987) 
Schl6gl, F.: Chemical reaction models and non-equilibrium phase transitions. Z, Phys. 253, 147-161 

(1972) 
Shiga, T." Stepping stone models in population genetics and population dynamics. In: Albeverio, S., et al. 

(eds.) Stochastic processes in physics and engineering, pp. 345-355. Dordrecht: Reidel 1988 
Zheng, X.G., Ding, W.D.: Existence theorems for linear growth processes with diffusion. Acta Math. Sci. 

7, 25-42 (1987) 

Received December 12, 1988; in revised form September 6, 1989 


