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Summary. Gray  and Griffeath studied attractive nearest neighbor spin sys- 
tems on the integers having "all  0 's" and "all l ' s "  as traps. Using the contour  
method, they established a necessary and sufficient condition for the stability 
of the "all  l ' s "  equilibrium under small perturbations. In this paper  we 
use a renormalized site construction to give a much simpler proof. Our  
new approach can be used in many  situations as a substitute for the contour  
method. 

Introduction 

Consider a one dimensional nearest neighbor spin system on 2g with birth rates 
flij and death rates 5ij. That  is, i t  is a Markov  process with state space {0, 1} ~ 
which has 

e (~ +s (x) = 11 ~ (x - 1) = i r (x) = 0 fit (x + 1) = j )  = flij s + o (s), 
P(~t + s(x) = 0[ ~t(x -- 1) = i ~t(x) = 1 r + 1) = j )  = 6ij s + o(s) 

as s ~ 0. Gray  and Griffeath (1982) investigated the class of models which have 

flO0----O flll  ~--~_fl01, fllO ( ~ l l = 0  (~00=~(~01, (~10. 

The inequalities say that  the system is "at t ract ive,"  and imply that if ~o(X) 
=<~-o(X), then copies of the process starting from these initial configurations 
can be constructed so that ~ t ( x )<~ t ( x  ) for all x and t. The equalities floo--0 
and 511=0 imply that the states 0 = " a l l  0 's" and l = " a l l  l ' s "  are absorbing 
states. 

Gray  and Griffeath investigated the stability of the fixed point 1 under the 
perturbat ion f l l j - f l i j ,  5 i j - 6 i j + s .  The perturbed flip rates are attractive, so if 
we start the perturbed system from ~ ) ( x ) - 1  then ~ ~ v] where v] is a transla- 
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tion invariant stationary distribution. (See Liggett (1985) p. 135.) If v] {~: ~(x) 
=1} 1'1 as e~0 (the last probability does not depend on x), then we say 1 is 
stable. If v] ( ( :  ( ( x ) = l } = 0  for all e>0,  then we say I is unstable. Although 
it is not immediately clear from the definition that something which is not 
unstable is stable, the next result, due to Gray and Griffeath (1982), shows 
this is true and identifies when the two cases occur. 

Theorem. I f  flol + fl~o < 3ol + 31o, then 1 is unstable. 
I f  flol +fllo >6ol  +6~o, then 1 is stable. 

To see the motivation for and content of this result consider two examples. 

Example 1. Pure Birth Process. 6~j=0. In this example the result says that if 
f lo l+f l lo>0 ,  then 1 is stable. An important special case is fl~i=i+j. In this 
special case if we change variables e = 1/2, the result is the contact process (run 
at 1/2 times the usual speed). For  the contact process, the theorem says that 
"2~ < o~ ", that is, if 2 is large there is a nontrivial stationary distribution. 

Example 2. Biased voter model, fl~g= 2(i+j),  6ij= i + j. In this example the result 
implies I is stable if 2 > 1 and unstable if 2 < 1. In particular, in the voter model 
(2 = 1) the equilibrium 1 is not stable under perturbation. 

The first conclusion in the theorem is easy to prove. Suppose e = 0  and 
we start with ~o(0)=0 and ~o(x)=l  for x#:0. Since floo=0 and 5~1=0, the 
state at any time will be 1 or have the form (t(x)= 0 if It N x N r t and --- 1 otherwise. 
It is easy to see that when r t -  It > 1 

~ r t + l  a t ra te  6ol and lt-*{lli+___ 1 atrate  filO 
rt 

( r ~ -  1 at rate flol 1 at rate 6~o, 

so the interval grows by 1 at rate 6 ol + 61o, and shrinks by 1 at rate rio1 + flw- 
If we add e to the death rates then the interval grows at rate at least go 1 + 61 o + 2 e 
(O's outside [lt, r,] may help the growth), and shrinks at rate flol +filo- So if 
5ol +cflO+2e>flo~ +fl lo there is positive probability that a single 0 leads to 
an interval of O's which grows at a positive linear rate. Since O's appear at 
a positive rate, an easy argument shows that starting from 1 the system converges 
to 0. 

The intuition behind the second conclusion in the theorem is similar (intervals 
of O's tend to shrink), but this result is much more difficult to prove because 
O's outside an interval may help its growth. Gray and Griffeath used the "contour 
method"  to prove their result. In essence, they developed a power series for 
v~ {4: ~(x)= i} and proved that the series had a positive radius of convergence. 
When f111->-f101 +fl lo the proof was a little tedious (8 journal pages). When 
f l~l<flol+fllo they had to "resort to unpleasant surgical operations on the 
contour which obfuscate the essential idea". In the next section we will give 
a proof of Gray and Griffeath's result which does not depend on the size of 
~1~, and is much simpler than their proof. As the first paragraph of the proof 
should indicate, the method of proof can be applied to prove results about 
other systems. 
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Proof of Stability 

If we leave out a few details the main idea of the proof  can be described in 
three sentences. We show that when the process with e = 0 is viewed on suitable 
length and time scales it dominates 1-dependent oriented percolation with p 
= 1 - 3  -37 . Since the boxes involved in the construction have finite area the 
probability of a spontaneous deaths in a box is < 3-  37 if e < Co- The last observa- 
tion implies that the processes with e < ~o dominate 1-dependent oriented perco- 
lation and the stability result follows from facts in Section 10 of Durret t  (1984). 
It will take a number of words (mostly definitions) to turn the sketch into 
a proof. We will have to replace 3-3v by any ~ > 0  to get the desired result. 
We hope the sketch has made the following philosophy clear: the hard work 
is done for the process with e = 0  and then the continuity of probabilities of 
events in boxes of finite area extends the result to small ~ > 0. 

Turning to the details, we begin by considering what the process with e = 0  
looks like starting from an interval of l's. In what follows it will be convenient 
to regard it as a set-valued process (={x :  ~t(x)=l})  and think of the points 
in it as occupied by particles. Suppose e = 0 and start with 4o = [10, ro]. Since 
/~oo=0 and 611=0, the state at any time will be q~ or an interval [l~, rt]. It 
is easy to see that when r t -  It > 1 

f r t+l  a t ra te  /31o and lt--*~ lt+l a t ra te  61o 
rt~<(r~-i a t ra te  61o [ l~--I  a t ra te  /~Ol. 

The right edge r t has drift C2~---fl10--610, and the left edge It has drift cl =601 
- f l o  1- (To help remember the notation, recall 2 = 10 in binary.) Our assumption 
is that c2-cl  >0,  so: 

(1) If we pick 6 > 0  and L large, then the system starting with [ - 6 L ,  6L] 
occupied at time 0 will at time L contain JelL, r L] and be contained in [(cl 
- 2 6) L, (c2 + 2 6) L] with high probability. 

With (1) established, it is easy to show that the system with e = 0  dominates 
1-dependent oriented percolation. See Fig. 1 for help with the definitions. The 
first coordinate corresponds to space and the second to time. We set: 

0<6<(c2-cl)/10 b=(c2-c1-26)/2>46>0 a=(c2+c0/2 
v,,,,,,=((na+mb)L, nL)~2~ 2 ~~  {(m, n)~2:  m+n is even) 

A = the parallelogram with vertices ( - 2 b L ,  0), (2bL, 0), 
((a + 2b) L, L), ((a- 2b) L, L) 

A,,,.,,=v,,,,,,+A 1 = [ - 6 L ,  6L] lm,,,=(na+mb)L+I 

Here x+S= { x + y :  yeS}. In what follows we will often use z to denote points 
of ~Lf. In this case for obvious typographical reasons we let 

I(g) = I  . . . .  - 
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To see the reason for the above definitions, notice that a+b=c2-6  and 
a-b=Cl + 6, so 

(2) [ClL, c2L]~(I_l, 1 w ll,i). 

A second important observation is that 

a+2b>=a+b+43>c2+26, 

and the parallelogram is convex so the dotted lines in Fig. 1 lie in A. Combining 
the last two observation with (1) shows: 

(3) With high probability, the right edge of the process starting with [ -  6 L, 3 L] 
occupied will not escape from the "box"  A by time L. An analogous statement 
holds for the left edge. 

We will say that (m, n) is open and set qm,, = 1 if the process starting with 
I,,,, occupied at time nL, which we will call ~7"", contains I,,_ i,,+ i and I~+ 1,,+ i 
at time (n+ 1)L and has ~"" x {t} cA, . , ,  for nL<_t<(n+ 1)L. For the last state- 
ment to be meaningful, we have to have all the processes referred to constructed 
on the same probability space. To do this, we use an approach similar to the 
one in Sect. 2 of Gray and Griffeath (1982) 

First of all, suppose without loss of generality that max(6oo,/711)=1. For 
each x e;g let {B, ~, n > 1}, {D~, n > 1} be the arrival times of two rate-one Poisson 
processes; let{U, ~, n >  1}, {V, ~, n >  1} be i.i.d, sequences of random variables 
which have uniform distributions on (0, 1); and suppose that all these processes 
are independent. The B, ~ and D~ are possible birth and death times of particles 
at x. At these times we look at the state of x - l ,  x, and x - 1  and use U, ~ 
or V, x to see if a birth or death should occur. For example, if at time t=B~, it(x) 
=0,  i t ( x - 1 ) = i ,  and ~t(x+l)=j, then x will become occupied if and only if 
U, ~< flu; if i t (x)= 1, then nothing happens. A similar definition applies at times 
t = D, ~. Since thinning a rate 1 Poisson process by flipping a coin with probability 
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p of heads results in a rate p Poisson process, it is easy to see that the above 
recipe allows us to construct, on one probability space, processes ~a~'ts > t which 
start with A occupied at time t. For  more details see Sect. 2 of Gray and Griffeath 
(1982). 

The last paragraph allows us to construct 

~ t , n  __ y l m . , n L  =,~t , t > n L .  

This construction has the property that if ~ ~ B, then 

(4) ~ ~ ~ , t  for all s>=t. 

Moreover, one can check that the q,,,, have the following three properties: 

(i) The random variables t l ( z ) , z e S Y  are 1-dependent, that is, if we 
let jp(m, n)JF =([mr + In])/2, and zl, ... z k are points in 5f with jrz i-z j[I  > 1 for i + j ,  
then ~(z0, ... rl(zk) are independent. 

(ii) If there is a sequence z i = (mi, i) so that q (zi) = 1 and mi + 1 E {mi - 1, m i + 1 } 
for O < i < n - - 1 ,  then 

~r(~o) ~ I (z,). nL 

(iii) If 7 > 0, then we can pick L large enough so that P(~ (z) = 1) > 1 - 7. 

(i) follows from the fact that if z, w e 2  a have ] l z -wlJ  > 1 then the parallelo- 
grams Az and Aw do not intersect. To check (ii) observe that (4) and the definition 
of ~7 imply by induction that 

~1(zo)=r~. ~ for m_>0. 

Finally, to check (iii) notice that if L is large then (1~(3) imply 

~[--SL,6LIL ~ [ c l L ,  c 2 L ] ~ ( I - l , l w I 1 , 1 ) ,  

and 

~ O L ' 6 L ] x { t } ~ A o , o  foral l  t < L  

have probabilities close to one. 
Let W,={m: (m, n ) e ~  can be reached, i.e., there is a path starting at some 

(I, 0)~ L,f and ending at (m, n) with the properties given in (ii)}. (i) and (iii) imply 
that { l/V,: n > 0} dominates a 1-dependent oriented percolation having open sites 
with probability 1 - 7 .  In Durret t  (1984) (see (1) on p. 1026), a result was proved 
which implies that 

(5) P ( m e W , ) > p ( 7 )  with p ( 7 ) ~ l  as 7 ~ 0 .  

(The argument there provides lower bounds on the probability of an infinite 
path of open sites starting at a given point, and hence by reversing time, lower 
bounds on the probability of an open path from (m, n) down to 22g x {0}.) 

At this point we have worked ridiculously hard to prove a trivial result: 
if we start the system with ~=0 from ~o=2g then it does not converge to r 
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(It i s=2g for all t!) However ,  as announced  at the beginning of  the proof,  our  
reasoning  allows us to easily conclude tha t  the same result holds when  e > 0  
is small. T o  cons t ruc t  the pe r tu rbed  process  ~ ,  we add  independent  rate-e Pois- 
son processes {T~ x, n > l }  to the above  construct ion.  At  t imes T~ x we kill the 
particle at x (if one is present). T o  analyze  ~ ,  we define new r a n d o m  variables  
t/~,,, by t/~,,, = 1 if (and only if) r/m,, , = 1 and  

Hm,~ = {(x, T,~): n >  1, x~2g} c~ A~,, 

is q~. Let  7 > 0  and pick L so that  (i)-(iii) hold  for ~m,,. I t  is easy to see tha t  
(i) and (ii) are valid for t/~,,,,. I f  e is small,  P (Hm,, 4 = q~)< 7, so P(t/~,, = 1)>  1 -  27 
and  (iii) holds  with 7 replaced by  21'- 

Us ing  (5) n o w  gives 

(6) P(meW,)>p(27) with p ( 2 7 ) ~ 1  as 7 ~ 0 .  

To  get f rom this to the desired result we observe  tha t  since the flip rates are 
" a t t r ac t i ve"  (see Ligget t  (1985), p. 135 again), 

v] {4: ~ (x )=  1} = lim P(xs~z). 
n--+ co 

Trans la t ion  invar iance  implies tha t  the last p robabi l i ty  does not  depend  on 
x. So by  picking a po in t  x ,  which lies in one of the I . . . .  it follows f rom the 
cons t ruc t ion  and  (6) tha t  

P(O~,L)= P(x.E~nL)~ P(m~ Wn)~p(2y). 

7 > 0 is a rb i t r a ry  so we have  p roved  the stabil i ty half  of  our  t h e o r e m  
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