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Introduction and Summary

This paper is based on a talk given by the first author at the I.M.A. in
February, 1986 but incorporates improvements discovered during six later repiti-
tions. The second authour should not be held responsible for the style of pre-
sentation of the results but should be given credit for discovering the results
independently in the Fall of 1985, The discussion helow is equal to the talk
with most of the details of the proofs filled in, but we have tried to preserve the
informal style of the talk and concentrate on the "main ideas" rather than
giving complete details of the proofs. If we forget about definitions then the
results can be summed up in a few words "Everything Durretl and Griffeath (1983)
proved for one-dimensional nearest neighbor additive groilh models is true for
the corresponding class of finite range models, i.e., those which can be

constructed from a percolation structure."

This author was partially supported by an NSF grant and an AMS "mid-career'
fellowship.

This author was partially supported by CNPq (Brazil) and NSF during the
academic year 1985-86 which he spent al the Rulgers Math depariment. He
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We will describe the models we consider in a minute but even before we do
Lhis it is easy to see the main poinL of our generalizalion: tLhe words nearest
neighbor have been replaced by finite range. This generalization has two bene-
fits. The first and most obvious it that iL greally increase the number of
systems to which our results can be applied.

A second benefit is that we are ahle to improve what is known about the
discrete time contact process (and other models) 1in Z2. To be precise results
which Durrett and Griffeath (1982) could only prove for p > pC(Z) the critical
value for the process on the integers Z can now be shown for
p > pC(Z x {-Ly...,L}) for any L < «», Presumably

1L1+;1 p (2 x {-L,...L}) = pC(Zz).
(and then our results hold for all p > pC(Zz)) but we have no idea how to prove
Lhis, and in any case we are gelling way ahead of ourselves. We will discuss
the last topic in Section 6 but before this a number of other things must be
done (e.g. defining pC(Z)). In Section 1 we will describe the class of models
for which we can prove our results. These "generalized percolation processes
(gep.p.s)" in Zd are generalizations of oriented percolation in Zd+1 and
have two special properties (additivity and duality) which make them easier to
study than other discrete time growth models.

In Section 2 we will begin out study of g.p.p.'s by describing the
questions we want to study, and the set up we will use to formulate our answers.
The real work begins in Section 3 when we prove that "edge speeds characterize
pc". This is one of two keys to developments that follow, Lhe other being the
renormalized bond construction described in Section 4. That construction, in
the words of Durrett and Griffeath (1983), "was inspired by work of Russo and
Kesten and allows us to reduce results concerning supercritical contact pro-
cesses to corresponding results about l-dependent oriented percolation with p
arbitrarily close to 1",

Once one has the two results in the lasi paragraph one can, following the

pattern of Durrett (1984), oblain a large number of results. In Sections 5 and



6 we will prove two of the most important of these: tihe complete convergence
theorem (which is called complete because it describes the limit in distribution
starting from any initial configuration) and the strong law for lgﬁl, the
number of particles at time n starting from a single particle at 0.
Exponential estimates and large deviations results like those in Sections 10-13
of Durrett (1984) could also be proved bult no new ideas are needed so we will
leave this as an exercise for the reader.

Given the dates of the papers with the two "keys" to the proof the reader
may ask why he had to wait unitl 1986 for the resulis we have here. The answer
is simple: the approach of Durrett (1980) relies on a "coupling" result which
is a special feature of the nearest neighbor case (see Lemma 3.4 in Durrett
(1980) or (6) in Section 3 below) and only recently did we have the idea to go
around this siep using the renormalized bond construction (Nole: to close the
circle, when we are done we can go back and prove that the coupling result is
almost correct, see Seciion 6).

Having extolled the virtues of our results it is only fitting tc close this
introduction by listing their weaknesses. The firsit and mosi obvious is that we
are able to prove our resultis only for generalized percolation processes and not
for the more general class of monotone (or altractive) growth models. (If these
terms are unfamiliar they will be defined in Seclion 1). Accomplishing that
generalization will require a new idea and not just rearranging the old ones.

A second more technical defect is that we have only proved the result in
discrete time. The reader will see the reason for this at the end of Section 4
when we use the green bonds to tie the blue paths together. This part of the
argument can undoubtedly be done in conlinuous time but would requires many more

technical details, since continuous time paths can move arbitrarily fast while

paths for a finite range discrete time system have a strict speed limit.

1. Description of the Models

In this seclion we will describe the various classes of models we will con-

sider in Lhis paper. In all cases the sysiem will be a discrete time Markov



. . . d .
chain whose state at time n is £, € Z” and which evolves accarding tn the

following rules

(1) Plx e g glg)) = alg (x +y)oees elx + y)).

d
where k < « (yl,...yk} € Z° and we have used coordinale notation for the random

set: gn(x) =1 if x e £, and gn(x) =0 if x g £ -

(i1) given £y the state at time n + 1 is decided by flipping indepen-
deniL coins, i.e. for any Jj and xl,...xj € Zd

. 3 \j
P(xj e &, for 1 <i <jlg) = T

i p(xi € E"+1|En)'

1
Systems which satisfy (i) and (ii) are what we would call discrete time
particle systems bul are often referred to in the physics lilerature as stochastic

cellular automalta. (See Kinzel (1985)). If we impose the additional conditian

(1i1) g 1is monotone i.e. if x <y coordinatewise then g(x) < g(y)

then we say the process is monotone or "atiractive"
and if we insist in addition that
(iv) there is no creation from nothing, i.e. g(0) =0

then we have the class of processes mentioned in the title of the paper:
stochastic growth models.

If one thinks (as we do) of the points in £, as being occupied by a par-
ticle (think of an animal or better yel a plant) then assumption (iv) is clearly
natural. Assumption (iii) is also reasonable. The probability of a birth
should be an increasing function of the occupancy of the neighbors (unless
severe overcrowding cause higher dealh rates). In any case, assumption (iii) is
very useful (see Liggett (1985), Chapter III, Section 2) and for most of our
results we will have to restrict our attention to an even smaller class of pro-
cesses which are Lhe discrete time analogues of the additive process of Harris

(1978) and Griffeath (1979).



These generalized percolation processes are constructed from a “graphical
representation”. Specifically, we make Z2 into a random graph in which the
oriented bond (x - y,n) + (x,n + 1) 1is open (resp. closed) with prohability
f(y) (resp. 1 - f(y)); bonds ending at different sites are independent; and
the system is translation invariant (so the joint distribution of bonds ending
al a given site is always the same).

To construct Lhe process from this graphical representation we let

A {y: there is a palh of open bonds from
&4

(x,0) to (y,n) for some x e A}.

The subscript and the superscript on £ indicate that il is Lhe state alL time

n when the initial state is A. To explain the name and the right hand side we
observe that gﬁ is the sel of wel sites at level n if we imagine there is a
source of fluid at (x,0) for each x € A and the fluid can travel only
through open bonds.

A few examples should help clarify the definitions.

Example 1: Oriented bond percolation. In this model f(y) =p if y ¢S

where S 1is a finite sel and all the bonds are independenily open or closed.
The name comes from Lhe fact that in the special case S = (0,1}, Eno is whatl
resulis when we take the usual oriented bond percolation process in 22, map
(x,y) + (x,x +y), and look at {z: (z,n) can be reached from (0,0)}. For

more on this see section 2 of NDurreit (1984),

Example 2. Oriented site percolation. In this model f(y) =p if y e S

where S is a finite set (like the last model) but this time either all the
bonds (x - y,n) + (x,n + 1) are open with probability p or all are closed
with probability 1 - p. Again the name comes from the faclt thal in the special
case S = [0,1},52 is what results if we consider the points in 2?2 (called
sites) to be the objects which are open or closed, define a path Lo be open if
il contains no closed sites, map (x,y) + (x,x +y), and look at {Z: (z,n) can

be reached from (0,0)}.



Examples 1 and 2 are exireme cases and a large number of examples can be
conslrucled by combining these Lwo. In Lhe nexl two examples we will consider
what happens when g depends on two or three values of gn(x +y) to try to
convince the reader that "many interesting examples but by no means all growth

models are g.p.p.".

Example 3: Two-site g.p.p. Consider systems in which

Pix e g 18 = alg (x +y)), £ (x +y,))

n
where Yy, *y, are in Z. [ claim that Lhis model is a g.p.p. if and only if
g(0,0) =0

9(0,1),9(1,0) < g(1,1) < g(0,1) + g(1,0).

To see this observe that if bonds b1 = (x - yl,n) + (x,n + 1) and

b2 = (x - yz,n) + (x,n + 1) have

b1 b2 with probability
open open a
open closed b
closed open o
closed closed 1 -a+b+¢)
then
g(l,1) =a+b +c

g(lio) =a+h

I
oy
+
(]

g(oxl) =

so Lhe conditions above are necessary and sufficient to have a,b,c >0

(a +b+c¢c =g(l,1) so the sum is automatically < 1).

Example 4. A simple class of 3 site g.p.p. If we look at the general model on
Lhree sites Lhen we get a bewildering number of condilions so to simplify things

we will only consider what we call sum rules



P(x e &, lg) = fle N o= Lxx + 1y

where |A| = the number of points in A, (= the sum of the coordinates

gn(x - 1) + gn(x) + gn(x + 1)). Calculations similar to those in the last

example show that these processes are g.p.p. if and only if

f3 =a+ 3 + 3
f2 =a+ 3 + 2
fp=a+2+c

for some a,b,c » 0 with a + 3b + 3c < 1. The last condition is automatic

since f3 <1, and for the first three to hold we musi have

b » 0: f2 - f1 > f3 - f2

a >0 (f -0)-2(f, - f)+ (fy - f,) > 0.
The inequalities above imply

0 < fl < f2 < f3

fl-05f,-f >f

(f, - 0) - 2(f2 - f

3

1 1)

in contrast to the conditions for two site sum rules:

0 < f1 < f2

fl-05>f,-f.

We leave it Lo the reader to find the general result (or see Harris (1978)).

In closing the discussion of the models we would like to note that although
we have arrived at our conditions from a desire Lo use the graphical represen-
tation, one can, after the fact, arqgue that the first two conditions, are not
Loo bad biologically: 1increasing the number of occupied sites should increase
the birth rate bhut each new individual should result in a smaller increase.

The third condition which says "the first difference is convex" is harder

Lo defend but it is satisfied for three site bond percolation (where



k
f = 1= (Y = p)), The numher of unpleaseant conditinns we have tn accept

increases with the range but it is comforting to note thal it is always an open set.

2., Basic Questions and Set Up

Having defined the models we want to study, the nexL thing to explain is
what we wani to prove about them. In the lasil section we menlioned the fact
that we think of the points in En as occupied by plants or animals so it is
natural to ask: Is P(gﬂ + ¢ for all n) > 0? (i.e. does the species have
positive probability of not dying out) and if the answer to the first question
is yes, "what does gz look like on a_ = {52 ¢ ¢ for all n)?"

Most of the rest of the paper is devoted to answering the last two
questions. We will not have much Lo say about the first but we will be able to
give a fairly complete answer to the second questiion for all "supercritical"
g.p.p. It will take a few minutes Lo explain what we mean hy the word in quota-
tion marks, so will postpone that for a moment and set the stage by describing
whal soris of answers we have for the examples described in the Tlast section.

In oriented bond percolation (example 1) the fraction of open honds increases to

1 as p does, so it is natural to let
p. = inf {p: P(gﬂ ¢ ¢ for all n) > 0}.

The first thing to be resolved is: "Is P. € (0,1)?" This question is

answered by

Proposition 1. Let |S| = the number of points in S.

w| o

If |S| »2 then -T%T <p. <

Proof. For the left side compare with a branching process. For the right see
e.g. Durrett (1984), Section 10.

Computing P, has turned out to be a difficult problem (see Durrett (1984),
Section 6) but somewhat surprisingly il is possible to prove results valid for all
P> P, without knowing what P is. This was done in Durrett (1984) for the

case S = (0,1} (or = {-1,1}) and will be done for general finite S below.



Having heard us say "“supercritical" above the reader has probably noticed
that the results above are only stated for p > Pe and no mention is made of
the critical case p = P Presumably P(Qm) =0 at p. SO the asymptotic
behavior of éﬁ is trivial there, but this has turned out to be highiy nontri-
vial to prove (and is an important open problem).

The situation for site percolation is the same as for bond percolation so
we Lurn oul attention now Lo Example 3: twc site models. Suppose for simpli-
city that {yl,yz} = {0,1} and we have a sum rule, i.e. g(1,0) = g(0,1) = Pys
g(1,1) = Py By resulis in Section 1 this process is a g.p.p. if and only if
Py <Py < 2p1 or, geometrically, (pl,pz) lies in the triangle with vertices

(0,0), (1,1) and (Y2,1) (see Figure 2.1).

FIGURE 2.1

The processes witlh Py = 1 and Py = p are easy to understand. In this
case if we draw a piclure (see Figure 2.2) then it is easy to check that (for

0 <p <1) we have
000?2111112000

0001111110000

1 with prob p

-
1]

-~
i

0 with prob 1-p.

Figure 2.2,



0 . 0 0 s )
(1) £ always equals (x: 2. S X < rn}, where 2 = inf En and

0 (o}
= Su .
rn P En

(2) r-is a random walk which moves x + x + 1 with probability

S O

p and x + x with probability 1 - p.

(3) gﬁ is a random walk which moves x + x with probability

p and x +x + 1 with probability 1 - p

and
(4) the increments rl. . -r® and 2., - ¢° are independent
n+l n n+l n
on {(,;?1 £ ¢}
. 0 _ 0 0
For (4) observe that if £, {(x} then {x € En+1} and {x + 1 ¢ 5n+1} are
. , 0 o _ 0 0 _
independent and these evenis are equal to {2n+1 - zn = ) and {rn+1 - 1y.

0 ) .
The case lgnl > 1 is easier.

Combining the last four observation we see that the number of particles

_ 0
Z, = (1 + n )

- zz)l
(&, #6)

is a random walk starting from 1 and run until it hits 0. The mean of r?

is p, the mean of zg is 1 -p,and p>1-p if and only if p > I, so

from the last three facts il is easy to see that Pe = o, i.e., if p < Y2 then

the increments in Zn have negative mean and P(gg ¢+ ¢ for all n) = 0. On

the other hand if p > Y2 then Eﬂi - Ei; = ¢ >0 and we have P(Qm) > 0.

For comparison with later results and an earlier conjecture, we would like

the reader to observe that

and if p > Pc then on @

n

o +p a.s.
f

o 1 -p a.S.
e, |




Having solved our problems when Py = 1 and Py =P it is natural to make
this a starting point for investigating the rest of the triangle (0,0), (1,1),

(12,1). Let

pl,c(e) = inf {p: Pp’e(nw) > 0}
where Pp 0 is the probabilily measure for the system with Py =P and
Py = 8. As o decreases from 1, Py C(e) increases (i.e. if 8, < 8,

pl’c(el) > pl,c(GZ)) al least as long as (pl’c(e),e) stays in the set
{(pl,pz): Py <Py} of attractive interactions. [Life below the diagonal will
be the subject of a later paper].

The models with p, = 6, p; = pl,c(e) are "critical" since they lie on the
boundary of {(pl,pz): P(nm) > 0} and we will have nothing Lo say aboul them
(except thal ihey presumably also have P(nm) = 0). We will however be able to
prove fairly complete results about the models which live strictly above the
critical curve (i.e. in the shaded region in Figure 2.1).

There is a similar but more complicated piclure (which we leave for the
reader to draw) for three site sum rules (example 4) or for the general case in
example 3. In each situation the parameter space is three dimensional, there is
a lwo dimensional critical surface, and we will be able Lo prove results about
the "supercritical" models in the interior of (p: P(Qw) > 0},

To prove results for these supercritical models it is convenient to embed
them in a one parameter family like site or bond percolation so we will assume
that (x - y,n) + (x,n + 1) 1is open with probability f(y,p). In order to
prove our resulls we will, of course, head to make some assumplions about
f(y,p) and (even though the first author failed to mention this in his talk)
also make assumplions about how the joint distributions change as p increases.

The first and mosiL obvious of these is
(H1) the joinlL distribution of the bonds (x - yi,n) + (x,n + 1) 1is stochasti-
cally increasing in p,

i.e., if p' < p then the two systems can be constructed on the same space in such

a way that if a bond is open in the p' system it is also open in the p system,



He will need a little more than this at two points helow: we will need Lo
know that the systems are strictly increasing in p. The technical assumptions
required will be obvious when we get there so we will introduce them as they are
needed. The reader can be assured that site and bond percoaltion and the models

above with Py = 8 and Py =P will always bhe included.

3. Edge Speeds Characterize Pee

The monotlonicitly assumption we just made allows us to define a critical

value
p, = infip: P{g‘; # ¢ for all n} > 0}
which has the property that

if p < P. Lthen P(nq) =0

if P> P, then P(nm) > 0.

The key to being able to prove results for all p > P. without knowing what

Pe is, is finding a way Lo characterize Pee The answer is hinted at in the
title of the section and described below. It, like everything else in this sec-
tion, is from Durrett (1980).

The first step in our analysis is to define the "right edge" by

ry = sup(gs-m’ol)

and embed n into a lwo parameler process by selting

Fon = sup{y: there 1is an open path from

(x,m) to (y + - n) for some x < rm}.

3

In words, r_ +r is the rightmost site we can reach at time n if we pre-

itend all the sites Lo the left of - are occupied at time m, so it is clear



that

r and is independent of r .
-m m

Combining the last two observations with some ideas from the proof of Kingman's

subadditive ergodic theorem one can show

(1) As n + = rn/n + o almost surely where
a = inf Erm/m.
m>1
For a proof see Durreti (1980), 893-836 or for a better proof see Liggett
(1985), Chapter VI, Section 2.

Looking al the last argumeni in Lthe mirror gives

(1") Let g, = inf{g&o’m)). As n + = zn/n + B almost surely

where B = sup Ezm/m.
m>1

From (1) and (1') il follows immedialely that we have

(2) if a < g tLlhen P(gﬁ # ¢ for all n) = 0.

("'°°,0]

N (recall that the graphical

Proof: Let r° = sup 50. Since 50 CE
n n n
representation defines the process simultaneously for all initial states) we
have rz <r and since rn/n + a it follows that
. )
1im sup rn/n < a.
N+
and looking in the mirror again we see
L 0
1im inf zn/n > B.

N >e

Combining the last two observalons it follows that if n 1is large then

0 0 0 . 0
su =r-° < = inf
P g, n tn 2

with high probabilily, but the only set A with sup A < inf A is the empty

sel (sup ¢ = -= < inf ¢ = +w) so the proof is complete.



Remark, Ry ohserving that

<r,+tr

N +...+r(

"kN N, 2n k-1)N,N
and that if o« > a and N is large the right hand side is a random walk wilh
drift < a. (and E exp(erN) <« for all 8> 0) it is easy Lo see Lhat if

a > a then there are constants C,y ¢ (0,») so ihat
P(rn »>an) < Ce” M

(see Durrett (1984), Scctlion 7 for details. We will need this facl in the next
section).
Having seen that « < B implies that the process dies oul il is natural to

ask if there is a converse. This is true but much harder Lo prove.

Theorem 1. If (H1)-(H3) are salisfied then

infip: alp) > R(p)}

=)
(]
i

supfp: a{p) < 8(p)}.

1

(Note: as we mentioned above we will have Lo make lwo technical assumptions to
make this a correct statemenl but we will introduce them as they are needed in
the proof. (H2) is given in the proof of (4) below, (H3) at the very end of
Section 4.)

The first slep in the proof of Theorem 1 is Lo prove the following fact
which is a generalization of an ohservation due to Tom Liggelt. (see Durrett

(1980), Lemma 4.1).
. P B B
(3) If B¢ {-1,-2,...} 1is an infinite sel and we lel rn = Sup £ then

BU {0} B
E(rn - rn) > 1,

The proof is Lhe same since all that it uses is the additivity property

AUB A R
Eﬂ B f*n v &‘n

of processes defined on graphical representations.



With this result in hand we can repeal Lhe proof of Lemma 4.2 of Durrett
(1980) to conclude that p + a(p) is strictly increasing. If we let
R = supf{y: f(y,p) > 0} and suppose
(H2) If f(y,p) > 0 for some p > 0 then

L(_h.g.).)(:)o,
ap
then what we obtain is
p+é Y '
(4) E(rn - rn) > Can.

Proof: Since Lhis resultl is differenl from the one given in the talk we will

supply a few details. As in Durrett (1980) if we let <t = inf{s > O:

+
P+ o

¢ rg} then using the Markov property and (3) we conclude

o= >P(rct)
but this time
P(r>n) < (1 - [f(R,p+s) - f(R,p)])"

since if the p + & process jumps by R and the other one doesn't the p + §
process gels ahead by 1. Dividing the interval [p,p+8] into M pieces, using
the inequalily above, and letting M » = gives (4). For more details see Nurrett
(1980), p. 901.

Looking in the mirror again we have

i pté _ ,p -
(4') E(g, g) < -Ceén

for the same constanl. If we combine the last resull with (4), let

p, = sup{p: al(p) < R(p)}, and let n » = we get
(5) if p>p, then alp) - g(p) >C(p -p ) >0.
The last result implies

sup{p: af{p) < 0} = inf{p: alp) > 0}



so the "only" thinq that remains is tn show that if qfp) > g(p) then
P(gz # ¢ for all n) > 0.

In Durrett (1980) this was done for Example 3 by using a coupling result

which is a special feature of thal case:
(6) if g =inf g ) and r, = sup Es_w’o] then

on {g <r for all m < n}

0 Z
£ Enﬂ [zn,rn]

o _ 0 _ )
and consequently Ly = % Ty STy By * 0

NOTE: tLhis coupling property is NOT true in the three site case. See Durrett
(1980), Section 6 for a discussion or draw a random pictlure.

With (6) il was easy to prove whal we wanted to (see Durrett (1980) for
details) but until recently it was not clear how Lo do without (6). A large
part of the solution it turns out was in Durrett and Griffeath (1983) so we turn

to describing those results now.
4. A Renormalized Bond Construction

To almost quote Durrett (1984), p. 1023. "In this section we will intro-
duce a construction which will allow us Lo reduce questions about supercritical
finite range g.p.p. to corresponding questiions aboul a k-dependent nearest
neighbor site percolation process with p arbitrarily close to 1." The arqu-
ment given here like the last quole is a simple modification of the corresponding
thing in Durrett (1984) so we will start by describing the argument in that spe-
cial case: oriented bhond percolation S = {-1,1}; and then describe the changes
which are necessary for finite range g.p.p.

The first thing to do is to define the site percolation process and its
relationship to the original process. Let oiy be the graph with vertices
V= {(m,n) ¢ 22 m+n is even, n » 0} and oriented bonds connecting each
(myn) eV to (m+ 1l,n +1) and to (m - 1,n + 1). Stealing a term from the

physics literature we call ‘J? the renormalized latitice. To explain .the name



(and the idea behind the construction) the reader should imagine .f mapped
into the upper half plane R x [0,») by ¢(x,y) = (aLx,Ly) where a is a spe-
cial constant and L is a large number to be chosen below.

We will define the site (m,n) in V Lo be open if a "good eventi" happens
in the graphical representation near Zin € R x [0,o) and we will do this in

such a way that

(i) the random variables n(v) v e V which indicate whether the
sites are open or not are k-dependent (i.e. if the distance
from x Lo y on the graph >k tLhey are independent).

(i) if L is large the probability n(v) =1 is close to 1,
(i11) if percolation occurs starting from 0 on the renormalized
lattice then it does starting from some poini near 20,0 in

the original percolation process.

It is by now well known that (i) and (ii) imply that if L 1is large then the
probability of percolation is positive (for more on this see Durrett (1984),
Seclion 10) so once {i)-(iii) are demonstrated we can conclude that if

alp) > g(p) then P(g0 # ¢ for all n) > 0 completing Lhe proof of Theorem 1

n
in Section 2. We will see helow thal the construction can be used to prove a
number of other things about percolalion processes so if the reader gets bored

or confused by the details of the construction, he/she/il should skip ahead to the
nexl two seclLions to see part of what it is good for: the complete convergence

theorem and the strong law for 52.

Details of the construction (oriented percolation S = {-1,1}).

We begin by describing the fundamental building blocks: tLhe renormalized
bonds which appear in the Litle of the section. Let A be the parallelogram
with vertices (-2¢L,0), (2eL,0), ((a-2¢)L,L), and ((a + 2¢)L,L). From (1) in
Section 3 we know that r /L +a as L » =, soif §>0 and L >L (&) then

P(r, € ({a - e)by(a + €)L)) »1 - 5

L



Whan O ({a - e)l,{a+ )L)), we know that there is a path from (-«,07 x {0y
to ((a - €)L,(a+ e)L) x {L} but it might look like the dotied line in Figure

4.1. Our next task is Lo show thal it looks like the solid line. j.e. il stays

(O(’E)L (O("’e‘)l_

2¢L O 2¢L
FIGURE 4.1I.

in the parallelogram. To prove that it doesn't hit the right side we observe

that if N 1is large ErN < (a + e)N and

Py STyt 0

N N’ZN + LK + r(

kN k-1)N,kN

with the right hand side being a random walk, so Lhe simple argument we used in

Lhe last section shows thal there are constants C,y e (0,®) such that
(1) P(r_ > (a + e)m) < Ce” ™

Now if R = sup{y: f(y,p) > 0}y (which is independent of p > 0 by (H2)) the

right edge can increase by at most R per jump so



P(r_ exits right side of A) < Y P(r_> (a+ e)m)
m m=2¢l/R

<ce T

(where C,y e (0,®) are new constants and will continue to change as we go
along.)

To estimate the probability thal the path escapes from the left side of the
box we use an observation due Lo Larry Gray which allows us to turn our upper
bound into a lower bound. Lel o,

((a - €)Ly(a + €)L) x {L} 1in the graphical representation used to construct the

0 ¢t <L be apath from (-»,0] x {0} to

g.p.p. Let M= sup{m:(om,m) € Ay Llarry's simple but useful insight is (see

Figure 4.1 again) thatl the line from (go,,M) Lo (aL,L) has slope > (a + ¢)
so if M =m then the right edge of the process starting from (-w,-2¢L + am]
al time m must be > (a + €)(L - m) at time L and summing the esiimate in

(1) we conclude that
P(o exits left side of A) < Ce W

Comhining the lasl three esitimates shows that if ¢ > 0 and L » Ll(ﬁ)
Lhen with prohbability > 1 - 3§ there is a path lying in A. These evenls are
the raw material for ihe construction that follows. The nexit step in carrying
it out is to associate the sites in the renormalized lattice with transiates of
A in the percolation structure.

Drawing a picture (see Figure 4.2) motivates letlting

Zm,n = ((a - 4¢)m,n) (m,n) e v

be Lhe points of Lhe renormalized lattice, defining translates of A by

A = (z + (-4¢lL,0)) + A

B = (z + (4¢L,0)) - A

(where x - A = {x -y:y ¢ A} elc.) and declaring that the site (m,n) is

open if there are paths in Am,n and in Bm,n’



LL.

|
6el -2:L 0 2el. &L

FIGURE 4.2.

From the definition it is clear that we have property (i) and the arguments
above show that (ii) holds. To check (iii) we observe that in the case under
consideration paths cannot "jump over each other" so the arrangement of the
A and Bm n guarantees that if say (m - 1,n - 1) and (m,n) are open

m,n .
then there is a path from Zm-l,n—l + (~6¢b,-2¢l) Lo Zo41,n+1 + (2¢l,6¢el)

and to Z0 1 o+l + (-6el,-2¢l) (see Figure 4.3). From this it follows easily
that (iii) holds. (for more details consult Durrett (1984). p. 1025).
: Y
N Y
P
~ /s
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FIGURE 4.3.



Details of the construction (finite range g.p.p)

The last argument does nol work outside the case S = {-1,1} (or

S = {0,1}) because paths which cross do nol need to intersect bul (here finally
is our new idea) paihs which cross will intersect with probability » n > 0 so
if we use a zillion little paths to try to connect two of the (long) paths used
in Lthe constlruction then there will be a success with high probability. As the
reader can probably guess carrying out this idea requires a little ingenuity and
a large number of unpleasant details. To keep things as simple as possihle we
will first give the details for oriented bond percolation with S = (x: |x| < R}

and then treat the general case.

The first step in the argument is to make the tubes smaller. Let A' be
the left half of A, i.e. the parallelogram with vertices (-2¢L,0), (0,0),

((a - 2¢)L,L) and (aL,L). We keep the renormalized lattice the same

Zm n = ((a - 4¢)Lm,Ln) (m,n) eV

define translates of A' as before by

A' = (z n ¥ (-4¢L,0)) + A

o}
L]
—
N

)+ (ael,00) - A,

Thinning the tubes creates space near each point of the renormalized lat-
Ltice (see Figure 4.4) and into this space which has width 4¢l we put [4/¢]
tubes of width ¢2L and Tength 2L in the manner indicated in the picture and
then (for reasons that will hecome clear in a minute) we remove every other one.
Paths in the new smaller tubes will be used to connecl the paths in the four

targe Lubes.
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Tying paths together is delicate because of "conditioning problems" - i.e.

picking a path by some algorithm makes the conditional distribution of bonds
near the chosen path different from the original one. To avoid difficulties of
this type we "save a liltle randomness Lo make conneclions at the end." To he

precise:

(a) We pick p' <p with a(p') > 0 (and observe that in the proof of
Pe €SP, - which is what we're doing now! - this can be done without loss of

generalily.)

(b) Construct the processes with parameters p and p on the same space by
assigning independent uniformly distributed random variables U(b) Lo each bhond
b = (x-y,n) + (x,n+l) where |y| <R and declaring b to be open for the p'

(resp. p) system if U(b) < p' (resp. U(b) < p).

(c) Do the renormalized bond construction for the p' system (with the
corresponding a(p') > 0) and call one of the large or small lubes in the
construction good if it has a path in the p' npercolation structure from one end

to the other which stays in the tube.



Since all the paths in the litile tubes must pass within R of a path in
the large tube and the number of litile tubes is large then it is clear that if
e 1is small then the situalion drawn in Figure 4.5 will occur with high probabi-

1ity i.e. there are paths in the small tubes which intersect and intersect the

paths in the four large tubes.

FIGURE 4.5,

To prove this we pick for each tube which was called good in (c), a path in
the p' percolation structure‘with the desired properiies and for ease of
reference later, we will say thal these paths are drawn in blue. Now each pair
of blue paths o,t that we want io connect must come within a distance R of
each other at some point, i.e. there are integers x,y and n with o, = X%
T4 =Y and |x - y| <R.

Now if we condition on the value of U(b) A p' for all the bonds b then
there is still probabilty > (p - p')/(1 - p') > 0 that U((x,n) +
(yon + 1)) < p and hence open in the p percolation structure. Nheﬁ present
the "green bond" (x,n) + (y,n+l) (its color intended to signify its uncon-
ditioned state) allows us to connect the blue paths. Since we have arranged for
there to be lots of little tubes and we have separated them by removing every

other one Lo make the connection evenls independent, it follows that if & is

small and L s large then all the desired connections happen with high probability.



Riven the arqument. for oriented percolation on S = {-1,1} the denouement
should be clear at this point. We declare a site in the renormalized lattice Lo
be open if there are paths in the four large tubes near il and the green hond
construction above succeeds in connecting them as indicated in Figure 4.5. From
the definition it is clear that we have property (i) listed in the first version
of the proof and the argumenis above show that (ii) holds. To check (iii)
observe that above we have been careful to choose one path in each large tube
and then connect these paths so, having worked harder to get here, the last step
is now trivial,

With (i)-(iii) verified the rest follows as before and we have completed
the proof for oriented bond percolation with S = {x: [x| <R}. In tackling the
general g.p.p the first (trivial) extension to be considered is what happens for
other oriented percolation processes, e.g. hond percolation process with
S =1{12,3,4), S = {-2,2}, S = {-51,50},... 1In the first case mentioned we just

need to slant the construction: if (m,n) ¢V and ¢ =n - m then

Zon = (n - 2)(a - 4¢) + 2(B - 4¢)

(for more details in the nearest neighbor case see Schonmann (1986)). In the
second case (like S= {-1,1}) restricting to a sublattice gives a problem to
which the results for solid intervals can be applied. Last but not least when S
is not a solid interval but the group it generates is all of Z, a finite number
of jterates allow us Lo reach all points in an interval and blah, blah, blah.

The generalization mentioned in the lasi paragraph are, like the extension
of Markov Chain results from the case of a positivé matrix to that of an irreducible,
one, routine although somewhat tedious and hence are lefl as an exercise for
an energetic reader. We turn now to the lasl important item of business:
proving the result for a general g.p.p. Having discussed the asymmetric and
non-interval cases above we will assume that model is symmetric and f(y,p) > 0
if and only if |y| <R.

Looking back at the proof now it is clear Lhat special properties of

oriented bond percolation were only used in the (p',p) property of the



consiruction above and for this tLhe important poini was

(H3). If we condition on the state of all bonds in the p'-system then for any x,n
and |y| <R there is always conditional probability > s(p,p') > 0 that

(x - y,n) » (x,n + 1) 1is open.

This is our last hypothesis that "the models increase sirictly with p and with

it made it is trivial Lo complete the proof.

5. The Complete Convergence Theorem

In this section we will prove a result which allows us Lo determine the
limiting distribution of gﬁ for any A when p > Pee The first step in doing
Lhis is to describe Lhe process which appears in Lhe timit theorem.

Lel, E; be the process generated by the graphical representation in which
the oriented bond (x,n) + (x - y,n + 1) 1is open (closed) with probability
f(y) (resp. 1 - f(y)); bonds beginning at different sites are independent; and
the joint distribution of the bonds (x,n) » (x - y,n + 1) y ¢ Z 1is the same
as that of (x - y,n - 1) » (x,n) in £, Comparing the last paragraph with
Lthe definition in Secltion 1 il should be clear thal the new graphical represen-
tation can be oblained by reversing time (and ihe direction of the arrows) in

the old one and a litile more thought leads us Lo the following important

conclusion
A ~B
(1) P(e,1 B #¢) = P(AN & # o).

Proof: From the definition of gﬁ we see that {gﬁ N B # ¢} = {there is an
open path from (x,0) to (y,n) for some x e A,y ¢ B and from the discussion
above we see thal the right hand side is equal to the probability of a path down
from (y,n) to (x,0) in the same percolation structure.

Taking A = Z in (1) we see that P(¢£ () B # ¢) = P(E> % ¢) which
B

decreases Lo a limilt as n + = (since ¢ 1is an absorbing set for En

inclusion-exclusion formula allows us Lo write all probabilities of the form

Y. The

PE (X)) = Tpaeee £20%) = 1)



where {xl,...,xk} €7 and 11,...,1k e {0,1} in terms of P(gﬁ{) R =¢) so it

follows that we have

(2) As n » = gi => 1o a limit gi,

where => denotes weak convergence of probability measures on {O,I}Z (which
in this setting is = convergence of finite dimensional distributions).

Having defined the 1imit we can now stale our convergence result

Theorem 2. If a{p) > 0 > g(p) then as n + =

g = s <) v g = ),

where rA = inf{m » O: qﬁ = ¢} ,
6¢ = the point mass on the emply set ¢ ,

and we use gi to denote the 1imit distribution starting from gg = 7.

The first part of the right hand side is easy Lo see: on {TA < »} we
have gﬁ = ¢ for n > rA. The second part is much harder Lo prove: il says
that if 52 does not die out (i.e. TA = ») and n is large then gﬁ looks
like gﬁ with high probability on any (fixed) finite set. (We will prove a
sharper version of this in the next section).

An immediate consequence of Theorem 2 is that all stationary distributions

have the form 66¢ + (1 - e)gi for some o e [0,1]. When confronted with the

last observation the reader should ask: is gi # 6¢ for p > pc? The densily

of particles in gi can be read off from the duality equation (1):

P(x e &) = P() # 6 for all n).
so if we let
p_ = inf(p: EZ # 6.}
e I ¢

(where e 1is equilibrium) then it is clear thal we have

-~ s . py 0
Po P = inf {p: P(gn # ¢ for all n) > 03,



~

p. =p." 7 The answer as we will see in the proof is:
c c

and the question becomes
Yes.

. . . . s A ~B
The first step in proving Theorem 2 is to observe that if £y and Et

are independent
A _ A B
(3) Pey /1B # ) = P(e ) £ # 0.

(Lthe first event being Lhe probability of a path from (x,0) to (y,2t) for

{there are x ¢ A, y e B, and z ¢ Z so

some X e A, y ¢ B while the second

that  (x,0) + (z,t) » (y,2t)}.) Now
PR B 2 4) =P(eh s oo Bag) -Pleh ¢ 0. 2 0,8 NE = 4)

and the first term = P(zﬁ # ¢)P(E$ # ¢) which converges to

P(rA = m)P(gif]B # ¢) as L » = so to prove the theorem it suffices to show

A 8 AR
(4) P(E, * 6:6 * ¢:E N E = ¢) » 0.

The proof of (4) requires one new bit of inspiration (followed by quite a
bit of perspiration) so we will starl by stating the new idea: "when Lhe renor-
malized bond construction works it produces poinls al a positive densily of
sites between the lefi and right edges so if g(p) < 0 < a{p) and the time is
large t then EQ and ?E will intersect with high probability (if both are
nonempty)."

With this idea in mind Lihe resL is rouline following the proof of similar
results in NDurrett (1984) so we will jusl give an oulline.

The sentences in quotiation marks below were the ones I said during my talk.
In between them I have tried to supply enough details so that the reader (with
the help of the paper cited above) can fill in the rest. As in the last seclion
the summary becomes tedious or confusing Lhe reader can safely skip to the
beginning of the next section where we will start Lo consider |gz| = Lhe numher of

occupied sites at time n.



1. "After a geomelric number of trials either (a) 52 = ¢ or (b) the
renormalized bond construction works and on the renormalized latllice FA domi -
n

naltes oriented percolation with p close to 1.,"

The proof is a "restari argument" following Durrett (1980), 903-904 and/or
Durrett (1984), 1031-1032. The proof is based on a simple idea: "if al first
you don't succeed try, iry again" but requires a depressing number of defini-
tions to carry out,.

Let x, = sup A, If M > 6eL and we are very lucky then (i)

0

0
[-6eL + x0,6eL + xo] c g; and (ii) we gel a path Lo = on the renormalized
lattice when we Lry the renormalized bond consiruction iranslated hy X These
are the two things we dream abhout and they have positive probahility of hap-
pening on the first tiry.

When they don't then we have to go to work: if (i) does not occur and
ga = ¢ Llhen we are happy since all we have to do is show that things are OK
when gﬁ # ¢. If (i) does not occur and ga £ ¢ we let xi

= sup ga and look
(x4,
1

M)
(2M) where the

M units of Lime later to see if [-6¢lL + x1,6eL + xl] cE
superscript indicates we are looking at the process starting from {xl} at time
M. Each time we repeal the lasi step we have a positive probability of success
so after a geometric number of failures we get to try the renormalized bond
construction.

As the reader has probably already anticipalted the renormalized hond
construction may fail but if il does we try again: we wait until the process on
the renormalized lallice dies out (and then wait 1.1L units of time more for
"good luck", i.e. so that the death of the construction does not adversely

effect the future development of the graphical representalion) and then start

again to look for an interval of length 12¢L to iry the construction again.

2. "alp) = g(p) and B(p) = a(p) so the same construction can be used on

the dual." As observed on p. 9 of Durrett and Griffeath (1983)



P(there is a path from (-«,0] x {0} to [k,«) x {m})

o
—
-
v
=
~—
]

P(there is a dual path from [k,«) x m} 1o (-%,07 x {0})

P(there is a dual path from [0,®) x {m} to (-w»,-k] x {0})

P(Eﬁ < -k).

Hn o

The last identity shows i -E& from which it follows immediately that

B(p) = alp). From this the rest of the statement in quotes follows immediately

~

and using results from Section 4 shows Pe = P,

3. "When the renormalized bond consiruclion works for the process and its

dual then gﬁ and Eg intersect with high probability."

In this case a picture is worth (and probably replaces) a thousand words.
(see Figure 5.1). The squiggly line above A and below B indicates that with
high probability we have to wait at most 100 years (i.e. a time independent of t)
before the renormalized bond constructfon works and the rest of the picture is
meant to suggeslt that when it does then the process on the renormalized lattice
dominates (k-dependent) oriented site percolation with p close to 1. Results
of Section 10-11 of Durrett (1984) show that if the probabilty of a site being
open is close to 1 then Lhe set of occupied sites for oriented percolation on
the renormalized lattice

1:‘(m infl Pl/k »1 -6 on Wfy +¢ forall &}
> o

almost surely. Since‘Jf E € {Kyeeurk) fills up a f}action (1-8) of the
available space. The last observation implies that if we pick & much smaller than

A B

the minimum of o« and g, and £ and

g, are #¢ then there will be a
large number of pairs (x.,y;) with x. ¢ EQ, Y; € E% and fxi - yii <L and

running things for 2L more units of time we conclude

A ~8

A
Ple, * ¢ € * ¢ Enn?;=¢)+0

n n
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6. Limit Laws for gg

In this section we will take a closer look at the behavior of the system
starting from a single particle at 0. The firsil step is to state a result

which follows from the construction in the lasi section.

(1) If >0 then there are constants C,y ¢ (0,«) so that if

(B+ e)n <x < (a - €)n then

P(sz * ¢, sz(X) # Eﬁ(x)) <ce” M,

Proof: As enunciated on p. 1031 of Durrett (1984) the proof is based on two simple

ideas.

(i) If you have a sequence of independent evenis with probability p then K,

then the number of failures before the firsl success has P(K =n)} = p(1 - p)n

n=20,1,2,... and

(ii) If Xi is a sequence of independent random variables witlh

P(X,

;2 m) <c exp(-Yh) so that (Xl,...,Xk) is independent of {K = k} then

P(X, + ... + Xk >m) <C' exp(-y'm).



where C',y' are new constants e (0,=). To use these ideas to prove (1) you
have to check that when the renormalized bond construction fails it only lastis
an amount of time T with P(T » 1) <C exp(-yt) but this is true, see Durrett
(1984), p. 1031-1032,

From (1) it follows immediately that we have

u

(2) For any ¢ > 0, on Q_ {aﬁ # ¢ for all n} we have

£ D8+ en,(a- 1N Z

{x: sﬂ(X)

for all n sufficienlly large. With the coupling resull ((6) in section 3)

recaptured one can repeat arguments from Seclion 13 of Durrett (1984) now Lo show
Theorem 3. On a_ we have
|g?]|/n + (a - B) almost surely as n + =,

where p = P(z ¢ éi) and a, B are lhe by now familiar limits of rn/n, nn/n.
The Tast result has a simple explanation: +tLhe distance between the left
and right particles is ~(a - g)n and this interval is filled with particles at

densily »p.
7. Results for d > 1

Last but not least we come to the original motivation for doing this paper:
Lo improve what is known in higher dimensions. We begin by "recalling" the
results proved by Durrett and Griffeath (1982). We have pul the word recalling
in quotation marks because Lhose results were proved for a class of models in
continuous time (called permanent one-sided growlh processes there) and we will
have Lo ask the reader to believe thal the analogous results are true in

discrete time. First some notation:

- 0 _ iy . .
W, = U g, = sites hit by time n

K = {x: go(x) = gﬁ(x)} = sites coupled atl time n.



Far a varietv of reasons it is convenient to enlarge the last two sels hy

replacing each point x by a cube of side 1 centered aL that point:

H:'U X+[-%,%’-‘
n
x ¢H
n
K = x + [- .
n U 5 5 ]
xeKn

(the notation is meant Lo suggesl closure).

With this notation introduced we are now (almosi) ready to state the result
of Durrett and Griffeath (1982). For simplicily and concreteness we will
restrict our attention to oriented bond percolation in 23 1.e. the process
defined from the percolation siructure in which all bonds are independent and

(x,n) + (x +y,n +1) is open with probabilty p if (and only if) |y| = 1.

(1) Suppose p 1is large enough so that the process restricted to Z x {0} has
positive probability of survival for all time. There is a (non random) convex

set U so that on a_ -~ {52 # ¢ for all n} we have

%—(Tﬁ;{] F;;) + U a.s. on @

as n + = i,e. forany e€>0 and w e @

@

(1-¢)nlU € (Fl'r“nY;) € (1 + ¢)nl!

for all n sufficiently large.
Roughly speaking (1) says that 52 looks like gi[ﬁ nU on o_ or even
rougher it is a "blob in equilibrium" in the terminology of Durrett and

Griffealh (1982). The statement of (1) is made contorted by the fact that

Kn':){x: gn(x) 01 for trivial reasons so we have to intersecl with Hn to
get Lhe interesting part. The sirenglth of Lhis is the fact that the theorem
says "almost everywhere we have hil we are in equilibrium" and has as a con-

sequence the complete convergence theorem



(2) For any A, as n » =

A A

A < q5¢+ P(t = Qgi

e P(r

E

So much for the virtues of (1). Its shorlcoming is obvious: the result is
only for p > pC(Z) the critical value for the process on Z and not for
p > pC(ZZ). The next result, our laslt theorem improves this bul does not yet
complete the story. Letl pt hbe the critical value for oriented percolation in
7% « {-L,ee.,L}. It is easy Lo see that as L + = pt decreases Lo a limit we
call p: and it is natural (if somewhatl optimistic) to conjecture that
p: = pC(Zs). In any case the next result improves on (1) but is not the last

word. The reader should note that the complete convergence theorem is again a

consequence.

Theorem 4. If p > p: then there is a nonrandom convex set U so that on

Q= {éz ¢ ¢ for all n } we have

1 -
'ﬁ- (ﬁ—nnK;) + U a.s.

This result can be proved by using an abstract theorem (see Durrett and
Griffeath (1982), p. 529) which was designed five years ago for the application
we are making today: all we have to do is check thal the three conditions of
the theorem hold and then Theorem 3 follows. If we let < = inf{n: gﬁ = ¢} then

what we need to show is that there are constants §,C,v ¢ (0,=) so that

(a) Pn < 1< ) <Ce™ M
(b) P(x e Hn,T = w) <Ce M if Ix] < &
(c) Px e K ,17w) < ce™  if |x] < &

Checking (a), (b), and (c) is neither trivial nor pleasant hut following
Lthe argument on p. 545-550 in Durrett and Griffeath (1982) and using the renor-
malized bond construction one can do this. Details of the proof of this will be

the subject of a future publication.
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