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Summary. We consider a system of independent  r a n d o m  walks on 7/. Let r 
be the number  of particles at x at t ime n, and let L,,(x) = ~o(X) + . . .  + r 
be the total  occupat ion  time of x by time n. In this paper  we study the large 
deviat ions of L.(0) - L,(1). The behavior  we find is much  different f rom that  of  
L,(0). We investigate the limiting behavior  when the initial configurations has 
asympto t ic  density 1 and when ~o(X) are i.i.d Poisson mean  1, finding that  the 
asymptot ics  are different in these two cases. 

1. Introduction 

Consider  a system of independent  particles performing symmetr ic  simple r a n d o m  
walks on Z. In what  follows we will most ly  be concerned with discrete time walks, 
but  in order  to discuss results f rom the literature, we will also need to consider 
cont inuous  t ime systems which stay at a site for an exponential  amoun t  of t ime 
with mean  one before they jump.  Let Ct(x) denote the number  of particles at x at 
t ime t in the cont inuous  t ime system in which ~0(x), x E 7 / a r e  i.i.d. Poisson with 
mean  1. Cox and Griffeath (1984) showed that  if A ~ 7/is finite and we let 

Ot = (tlA[) - l i  ~ ~ ( x ) d s  
0 x ~ A  

be the "mean  particle density on A up to t ime t," t hen  

lira t - 1 / 2 1 o g P ( D t ~ ( a ,  b)) = - inf J (x )  (1) 
t --* ~ x~(a, b) 

where J is an explicitly given function which is independent  of A. 
Lee (1988) extended their result and clarified the answer by considering (in 

discrete time) 

Dn(x ) = n - 1  ~ ,  ~ m ( X )  
m = O  

* This work was done while the first author was on sabbatical at Cornell University. Both authors were 
partially supported by the National Science Foundation and the Army Research Office through the 
Mathematical Sciences Institute at Cornell 
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as an element of {2: Z ~ [0, oo )} (with the product  topology). He  proved that  if the 
~o(x)x ~ Z are i.i.d. Poisson mean  1 then 

where ,~ means  

n-1/21ogP(D,~S) ,,~ - infI(2)  (2) 
2 e S  

lim sup LHS < RHS for closed sets S 

l i m i n f L H S  > RHS for open sets S 

and 

I (2)={J(c)  if 2 ( x ) = c  
o therwise .  

To  recover Cox and Griffeath 's  result, let 

The function J is the same since Lee showed that  the I function is the same in 
discrete or cont inuous time. 

Lee's result implies that  the large deviations behavior  of weighted occupat ion  
times 

L. = Z V(x) m(x) (3) 
m = O  X 

will be the same for all V with ~ V(x) = c > 0 (and {x '  V(x) =i= 0} finite). The last 
x 

observat ion suggests the question: Wha t  happens  when ~, V(x) = 0? In this paper  
x 

we will s tudy the special case V(0) = 1, V(1) = - 1, V(x) = 0 otherwise, and show 
that  if ~o is a n o n r a n d o m  initial configurat ion with 

(2n) -1 i ~o(rn) ~ 1  as n ~  oo ,  (.) 
??l m - n  

then 

lim n ~ D,(1) > a) = - K(a). (4) 
n ~ o o  

Since one of the surprises is the value of 0, we invite the reader to guess the answer 
before we reveal it below. Hint: 0~{2/3,  3/4, 4/5, 5/6}. 

The key to the p roof  of (4), like most  large deviations results, is an examinat ion  
of the Laplace t ransform of the weighted occupat ion time defined in (3). Since the 
particles are independent,  

l o g E e x p ( 2 L . )  = ~ '  ~o(x) logExex p )~ V(S,,) , (5) 
x 0 

where E x denotes the expected value for a symmetr ic  simple r andom walk S,, with 
S o = x. The last computa t ion  and many  others below do not  require 

V ( 0 ) = I ,  V(1 )=  - 1 ,  and V(x)=O otherwise 
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but for simplicity we will always restrict our attention to this special case. 
(5) reduces the problem to questions about the behavior of a single particle. 

The first step is to understand the central limit behavior. Suppose S o = 0 and let 

w .  = V(So) + . . .  + v ( s . )  . 

A result of Dobrushin (1955) (see Kesten (1962)) implies 

W,/n TM ~ N ,  (6) 

where N is a mixture of normal distributions. Although the 1/4th power may be 
surprising at first, the result is easy to understand and not hard to prove. Let 
R o = 0 and for k > 1 let 

R k = inf{m > Rk- 1 :Sm = O} 

x k  = Z v(s~)  
R ( k - -  1 ) < = m < R ( k )  

N, = sup{k :R  k =< n} 

so that W , = X  1 +  . . .  + X N ~  Y, 

where 
Y. = ~ V(S.J . 

m = R ( N n )  

It is well known that for all t > 0 

P(N,  <= tn 1/2) --* G(t) = i ~ -  1/2exp( - x2/4) dx . (7) 
0 

In our special case the X~'s are i.i.d, with 

P ( X  k = l - j ) = ( 1 / 2 )  j+l for j > 0 .  

These variables have mean 0 and variance 2, so 

n - ~ / 4 ( x l  + . . .  + X E ~ , ~ ) ~ , f i B ,  (8) 

where B t is a standard Brownian motion. A little thought reveals that the variables 
in (7) and (8) are asymptotically independent, and with a little work it follows that 

E o exp(2 W,/n  TM) ~ (p(2) = ~ exp( -- 22 t /4)dG(t) .  (9) 

The key to the proof  of (4) is 

Lemma 1. I f  fl ~ (0, l/4) and w = 0 or 1 then as n ~ c~ 

n4~- 1 log E w exp(2 W,/n p) --) 24/2. (10) 

In the last result we have restricted our attention to points in the support of V, but 
that is good enough since if x > 1 

Exexp(2 W J n  p) = Px(T1 > n) + ~ Px(T1 = m)E~ exp(W,_m/nP) .  (11) 
m = l  

where T 1 = inf{m:S,, = 1}. A similar formula holds for x < 0 .  In fact 
P ~ ( W , ~ - )  = P l - x ( - W , E  .), so throughout the paper it is enough to prove 
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things for x > 1 or x < 0. Using some facts abou t  simple r andom walk, (11) and 
L e m m a  1 lead easily to 

L e m m a  2. I f  fie(O, 1/4) and x n / n  1 - 2 ~  _+ y 

n4fl - 1 log Ex exp(2 W./n  p) --* (24/2 - ,~2 l y [ ) +  . (12) 

Using (5) and L e m m a  2 now gives 

L e m m a  3. I f ( , )  holds and fie(O, 1/4) then 

n6# - 2 log E exp (~.L,/n ~) ~ ~ (24/2 - 22 ly[) + dy = )~6/4. (13) 

When  L e m m a  3 is established s tandard  large deviations arguments  take over  
(see L e m m a  1 in Cox and Griffeath (1984)) to prove: 

Theorem 1. l f  ( , )  holds, 3/4 < c~ < 2, and a > O, then as n ~ oe 

n(2- 6~)/5 log P ( L ,  > an ~) ~ - ca 6/5 where c = (5/4)(2/3) 6/5 . 

To  explain the power  of n: 

P ( L .  > an ~) = P ( L , / n  r > an ~-p) <<_ exp( - )~an~-~)Eexp()~L,/n t~) . (14) 

Taking  ~ - fl = 2 - 6fl, i.e. fl = (2 - c0/5, and optimizing over  2 gives the upper  
bound.  

Tak ing  e = 1 we see that  the answer to the question in (4) is 0 = 4/5. Tracing 
back through the p roof  we see that  fl = 1/5 in this case, and the major  contr ibut ion 
to the Laplace t ransform comes from Ixl < (22/2)n 3/5. I t  is not  hard to show that  
with probabi l i ty  at least Cexp(  - en4/5), all the particles at Ixl < n 3/5 hit 0 by time 
n/2 and have W, > n 2/5. The event which produces L ,  > an must  be something like 
this. 

The upper  limit e < 2 is natural  since the largest possible value of L,  is abou t  
n 2. To  see the reason for restriction e > 3/4 observe that  under  ordinary  
circumstances only abou t  n 1/2 particles will hit the suppor t  of V b y  t ime n and their 
weighted occupat ion  times have s tandard  deviat ion n ~/4. Dividing the individual 
contr ibut ions by n ~/4, we see P ( L ,  > an a/4) is the probabi l i ty  the sum of n 1/2 

r a n d o m  variables with mean  0 and s tandard deviat ion O(1) is > an 1/2. The last 
observat ion shows that  c~ = 3/4 corresponds  to the "usual" large deviations setting 
while the deviations studied in Theorem 1 are enormous.  

Using methods  similar to the proof  of Theorem 1 we can show 

Theorem 2. I f ( , )  holds then 

n - 1 / Z l o g P ( L ,  > an 3/4) --* - l(a) 

where l(a) = sup 2a - ~,(2) and 
z 

~(2) = ~ d x l o g ( l  + i Px ( zoEds ) {~p( (1 -  s ) l / 4 Z ) -  l } )  . 
o 

Here q~ is the limit in (9), and P,,(z o ~ ds) is the distribution of the time to hit 0 for 
a Brownian mot ion  started at x. 
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Since (,) is satisfied for a lmost  every initial configurat ion when we assume 

~o(X), x ~ Z  are i.i.d Poisson with mean  o n e ,  (**) 

it is easy to j u m p  to the conclusion that  the large deviat ions behavior  will be the 
same under  (,) and ( ,  ,), but  this is wrong. 

Theorem 3. I f ( ,  ,)  holds then the conclusions of Theorem 2 hold but 

1 

~,(2) = S dx ~ Px(zo ~ ds) {q~((1 - s)1/42) - 1 } .  
0 

Since log(1 + u) < u for u > - 1 with strict inequality for u 4= 0 the new ~p is 
strictly larger than the one in Theorem 2, and the Poisson process will more  easily 
achieve large weighted occupat ion  times. 

Differences between the large deviations behavior  under  (,) and (**) become 
even more  severe when a > 3/4. 

Theorem 4. Let ~ > 3/4 and ~ = ~ - 1/4. I f  n is large then 

/~(L,  > n ~) > exp( - 2],n~log n) . 

Here  and in what  follows fi indicates that  we are assuming (**). Since 
(6ct - 2)/5 > ~ - 1/4 when e > 3/4, the lower bound  in Theorem 4 shows that  
eno rmous  deviat ions f rom a Poisson initial configurat ion are much  more  likely 
than f rom a fixed configuration.  The extra boos t  comes from large deviations in the 
initial configuration.  

To  prove  Theorem 4 we observe that  

/~(~o(0) = k) = e-1/k! > e x p ( -  1 - k l o g k ) .  

N o w  if k = n ~ and all the particles start ing at 0 have W, > 2n ~/4, an event of 
probabi l i ty  at least exp( - Cn ~) by (6), we will have L ~ > 2n ", where the superscript  
0 indicates we are looking at only  the contr ibut ion f rom particles start ing at 0. By 
comput ing  second momen t s  it is not  hard to show P (eL,* I > n ") ~ 0, where 
L,* refers to the contr ibut ion of particles f rom x 4= 0 and the result follows. Since 
we have not  been able to improve  the lower bound  in Theorem 4, we think it might  
be the right order  of magnitude.  

The  paper  is organized as follows. Lemmas  1-3, which make  up the p roof  of 
Theorem 1, are proved in Sects. 2 4 .  In Sect. 5 we prove  Theorems  2 and 3. Finally 
Theorem 4 is proved  in Sect. 6. We would like to thank  Bruno Remillard for his 
help with the p roof  of L e m m a  1. He has proved L e m m a  1 for a general V with 
Z V(x) = 0 and {x: V(x)4= 0} finite, and solved the analogous  problems for 
Brownian  motion.  

2. Proof of  Lemma 1 

We begin by comput ing  solutions of 

{ f ( x  + 1) + f ( x  - 1)}/2 = (cosh O)e-aV(x) f ( x ) ,  (1) 
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where  V(0) = 1, V(1) = - 1, a n d  V(x) = 0 o therwise .  The  r e a s o n  for  in teres t  in 
func t ions  t ha t  sat isfy (1) is t ha t  

( ~_~. II--I / 
( c o s h 0 ) - " e x p \ . , ~ o  aV(Sm) f ( S . ) . i s  a m a r t i n g a l e .  

I f  we let  
~e ~ for  x _< 0 

f(x) = [Ae_O(~_l) for  x > 1 
- ( 2 )  

t hen  (1) h o l d s  for  x < - 1 a n d  x > 2. W h e n  x = 0, (1) b e c o m e s  

/ ( 1 )  = 2(cosh  O)e-"f(O) - f (  - 1) 
SO 

A - (e ~ + e - ~  -a  - e - ~  . (3) 

A p p l y i n g  s imi la r  r e a s o n i n g  to  the  e q u a t i o n  wi th  x = 1 gives 

Ae -~ = (e ~ + e-~ - 1 . (4) 

P l u g g i n g  in the  va lue  of  A a n d  s impl i fy ing  

(1 "+- e - Z ~  - a  - -  e - 2 ~  =- (e ~ + e - ~  2 - (1 -+- e - Z ~  - 1 

(1 + e-2~ -a - 2 + e") = (e 2~ - 1) 

(e 2~ - 1)/(1 + e -2~ = e a - 2 + e - "  = (2s inh  a/2) 2 . (5) 

The  r igh t  h a n d  s ide  is > 0. The  left h a n d  side is 0 a t  0 = 0 a n d  increases  to  oo,  so 
there  is a un ique  pos i t ive  s lu t ion  O(a). The  left h a n d  side ~ 0 as 0 --+ 0 so 

O(a) ~ (e" - 2 + e-~)  ~ a 2 as a ~ 0 .  (6) 

Le t  a = 2n -~, let  O(a) be g iven  by  (5), a n d  l e t f , ( x )  be the func t ion  def ined  by  (2)-(5). 
The  m a r t i n g a l e  p r o p e r t y  impl ies  t ha t  

Ex[ f.(Sn)exp(2n-~ "m~=lo V(Sm)) l = {cosh O(2n-P) }nfn(x ) (7) 

SO 

E x exp .~.17-P ~ V(S,. >_(supfn(y))-l{coshO()~n ~)}"f . (x ) .  (8) 
m=O 

F r o m  the de f in i t ion  o f f . ,  it  is easy  to  see t ha t  as n --+ oo 

s u p f , ( y )  = max( f , (0 ) , f , (1 ) ) - -+  1 . (9) 
y 

U s i n g  (6) a n d  ca lcu lus  gives O(,~n -p) ~ ~217-2p as 17--+ o0, c o s h 0 -  1 ~ 02/2 as 

0 --+ 0, a n d  

l og (cosh  0()~17-~)) ~ 24n-4P/2  as 17--+ oo . (10) 

P u t t i n g  it all  t o g e t h e r  we have  

( ,) l i m i n f n * ~ - l l o g E x e x p  2n -~  V(S,, > 24 /2 .  (11) 
n~o0 =0 
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To get the corresponding upper  bound,  let p ( x , y ) =  1/2 if J x -  yJ = 1 
and 0 otherwise, l e t f b e  a positive solution of (1), and define a transit ion probabi l i ty  
by 

e av(x) f ( y )  
q(x, y) - cosh 0 p(x, y) f(x----) " (12) 

It is easy to check that  if X .  is a M a r k o v  chain with transit ion probabi l i ty  q and  
h > 0 then 

ExI(cosh O)-"exp(  a [~=lo V ( S , . ) ) ~  h(S.) ] = Exh(X.)  . 

Taking  h = 1/f and rearranging gives 

[(Y E~ exp a V(Sm) =f(x)(coshO)"Ex(1/f(Xn) ) . (13) 
o 

When  x > 2, V(x) = 0 and f ( x )  -- Ce -~ so 

q(x, x + 1) = e-~ ~ + e -~ q(x, x - 1) = e~ ~ + -o).  (14) 

A similar formula  holds for x < - 1 with the probabil i t ies reversed. This suggests 
letting O(x) = - x for x =< 0 and x - 1 for x > 1 and compar ing  with a chain Y. on 
{0, 1 , . . .  } with transit ion probabi l i ty  given by r(0, 1) = 1 and for x > 1 

r(x, x + 1) = e-~ ~ + e -~ r(x, x - 1) = e~ ~ + e -~ 

(15) Lemma .  I f  O(Xo) = 0 then we can construct X .  and g. on the same space in 
such a way that O(X.)  < 1 + Y~for all n. 

Proof. There are several cases to consider. First if I1. -- 0 we have no choices to 
make  in defining the coupled process since II.+ 1 = 1 with probabi l i ty  one. If  Y, > 0 
and 0 ( X . ) E  { Y., I1. + 1} then X . 6  {0, 1}, so the transit ion probabil i t ies are equal 
and we move  the two in parallel, i.e. ~ ' ( X . + I ) -  Y~+I = ~ ( X . ) -  I1.. Finally if 
O(x.) __< Y. - 1 we allow the chains to move  independently.  In all three cases the 
inequali ty is preserved and the p roof  is complete.  

Remark. The last case in the p roof  is the "bad"  case. If  0 ( X . )  = 0 and Y~ = 1 the 
probabi l i ty  of  ~ ( X . +  1) = 1 may  be > r(1, 2) so we cannot  guarantee  0 ( X . )  < Y.. 

Y. is obviously positive recurrent.  Being a birth and death process, its 
s ta t ionary  distr ibution n satisfies 

n(n)e-~ ~ + e -~ = n(n + 1)e~ ~ + e -~ for n > 1, 

i.e. n(n + 1) = e-Z~ The equat ion for n = 0 is 

n(O) = n(1)e~ ~ + e - ~  

so the exact formula  for rc(n) is a little messy. It  is easy to see that  

7c(n) = C(O)e  -20n for n > 1, and (16) 

C(O) < e 20. = ea~ - e-2~ . (17) 
n 
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To  get our  upper  bound  now from (13), we start  Y. from its s ta t ionary 
distr ibution rc and observe that  (15) and the definition of f i n  (2)-(5) imply that  if 
w = 0 o r  1 

E~( l l f (S . ) )  < ( f (1)  /x 1)-~ E,~exp(O(Y. + t ) ) .  (18) 

Using (16) and (t7) now gives 

E.exp(O(Y. + 1)) < e~ + C(O) ~ e-  Z~ ~ < e~ + C(O)/(1 - e-~ (19) 
k = l  

< e3~ + (1 - e -~ + e - ~  e-Z~ -- e-~ < 3e 3~ . 

(13), (18), and (19) imply 

E w exp a V(Sm) <f(x)(coshO(a))"3exp(30(a))/( f(1) A 1 ) .  (20) 
0 

Letting a = 2n -p  and observing O(a) ~ O, we get an upper  bound  which differs by 
a constant  factor f rom the lower bound  in (8), and it follows that  for w -- 0 or 1 

lim sup n 4p- ~ log Ew exp 2n -p V < 2*/2.  (21) 
n--* ~O 0 

3. Proof of  Lemma 2 

Lemma 2. I f f l~ (0 ,  1/4) and Xn/n 1-2# .... y then 

n 4a - ~ log Ex. exp (2 W./n ~) ~ (24/2 - 22 [Yl) + - 

Proof As remarked  in the introduct ion P~(W.s  .) = PI-~(  W.~ .), so we can 
suppose that  x.  > 1 for all n. F r o m  (2.8) 

E~ exp(2W,/n p) > supf~(z) {cosh O(2n-~)}"f~(x,,) 

where 
f . (x . )  = f . ( 1 ) e x p (  - O(2n-P)(x. - 1)). 

(2.9), (2.6), and (2.10) imply that  as n ~ oe s u p f . ( z ) ~  1, 0(2n -p) ~ 22n -2a, and 
z 

log cosh(0(2n-a))  ~ 24n-4a/2 . 

So if x. /n  1 - 2p __. y (necessarily > 0) then n 4p- 1 logf . (x . )  ~ 22y and it follows that  

lim infn 4p- 1 log Ex exp(2 W.In e) > ( 2 4 / 2  - 2 2 y )  + , 
n ~ a o  

the positive par t  coming f rom the fact that  (1.6) and f le  (0, 1/4) imply 

Ex exp(2 W./n p) ~ oo . 
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For  the upper  bound  we use the approach  mentioned in the introduction. To 
simplify the formulas we will drop the subscript f rom the x. We write for x > 1 

E~exp(2W, /n  ~) = P i T  1 > n) + ~ P i T  1 = m)Elexp(2  W , _ , / n ~ ) ,  (2) 
m = l  

where T 1 = inf{rn:Sm = 1}. The first term on the right is < 1. We will bound  the 
second by n times the largest term. To identify and bound  that  term we observe 

and for 0 > 0 

Setting 0 = x /m 

P i T  1 = m) < P~(S~ = 1) < PI(Sm > x) ,  

Pl(Sm 2 X) <= e-~ m . 

(3) 

P2(S,, > x) < exp( - xZ/m)(cosh(x/m) "~ . (4) 

Since cosh 0 - 1 ~ 02/2 as 0 ~ 0, it follows that if x /m  I - 2~ ~ z then 

lim sup rn 4~- 1 log P1 (S~ > x) < - z2 /2 .  
n l ~ o u  

So if m/n ~ re(0,  1] and x/n 1-2~ _, y then z = y/ t  1-2p and 

lim sup n 4~-11og P1 (Sin > X) < -- t 1-4P(x/ti-2~)2/2 = -- y2/2t .  (5) 

F r o m  (2.20) we get 

lim sup n 4~- 1 log E 1 exp(2 W,_~/n  ~) = (1 - t ) ) d / 2 .  (6) 
n--~ oo 

Intuitively this comes from multiplying and dividing by (n - m) ~ in the exponential  
and using L e m m a  1. By using the formula quoted we do not  have to exclude the 
case t = 1. Adding the right hand  sides of (5) and (6) gives - y2/2t + (1 - 024/2, 
a quant i ty  that  we wilt call g(t). For  fixed y the max imum occurs when 
g'(t) = y2/2t2 - )~4/2 ~ 0, i.e. t = y/22. If  0 < y < 22 the maximum value is 
2 4 / 2 - 2 2 y .  If  y >  22, g ' ( t ) < 0  for t <  1 and the maximum value is 
g(1) = -  y2/2 < 0. Considering the two cases and recalling that we have 
Px(T1 >= n) < 1 on the right hand  side of (2), it should be easy to believe that if 
x/n  i -28 ~ y then 

lira sup n ~ -  1 log Exexp(2 W,/n  p) < (24/2 - 22y) § . (7) 
n ~  co 

To turn the calculations above into a proof, we need to control  the values for 
small m. To do  this we observe 

n ~  

~', P~(T1 = m ) E l e x p ( 2 W , - m / n a )  < Px(T 1 < ne) sup E l e x p ( 2 W . _ m / n a ) .  (8) 
m = l  rn <__n~ 

Symmetry  and the reflection principle imply 

P i T  1 < ne) = PI(T~ < n~) < 2P1(S,~ > x) .  (9) 
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Using (5) and a strengthening of (6) which follows easily from (2.20), 

lim sup n 4/~ - 1 sup log E 1 exp(2 W,_m/n p) <= 24/2.  
n --+ oo r e < l i E  

So if x/n 1-2~ _~ y then 

lim sup n 4p- 1 log <__ - y2/2~ + 24/2 
n- -oo  L m = l  

where the symbol inside the log is shor thand for the left hand side of (8). 
To  bound the rest of the sum we observe 

< n sup Px(T1 = m)El(exp(2W,_m/ne)) 
m = n e  n e ~ m < = n  

Using (3), (5), (6), and the calculation which led to (7), it follows that 

lim sup n 4p-1 log < (24/2 - 22y) § . 

Combining (10) and (12), and using the trivial inequality 

log(x + y) < log2 + max( logx,  l o g y ) ,  

it follows easily that 

lim sup n 4p- 1 log __< (24/2 + 22y)+. 

Using (2) and (13) now completes the proof. 

(lO) 

(11) 

(12) 

4. Proof of  Lemma 3 

Lemma 3. 

then 

I f  ~o is a nonrandom initial configuration with 

1 " 
~n,, ~=_. ~o(rn)--+ 1 as n-+ oo 

n6~- 2 log E exp(2L,/n ~) ~ 26/4 . 

Proof From  (1.5) 

logEexp(2L,/nP) = ~ ~o(x)logExexp(2W,/nP). 
x = - n  

First we dispense with the terms that are too far out to contribute. 

~ P~(T 1 = m)E 1 exp(2 Wn_m/n ~) 
m = l  

< Px(Ta <_ n)sup E 1 exp(2 W,_m/n~). 
m < _ n  

(,) 

(]) 

(2) 
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As we argued in the proof  of (3.10) 

l imsup n4a--~ l ~  [_O<--m<-nsup E~exp(2W._m/n~)]  = 24/2.  (3) 

For  the other  factor on the right in (2), we observe that if x > cn z-2p 

Using (3.5) 

P~(T 1 < n) < 2P~(S. > x) < 2P1(S . > cn1-2~) .  

l imsupn  * p - l l o g P ( S .  > cn 1- 2~) < - c2 /2 . 
n---~ oo 

(4) 

(5) 

If we let c = 222 then it follows from (3) and (5) that  if n is large 

p l ( s  " > 222nl-z~)  sup E z exp(2 W._m/n p) < exp( -- 24n 1-4~).  (6) 
O<_mNn 

Combining (3.2), (2), (4), and (6) we have 

E~exp()~W./n p) < 1 + 2exp( - 24n 1-4p) (7) 

for all x > 222n 1-2r if n is large. If we let ~ o  denote  the sum over 222n 1-2B < 
Ixl _-< n (o for outside), and use (*) it follows that 

n6a-2 ~ o  ~o(x) logE~exp(2W./na)  ~ O. (8) 

To deal with ~ '  = the sum over Ix[ < 222n 1-2~, we start by supposing 

1 " ~ { 0 ( m ) ~ l  and 1 -1 - ~ r  (,') 
= 0  r i m =  - n  

In this case if we define measures #.  by #([  - 2 2 2 ,  2fly2] c) = 0 and 

#.(A) = n zp-1 ~ ~o(X) for A c [ -  2)~ z , 2 2 2 ] ,  (9) 
x ~  r~ 1 - 2 ~ A  

then #. converges weakly to #, Lebesgue measure on [- - 222, 2)~2]. If we let 

G,,(y) = n 4p- 1 log E[ynl z~ 3 exp(2 W./n p) 

then Lemma 2 implies that G.(y . )  ~ G(y) = (24/2 - 221y1) + when y.  --,y. To  get 

c.(y)~,Iay) --, ~ ~(y)~(dy) (10) 

w e  u s e :  

(11) Lemma.  I f  measures v . ~  v a finite measure, tf.(Y.)[ < M for all y .  in the 
support o f  v., and f . ( y . ) ~  f ( y )  whenever y .  ~ y in the support o f  v, then 

IL(y) v. (ay) -~ f f (y)  v(ay). 
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Proof By dividing v, and multiplyingf, by v,(R) we can suppose without loss of 
generality that the v,'s are probability measures. Let X, have distribution v, and 
converge a.s. to X with distribution v. Using the bounded convergence theorem, we 
conclude Ef,(X,)  ~ Ef(X). 

Applying (11) proves (10) and we have 

2 A 2  

n6P-2Z'x~o(x)logExexp(,tW,/nP)~ ~ G(y)dy.  (12) 
- -  2 2 2  

(12) and (8) give the desired result. To prove the last conclusion under the weaker 
assumption (,) we observe that the sequence p, defined in (9) is tight. If P,(k) =~ g' 
then (11) implies 

G,~k)(y)#,(k)(dy)--+ ~ G(y)#'(dy) = ~ G(y)p(dy) 

since G( - y) = G(y) and (,) implies #,([ - a, a]) --* 2a for a < 222. 

5. Proofs of Theorems 2 and 3 

We start with a little notation: 

F.(x, 2) = Ex{exp(2WJn ~/4) - 1} 

H,(y, ,  2) = f . ( y . n  1/2, 2) 

1 

H(y, 2) -= J P,(v~ - s31/42) - 1} 
o 

As with Theorem 1, it suffices to prove 

lira n-  1/2 log E exp(2 L,/n ~/4) = ~ dy log(l + H(y, 2)) (la) 
n - - +  co  

lim n-  1/2 log/~ exp(2L./n 1/4) = ~ dyH(y, 2) (lb) 
n---~ ~3 

where E and /~ indicate expected value starting from a nonrandom initial 
configuration satisfying (,) and starting from ~o(x), x~7/ i.i.d. Poisson mean 1, 
respectively. 

(1.5) implies 

n-1/210gEexp(2L,/n 1/4) = n-1/2Z ~o(x)log(1 + F,(x, 2)). (2a) 
x 

To compute the corresponding quantity for a Poisson initial configuration, we 
observe that if O(x) +- 0 for only finitely many x 

E e x p ( ~  O(x)~~ = I~exp(e~ - 

So E exp(aL,) = I~exp{Exexp(aW,) - 1} and 
x 

n- 1/z log/~ exp(2L./n 1/4) = n- 1/2 Z Fn(X '  2) . (2b) 
x 



Large Deviations for Independent Random Walks 79 

We turn our  at tent ion now to comput ing the limit of F.(x, 2). (1.11) implies 

E~{exp(2W./n 1/4) - 1} = ~ Px(T1 = m)El{exp(2W._m/n i/4) - 1} (3) 
m=l 

(1.9) and scaling implies that  if m/n--* te  [0, 1] 

E1 exp(2 W._ m/n 1/4) --* q~((1 - t)1/42). (4) 

If n ~ oo and x./n ~/2 --+ y then it follows from Donsker 's  theorem that  

Px. ( T1/n 1/2 E ds) ~ P,('r o E ds) . (5) 

Combining (3)-(5) and using (4.11) it follows that if y, ~ y then 

U.(y. ,  2) ~ H(y, 2). (6) 

(,) guarantees n -  1/2 E ~o(X) ~ 2C and if y, ~ y we have 
Ixl < cn xlz 

log(1 + H,(y, ,  2)) ~ log(1 + H(y, 2)). 

The limit is symmetric, so the argument  at the end of Section 4 implies 

A 
n -1/2 ~ ~o(x)log(1 + F,(x, 2))--* ~ dylog(1 + H ( y ,  2)). 

ix I ~ A n l l 2  - A  

A similar but  easier argument  shows 
A 

n-i~2 Z F,,(x, 2)~ j" dyH(y, 2). 
ix I < Ani /2  - - A  

To control  the contr ibut ion from outside we use: 

(8) Lemma.  Fix 2 o > 0. There is a constant K(2o) < o0 so that 

IF.(x, OI -<_ K(2o)Px(T, < n) for 2 < 20.  

Proof For  [21 < 20, Eiexp()~W,/n 1/4) is smaller than 

E iexp ( )  b W,/n 1/4) + Ea exp( - 2 o W,/n 1/4) ~ r + r - 2o) ,  

so K(2o) = sup sup Eiexp(2W./n i/4) < ~ .  F rom (3) we get 
" I,q < ,to 

IF.(x, 2)1 -<_ s 
m=l 

and the proof  is complete. 
Using (8) now gives 

n -  1/2 E 

X > An  112 

]P.(Ta = m)Ei {exp(2W.-.,/n i/4) - 1}1 

~o(X) ]F.(x, 2)1 < K(2)n-  1/2 E ~o(x)Px(T1 ~ 11) 
x > A n  1/2 

<= 2K(2)n -1/2 ~ ~o(x)Pi(S. > x) 
x > A n  112 

<= 2K(2)n -i/2 ~ tl,.Pi(S. >= mn i/2) 
m = A  

(7a) 

(7b) 

(9) 
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where l~m= {o(mn~/2+ 1 ) + . . .  + {o ( (m+  1)hi/2). (,) implies that  there is 
a C < Go with {o(1) + . . .  + r < Cl, so ~/,, < C(m + 1)n 1/2, and it follows that  

n- i /2  ~ {o(x)lF.(x,  2)1 < 2K(Jt) ~ C(rn + 1)P l(S. > mnl/2) .  (10) 
x > A n  1/2 m = A  

For  n > 1, 
PI(S, > mn 1/2) < Po(S, > (m - 1)n 1/2) < B/(m - l f f  

where B = sup E(Sn/nl/2) 4 < oo. Using this in (10) gives 
n 

lira sup n -  1/2 ~ ~o(x)tF,(x, )o)1 = 0 . 
A ~  n_-> 1 Ix[> A n  l/z 

Since log(1 + u) < u, and ~o(X) - 1 satisfies (,), the last result implies 

(11) 

lim sup n -1/2 ~ ~o(x)log(1 + IF,(x,)OI) = 0 ,  
A ~ o o  n >  1 [ x l > A n  >z 

lim s u p n  -1/2 ~ [F,(x, 2)[ = 0 ,  
A ~ oo ~ > 1 ]x] > A n  ~!z 

and the proofs are complete.  

(12a) 

(12b) 

6. Proof of Theorem 4 

By remarks  in the in t roduct ion the p roof  of Theorem 4 will be complete  when we 
show that  if ~ > 3/4 then/~( IL~* I > n ~) ~ 0, where L,* is the contr ibut ion of the 
particles start ing from x ~ 0. To  prove  this it suffices to show E(L,  + )2 < A + Bn. 
For  then the result follows f rom Chebyshev 's  inequality 

/~ ([L,* I > n ~') < ELL.* {2/n2~' < (A + Bn)/n 3/2 ~ O . 

To compute  EIL~  I z, we begin with the first and second momen t s  of 
w .  = V(So) + . . .  + V(Sn). 

Eo W 2 , + l  = 
r n = 0  

=i 
m = O  

=i 
m = O  

e o ( & z  = o) - e o ( S 2 . , + ~  = 1) 

E :I( 2 - 2 "  1 2 m +  = 

Since E 0 Wz, + 2 = Eo W2, + 1 + Po ($2, + 2 = 0 ) ,  it follows that  E o W k > 0 for all k. To  
est imate the size of this quanti ty observe that  E 1 W~ = - E o W  k and define 
a s topping time by N = inf{m > 1 : S m = 1}. Then 

E~ = E~ ~ V(S") I  + .,= ~ l  P (N  = m)EI W"-m <= 2 ' 
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since the second term is negative, and if we replace N/x n by N in the first we get 2. 
To extend the bound to x < 0 we observe 

0 < ExVV ~ = ~ Px(To = m)EoW, ,_  m <= 2Px(T  o < n) (1) 
r n = l  

For the second moment  we observe that (1.9) implies that for all 2 

Eo(exp( f iW, /n l /4) )  ---> ~p(2) < Go , 

so s u p E o { e x p ( W , / n  TM) + exp( - W,/nl /4)}  < ~ . 
n 

"Dominated convergence" gives Eo(W, /n l /4 )  2 ~ E(~) 2 and it follows that 

E 0 W 2 < Cn 1/2 . (2) 

Our next step in computing the moments of L ~  is to look at L, ~ the 
contribution of the particles starting at x. For this we need 

(3) Lemma. Le t  X 1 , X  z . . . .  be i.i.d, with mean # and variance a 2, and let 

Y, = X 1 + . . . + X , .  I f  N is independent o f  the sequence E Y  N = p E N  and 

Var(YN) = a 2 E N  + #2Var(N) .  

P r o o f  By conditioning on the value of N we see E ( ( Y  N - p N ) ( # N  - p E N ) )  = 0, so 

E ( Y  u -  p E N )  2 = E ( Y  N -  # N )  2 + # 2 E ( N  - E N )  2 " 

Using (3) gives E L  x = E x W  . and 

Var(L~) = Varx(Wn) + (E~W,)  z = E~(W~) . 

To compute the last quantity we observe that if x < 0 

E ~ ( W  2) = ~ Px(To = m)Eo(W2_,~) < Cnl/2p~(To < n) (4) 
m = l  

by (2). Putting things together 

E L f f  = - E  o W . ~ [ - 2 , 0 3  

Var(L.*)  < ~ Ex W2 = 2 Z Ex W2 < 2Cnl/2 ~ Px(To < n) 
x x<O x<=O 

< 4 Cn  1/2 ~ Po(S, >= x) < 4Cnl /2EoIS,  I < C'n . 
x > O  

So E(L,*  )2 < 4 + C'n and the proof is complete. 
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