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Oriented percolation has two correlation lengths, one in the "'space" and one in 
the "time" direction. In this paper we define these quantities for the two-dimen- 
sional model in terms of the exponential decay of suitably chosen quantities. 
and study the relationship between the various definitions. The definitions are 
used in a companion paper to prove inequalities between critical exponents. 
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1. I N T R O D U C T I O N  

We begin by descr ib ing the mode l  under  cons idera t ion .  Let  5 0 =  
{ ( m , n ) e 2 2 :  m + n  is even} and  make  50 into a g raph  by d rawing  an 
or iented  arc  from each z ~ 5 ~ to z + (1, 1 ) and  to z + ( - 1, l ). Each arc, also 
called a bond,  is independen t ly  open with p robab i l i t y  p and closed with 
p robab i l i t y  1 - p. An open b o n d  indicates  that  flow is a l lowed in the direc- 
t ion of the or ienta t ion .  Wi th  this in mind,  we write x--+ y (and say y can 
be reached f rom x)  if there is an open pa th  f rom x to y, i.e., there is a 
sequence of sites in 50, x =  x0, xl, . . . ,  xn = y, so tha t  for each m ~<n the arc  
from Xm_ 1 to Xm is open. 

Th ink ing  of the vert ical  d i rec t ion  as time, we set 

{ a = { j :  for some i e A, (i, 0 ) + ( j , n ) }  

{a is a se t -valued M a r k o v  process  often referred to as the "discrete  t ime 
con tac t  process."  The superscr ip t  A denotes  the init ial  state, i.e., {A = A. 
Let  

rA = inf{n: ~J = U }  
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be the time at which the process dies out, i.e., reaches the absorbing state 
~ .  Let 

p~=inf{p:  P(z ~ ~ ) > 0 }  

where vo is short for zion. Let 

Co = {(x, n): (0, 0) -+ (x, n)} 

be the cluster of the origin. It is easy to see that {ICol = ~ }  = {r0= ~ } ,  
where qCol = the number of sites in Co. So the definition of pc given above 
coincides with the usual one for oriented bond percolation. See ref. 4 for 
more details. 

We will now begin to define our correlation lengths. We need one for 
the time and one for the space direction. Following the practice in the 
physics literature, we will call these parallel (11) and perpendicular (.1_). For  
each correlation length we need a definition for the subcritical (p < p,.) and 
supercritical (P>Pc) regimes. To formulate our definitions, we need an 
argument which appears many times in the literature and is commonly 
known as "supermultiplicativity." Suppose An are events with 

P(An+m) >~ P(A,) P(Am) 

If we let a,  = - l o g  P(An), then 

an + m ~ an  -'~- a m  

An easy argument (see ref. 4, p. 1017) shows 

an/n ~ inf am/m 
m>~ l 

and if we use 7 to denote the right-hand side then 

P(An) <~ e 7- for all n 

D e f i n i t i o n  1. Since 14~ >~ 1 on 4 ~ # ~ ,  it follows easily that 

P(z~ + m[v~ P(z~ 

so "supermultiplicativity" implies that 

V I I ( P )  = nlim~ - -n log P(z ~ >~ n) ( 1.1 ) 

exists for all p. For more details see p. 1017 of ref. 4, where it is shown that 
7 t t (p)>0  for p<Pc. Let L i l (p )=  1/ytL(p ) for P<Pc. We use L instead of 
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the traditional ~ for correlation length, since we use that letter for the 
contact process. 

D e f i n i t i o n  2. Le t r , -~176176176  
ing the state of the process when it first reaches I-n, oo), we see 

P(R ~ n + ml R ~ >~ n) >~ P(R ~ m) 

so "supermultiplicativity" implies that 

7~(P) = ,,41imo~ I - - 1  l~ P(R~ ~> n J ] n  (1.2) 

exists for all p. The limit is positive for p < Pc because 

P( R ~ >>. n) <<. p(ro >~ n) 

{In order to reach [n, oe), the process must live for n units of time.} Let 
L z ( p )  = 1/7• for p < Pc. To see the relationship between (1.1) and (1.2), 
let H~l= {(i, j): j =  n} and H ~  = {(i, j): i =  n}, and observe that 

> = 

{ R ~  = {Co: n2 

Defini t ion 3A. The traditional way to extend Definition 1 to 
P > Pc is to look at 

E 1 ] 711(p)= lim - - l o g P ( n ~ < r ~  (1.3) 
n ~ o D  n 

and let Ll l (p)= 1/Tjl(p ). This time we cannot use "supermultiplicatJvity" 
and it is not so easy to prove that the limit exists. This was done in ref. 11 
using ideas from ref. 2. In this paper we will prove the existence of the limit 
by relating it to a second definition in terms of the dual percolation system 
introduced in refs. 3, 9, and 10. 

Following ref. 5, we define a dual graph by letting 5r  {(m, n)~ Z2: 
m + n  is odd} and drawing oriented bonds from (m, n) to ( m -  1, n +  1) 
and to (m - 1, n - 1). Define the new bonds to be open (resp. closed) if the 
bonds that they cross on the original graph are closed (resp. open). We 
complete the dual by drawing bonds which are always open from (m, n) to 
(m + 1, n + 1) and to (m + 1, n - 1 ) .  This corresponds to the fact that on 
the original graph the bonds from (m,n)  to ( m + l , n - 1 )  and to 
( m -  1, n -  l) are open with probability 0. 
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To see that the dual is a natural object, suppose that C o is finite, let 
D = {(x, y): Ixl + lY[ ~< 1} with the boundary oriented in a counterclock- 
wise fashion, and let 

W= U x + D  
x �9 C ( O )  

If we add up the boundaries of the squares in the union allowing oppositely 
directed segments to cancel, then the result is a family of open paths on the 
dual. The one which is the boundary of the unbounded component of W c 
is usually called the contour associated with the finite cluster Co. See 
Section 10 of ref. 4 for more details. 

In what follows we will need several facts, such as the following: Co is 
finite if and only if there is a dual path from (1, 0) to ( - 1, 0) in ~ x [0, oe ). 
This fact and the others we will use below are not hard to prove using 
ideas in the last paragraph. If C o is finite, the contour contains such a path. 
To prove the other direction, suppose that the dual path rc is self-avoiding 
and observe that when a path from the origin first crosses ~ that bond is 
closed. A complete account can be found in Section 2 of ref. 5. Therefore, 
when such facts are needed below we will just say that they come from 
"planar graph duality." 

Def ini t ion 3B. Returning to our main subject, we let 

1 
~ ( P )  = nli~tn~ [ -  ~n log P((m, O)~ (m, 2n))] (1.4) 

where x ~ y means there is a dual path from x to y, and let L~(p)= 
1 /~ (p )  for p > Pc. "Supermultiplicativity" implies that the limit exists. In 
Section 2 we will show 

7Hi(P) = 27~(p) > 0 (1.5) 

Remark. In the companion paper, (7) we introduce a third definition 
L~l(p), which is the analogue of the definition in terms of sponge crossings 
for oriented percolation. 

We turn now to definitions for the perpendicular correlation length. 

Def ini t ion 4A. By analogy with Definitions 1, 2, and 3A, we can 
set  
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and let L z ( p ) =  1/7• Using the "duplication trick" in ref. 2, one can 
show that the limit exists, but the proof is tedious, so we omit it. The 
absence of a superscript here (and in Definition 3A) indicates that we 
consider this to be the natural definition. 

Defini t ion 4B. As in the case of Definition 3A, there is a second 
definition in terms of the dual process which is easier to work with. Let 

I '  ] o/~(p)= lim - ~ m l o g P ( ( 1 , 0 ) ~ ( - 2 m + l , 0 ) )  (1.7) 

and let L ~ ( p ) =  1/7• for p>p, .  As in Definition 3B, "supermultipli- 
cativity" implies that 7~(P) exists. If we notice that ( - 2 m  + 1, 0) ~ (1, 2m) 
has probability 1, it follows that 7~(P)~>7~(P)>0.  In Section 3 we will 
show that, for any 5 > 0 ,  there are c, Ce(O, oo) so that 

cexp[-(2+6)7~n]<~P(R~176 (1.8) 

Using the fact that the limit in (1.7) exists, this implies 

7D(p) ~< 7• ~< 27D(p) for P>Pc (1.9) 

Readers (or authors) of ref. 2 might ask if the last two inequalities can be 
replaced by a single equality. This seems difficult to prove and might even 
be false. 

D e f i n i t i o n  4C. It is known (see ref. 4, Section 8) that if we start 
~22 converges the contact process with all sites occupied, then, as n ~ o% ~2, 

in distribution to a limit which has the same distribution as r / -  {x e 2?7: 
r x =  oo}, r x being short for r {x). Let r/(y) = 1 if y e t / a n d  0 otherwise, and 

Cov(r/(O), r/(x)) = P(O, x E r/) - P(O ~ r/) P(x E ~1) 

which is ~>0 by Harris' inequality. In Section 4 we will show that, for any 
6 > 0, there is a constant C > 0 so that 

Cexp[-(2+5)y~x]~Cov(q(O),q(x))<~exp(-yD_x) (l.10) 

Tightening up the bounds in (1.8) and (1.10) to remove the factor of 2 
difference between the exponents seems a difficult problem. Indeed, we do 
not have a good feeling for which (if any) of the inequalities is sharp. 

In the above discussion we have been careful to point out that the 
correlation lengths are all known to be finite when p # Pc. In ref. 6 it is 
shown that they all diverge as p approaches Pc and bounds on the 

822/55/5-6-8 
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associated critical exponents are given. In the case of Definition 2 we can 
show that if v• exists, then it is at least 4/7, which is greater than the mean 
field value 1/2. 

2. THE PROOF OF V I I ( P ) = 2 V ~ ( p )  

We begin by observing that "supermultiplicativity" implies that 

~ ,1 711,a= lim - log P{(1, 0) ~ (1, - 2 n )  in [ - a ,  a] x R (2.1) 
n ~ c o  

exists. A simple argument of Chayes and Chayes (see ref. 5, Lemma2)  
implies 

~ ~ I1.~ (2.2) 

We give the proof, since it is short and we will need two related results 
below. 

D Proof of (2.2). First observe that a~Tll ,~ is decreasing. Let A, ,a= 
{(1, 0) ~ (1, - 2 n )  in I - a ,  a] x R}, let 6 > 0 ,  and pick n large enough so 
that 

e x p [ -  ( ~  + 3) 2n] ~< P(A,.oo) 

With n fixed, 

P(A,,.~)= lim P(A.,.) 
a ~ o o  

"Supermultiplicativity" implies 

P(A,.a) <~ exp( - 7~.~2n) 

Combining the last three equations gives 

which proves the desired result. 
For the next result recall that if r, = sup ~o,-2, 4...d then there is a 

constant e(p) so that r,/n ~ ~(p) a.s. as n ~ oe, and pc= inf{p: ~(p)>0}.  
See ref. 4, Section 3 for a proof. In Section 11 of that paper it was shown 
that if p > Pc, then 
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We did not mention this definition in the introduction because 

Y~ = 711 (2.4) 

Proof. To prove that the limits in (1.4) and (2.3) are equal, it suffices 
to consider what happens when n = 2m. Planar graph duality implies 

{r2m<~k}={(1, O)~(k+l ,  2m)in~x[O, 2m]} (2.5) 

from which it follows immediately that 7~1 ~>7~- To prove the opposite 
inequality, let a be an odd positive integer and let 

A m = {(a, 0) ~ (a, 2m) in [0, 2a] x N} 

B,,,= { ( 2 a -  1, 2m) *-+ ( 2 a - 2 ,  2 m -  1) ~ ( 2 a - 3 ,  2m)-.-*-+ (1, 2m)} 

Since we can always go (1, 0) *-+ (2, 1) *-+ (3, 0) ... ~ ( 2 a -  1, 0), it follows 
from (2.5) that 

{rzm ~<0} ~A ,~Bm 

For large m 

and we always have 

D +6)2m] P(Am) > exp[ - (7 ll.~, 

P(B.,) = (1 - p )2 . -  2 

Using Harris' inequality now gives 

P(r2m ~ O) >>- P(Am) P(Bm) 

s o  

1 }) 0,,, l imsup - - ~ m l o g P { r > , ~ < 0  ~zlr , ,+~i 
m ~ c o  

Since 6 > 0 and a < oo are arbitrary, the desired result follows from (2.2) 
and the proof is complete. 

I . emma.  F o r p > p c ,  

F 1 
2n)] = 27~ (2.6) -li~mo~ l_ - ~ log p(o  ~ 42%, ~o = 

J 
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Proof. Planar graph duality implies that on {0 e ~~ n, r ~  2n} there 
are dual paths from (1,0) to ( 0 , 2 n + l )  and from (0,2n+ 1) to ( - 1 , 0 )  
which only have (0, 2n + 1) in common. Noting that ( - 1 ,  0)*~ ( 0 , -  1) 
and ( 0 , - 1 )  *~ (1, 0) have probability 1 and using the van den Berg- 
Kesten inequality gives 

P(OE~2n,~~ rO=2n)<~p{(O, _ l )  .~ (O, 2n+ l)} P{(O, 2n+ l) .~ (O, _ l ) }  

The two events on the right-hand side have the same probability by 
symmetry, so it follows from "supermultiplicativity" that 

P(0~ ~0, tO=2n)~<exp[_27~(2n+2)]  

and we have shown 

liminfn~o~ - 2 n  l ~ 1 7 6 1 7 6  >~27~ 

To prove the opposite inequality, let a be an odd positive integer and 
let 

A,,= {(2a+ 1, 0) *~ (2a+ 1, 2n)in [a. 3a+23 • R} 

B.= { ( - 2 a -  1, 2n) ~ ( - 2 a -  1, 0)in [ - - 3 a -  2, --a] • ~} 

C.= {(3a+2, 2n) L (3a+ 1, 2n+ 1) L (3a, 2n)-.-*~ ( - 3 a - 2 ,  2n)} 

D. = {(0, 0) -~ (0, 2n)in f - a ,  a)• [0, 2n]} 

E. = A.  c~ B. c~ C. c~ D. 

Since (1, 0) *~ (2,1) *~ (3, 0) --- *~ (3a + 2, 0) and ( - 3 a - 2 , 0 ) * - +  
( - 3 a - 1 ,  1) ~ ( -3a ,  0) *~ ... *-. ( - 1 ,  0) have probability 1, planar graph 
duality implies 

{ O e ~  O = 2n} ~ E .  

(See Fig. 1.) Independence of events in disjoint regions of the plane and 
Harris' inequality give 

P(E) = P(An c~ B. c~ C.) P(Dn) >~ P(A.) P(B.) P(C.) P(D.) 

If 6 > 0 and n is large, 

P(A.), P(B~) >~ exp[ -()'~l,a + 6) 2n] 

For all n 

P ( C . )  = (1 __ p ) 6 a + 4  
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To handle D,,, we observe that "supermultiplicativity" implies 

E 1 y~=,,~limco - ~n l~ O)--+(O'2n)in ( - k ' k ) x g ~ }  (2.7) 

exists for 1 ~<k~< ~ ,  and the argument which leads to (2.2) implies 

7~ = lim Yk (2.8) 
k ~  

To show 7~ = 0, we observe that Harris' inequality and symmetry imply 

P{(O, 0) ~ (0, 2n)} ~>P{(0, 0) ~ [0, ~ )  x {2n}} P([0,  or) x {0} ~ (0, 2n)} 

>~ (p{~O :/= .@ }/2)2 > [P(O~ )/2] 2 

where (2~ r 0 m}. = t ~ m ~  for all 
Combining the observations in the last paragraph, we see that if n is 

large, 

P(D,,) >~ exp[ - (Ya + 6) 2n] 
S O  

1 
lim sup ~nn log P(E,~) <~ 27~,a + Y~ + ,5 

n ~ o ~  

Since 6 > 0  and a <  ~ are arbitrary, it follows from (2.8) that we have 
proved the desired result. 
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Lemma. 

Proof. 

For p > Pc 

,lira [ -  -ll~ P ( z ~  = 27~ (2.9) 

Note that P(r ~ n) >~ P(0 e ~o t o =  n). Equation (2.6) implies 

l imsup - ~ n l o g P ( r ~  ~<27~ 

To extend the result to odd times, observe that 

P{xe~~176162176 zO=n} (2.10) 

since if we take an outcome in { x e 4 ~ 1 7 6  and change the state of 
(x, n) ~ (x + 1, n + 1 ) from closed to open, then we have x e 4 ~ , and 4, + l = 
{x + 1 }. Taking x = 0 and n an even integer, we have 

p( o=n+ ( 1 -  pV = {1}) 

~>p(1--p)  P ( 0 e 4  ~ z ~  

SO 

l imsup I , , ~  - n-ll~176 

To prove the opposite inequality, we need to consider 

4(s 'm)= {y: (x, m)--* (y, n)} 

Translation invariance in time and space gives 

pry(x+ 1.,+ 1) = ={0})=P(4~ { -x- l } )  
>~ (p/1- p) P(xa ~o, vO=n) 

by (2.10) and reflection symmetry. Another use of (2.10) now give 

P ( 4 ~  = {O})>~(p/1--p)2p(xE "~162 z ~  n)  2 

The fact that ~or  { - n  ..... n} implies 

1 
max P(xe4 ~ r ~  P ( z ~  
Ixl ~<n 

So we have 

p(~O + 2 = {0}, z ~ = 2n + 2) ~> (p/2n + 1 )2 p(zO = n)2 



Correlation Lengths for Oriented Percolation 975 

o r  

2n+  1 
P(r~ = n) ~< P(0 e ~~ "c~ = 2n + 2) j/2 

P 

and the proof of (2.9) is complete. 
The last step is to show the following. 

k e m m a ,  For p > p ,  

I 1 ] lim - - l o g P ( n ~ < ~ ~  =27~ (2.!1) 
r t  ~ :73 

Proof. Since P(n<~c ~ ~ half of the result is an 
immediate consequence of (2.9). To prove the other half, observe that (2.9) 
implies that if ~5 >0,  then for m>~rno(cS), 

P(r ~ = m) ~< exp[ - ( 2 7 ~  - 6)m] 

Summing the geometric series from m = n  to .:~ gives the desired result, 
since 6 is arbitrary. [Sticklers for detail should note that (2.3) and (2.4) 
imply ), ff > 0. ] 

3. THE PROOF OF ~,•177 ~<2~,o 

In this section we will prove (1.8). Half of the proof is easy because the 
work has already been done. An immediate consequence of Lemma 4 in 
ref. 5 is the following. 

Suppose p > p,.. There is a constant C so that if m ~> 0, then 

P((1, 0) *-* {-rn+l}xN)<~C(m+l)exp(-y~m) (3.t) 

Planar graph duality and symmetry imply 

P(R~ r ~  oo)~<P({n+ 1} x N *~ ( - 1 ,  0 ) )=P( (1 ,  0) *-+ { - n -  1} x JR) 

from which it follows that 7• 1> 7~- 
To prove the other inequality, we have to do a little work. As in 

Section 2, we begin by observing that "supermultiplicativity" implies that 

7 •  lim - logP{(1,  0) *-, 
n ~ o - 2  

exists, and the Chayes' argument 

q 
- 2 n +  1, 0)in R x  I - a ,  a ]}~  

implies 

(3.2) 

7~ lim D = ya. ,  (3.3) 
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r+2a 

re(l+ e m(l~-)r) 
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0 

Fig. 2 

o to be the rightmost site at time t in the process starting Next define r n 
o _  inf ~o. From ref. 4, Section 3, we know o sup4 ~ Let l ~ -  from {0], i.e., r , =  

that 

r~ and l ~  a.s. o n { r ~  (3.4) 

and c~(p) > 0 i f p > p ~ .  Let e > 0 ,  r =  (m/c0(1 +e),  F =  N x [r, r + 2 a ] ,  and 
let 

A = {m<r~ +2g)} 

8= {l?> -m{1 

C =  {(m(1 + 2e)+ 2a, ~ + a )  *~ ( - m ( 1  + 2 e ) - 2 a ,  r + a ) i n  F} 

A look at Fig. 2 shows 

P ( R  ~ > n, r ~ < co ) >>. P (A  B B c~ C) = P(A  n B) P(C)  

by the independence of events based on disjoint regions of the plane. (3.4) 
implies that when m is large, P(A n B)>~ P(z~  00)/2. Relation (3.1) and 
translation invariance imply 

P(C)  >~ exp[ - 2 ( 1  + e)(?~ + 6) 2m] 

for large m. Since 6, e > 0 and a < oo are arbitrary, the proof is complete. 

4. BOUNDS ON Coy(q(0), q(x)) 

In this section we will prove (l.10). We will prove the second 
inequality first. It is based on ideas in ref. 2. Let C(x)  denote the set of sites 
which can be reached from (x, 0). Then 
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Cov(~(0), rl(x))= p ( ro<  oo, < <  z c ) -  P(z~  co) P(r~< ~ )  

= p(~O < oo, ~x < co, C(O) c~ C ( x )  = (25) 

_p(~O< ~ ) p ( < <  oo) 

+P(r~ rx<ov, C(O)~C(x)=/=~23) (4.!) 

On {r  ~ < 3c, r ~ < ~ ,  C ( 0 )  :~ C ( x )  = ~ 3 }  there are two disjoint sets of bonds 
which determine {r~  ov } and {r~< oo }. [Readers who worry that the 
two dead clusters could share some boundary bonds should note that the 
closed bonds which block percolation from 0 must begin in C(0).] Since 
the events in question are decreasing, an application of the van den Berg- 
Kesten inequality gives 

p(~O< o% rx<  o% C(0) c~ C(x)=(,~)<~P('r~ ~ ) P ( r ' <  oo) 

and we have 

Cov(t/(0), ~/(x)) ~< p(ro < .zo, ~~ < oo, C(0) c~ C(x) r (25) 

Planar graph duality implies that the last probability is bounded above by 

P((x + 1, 0) *~ ( - 1, 0)) ~< exp(-) ,~  x) 

by "'supermultiplicativity," so we have proved half of (4.1). 
To prove the other inequality, notice that if ,7 is the collection of 

finite sets of sites and N ~ Y,  then 

Cov(q(0), q(x)) = P(r~ < oo) P(r x= ~ ) _  p(rO < co, rx=  oc) 

= ~ P(C(O) = S){P(r x = oo) - P((x, 0) percolates in SC)} 

= ~ P(C(O) = S) P((x, 0) only percolates through S) 
S ~ Y  

>~ P(C(O) e ~) rain P((x, 0) only percolates through S) 
S e N  

The next step is to choose a good fr Let r = (x/2c~)(1 + 2e) and 

N = { S :  I S ] < ~ , P ( C ( 0 ) = S ) > 0 a n d S n [ x / 2 ,  o o ) x { r } r  

(4.2) 

From the proof of (1.8) it follows that if 6 >0,  

P(C(O) ~fr >~ c exp[ - (~,o ~ = + 6 ) x ]  (4.3) 
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To force (x, 0) to percolate through S ~ ,  we let 

p = x +  (x/2)(1 + 3e) 

2 = x - (x/2)(1 - e) = x/2 - ex/2 

A={r:<~p,l~<~2} 

F= [x/2 - a, p + a]  x [r, r + 2a] 

B =  { ( p + a ,  r + a )  ~ (x/2-a,  r+a) in F} 

C = {process starting with l~ occupied at time r percolates } 

See Fig. 3 for help with the definitions. To make B and C independent, we 
want x large enough so that xe/2 >1 3a. From the definitions above it should 
be clear that if S e ~, then 

P((x, 0) only percolates through S) >~ P(A) P(B) P(C) (4.4) 

Relation (3.4) implies that P(A)>~ P ( z ~  oo)/2 for large x. One has P(C)= 
p(rO = oo). As for the other term, observe that if 3 > 0 and x is large, 

P(B)>>.exp{-(7~.a+3)[x(1 +e)  + 2a]} ~>exp[ ,o o - ( t  a.a + 3)(1 + 4e/3)x] 

since we chose x so that xe/2 >~ 3a. Combining (4.2)-(4.4) with the bounds 
on P(A), P(B), and P(C)just derived gives 

Cov(~(0), t/(x))/> c' e x p [ -  (7~:,a + 3)(2 + 4e/3)x] 

r+2a - - - ]  

p 

x 
Fig. 3 
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Since  the  last  resul t  ho ld s  for  la rge  x w h e n e v e r  ~, c5 > 0 and  a < o% the  

des i red  l o w e r  b o u n d  fo l lows  f r o m  (3.3). 
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