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ON THE UNBOUNDEDNESS OF MARTINGALE TRANSFORMS

R. Durrett, UCLA

The starting point for our investigation is an observation of Stein and Weiss

(1959) or more precisely Davis’ (1973) proof of this fact. To state their results

and explain our motivation, we will need a number of definitions:

Let Bt be a two dimensional Brownian motion.

Let D = {z: ~ I  1}

Let T = inf{t: D}

Let E c aD and let u(x) = Px(BT E E).

Finally let v(x) be the "harmonic conjugate" of u: i.e. the unique function

with v(0) = 0 which makes u + iv an analytic function.

The function u is an object which has been much studied by probabilists (see

e.g. Port and Stone (1978), F. Knight (1981), or Chung (1982)) and it is well known

that u is harmonic in D and

(1) lim u(Bt) = 1E(B) a.s.

t~’T 
" ’’ ~

Stein and Weiss’ result shows that u’s harmonic conjugate is also special.

(2) lim v(Bt) exists a.s. and furthermore the distribution of the limit
ttT 

depends only on E E).

Stein and Weiss proved (2) by supposing E was a finite union of intervals

and then patiently finding the places where > y. See pp. 273-274. In

(1973) Davis gave the following proof of their result which makes the conclusion
obvious.

Proof of (2). Ito’s formula implies that if t  T

u(Bt) = 

t0 
~u(Bs) . dBs

v(Bt) = t0 ~v(Bs). dBs

and the Cauchy Riemann equations:

~v ~x = - ~u ~y ~v ~y = ~u ~x
imply vu. vv = 0 and I so it follows from Levy’s theorem (see Meyer
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(1976), or Durrett (1984), Section 2.11) that (u(Bt),v(Bt))t  T is a time change
of a Brownian motion B run for a random amount of time u  a.

To prove (2) we will show that o = T = inf {u: (0,1)}. If we discard

the trivial cases PO(BT E E) = 0 or 1 then 0  u(x)  1 for x E D and hence

u(Bt) E (0,1) for t  T so Q > T. (1) shows we cannot have a > T so we must

have a = T.

To motivate our generalization we begin by redescribing the relationship be-
tween u and v. It is well known (see Meyer (1976) or Durrett (1984), Section

2.14) that

(3) If X E t ~ 0) has EX = 0 and EX2 then

x = ~0 Hs .dBs
where

EX2 = ~H ~2 ds.
0 

s

Let A be a d x d matrix. Since

E ~ |AHs|2 ds ~ E ~ C|Hs|s ds = CEX2  ~
0 

s~ _ 

0 
~ s~

the Burkholder Gundy inequalities (see Meyer (1976) or Durrett (1984), Section 6.3)

imply that 0 t AH . dB s is an L2 bounded martingale so we can define a new ran-

dom variable by setting

A * X = ~0 AHs . dBs

(see Durrett (1984), Section 6.6 for more details).
A * X is called a martingale transform. If d = 2 and we let A = ‘1 a ~1 ~ 0 ’

X = 1(B EE) then using the notation introduced in the proof of (2) the Cauchy

RiemannTequations can be written as vv = Avu, and it follows that A * X = v(B T ).
With conjugation identified as a martingale transform, it becomes natural to

ask when (2) holds for martingale transforms. Tracing back through the proof of (2)

gives the following result:

(4) Suppose A satisfies (a) y.Ay = 0 and (b) ~Ay~ I for all y E R d
then the distribution of A * 1B depends only on P(B).

Unfortunately matrices which satisfy both (a) and (b) are rare. There are

none if d is odd because such matrices must have a real eigenvector and yet

(a) ~ there is no nonzero real eigenvalue
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(b) ~ A is invertible » 0 is not an eigenvalue.

In even dimensions the situation is somewhat better but not much. It is easy to see

that there are examples

/ 0 1 0 0 B

(5) () ,
and it is also easy to see that these are the only ones.

(6) Any matrix satisfying (4) can after a change of basis be written in the form

given in (5).

Proof. Let x have norm 1 and let y = Ax. (a) and (b) imply x .y = 0 and

1. Using (a) twice more gives

0 = (x + y) ’ A(x + y) = y . Ax + x . Ay

so

x . Ay = -y . y = -1

and since (Ay~ - Iyl = 1 it follows that Ay = -x.

The last result shows that the behavior observed by Stein and Weiss is very rare

among martingale transforms and in fact distinguishes ".conjugation" and its general i-
zations to R2n (the Hilbert transforms of Varopoulos (1980)) from the other

martingale transforms. Faced with this situation, if we want to prove something
for more general matrices we have to settle for something less than the conclusion

of (4). The next result shows that we can weaken the condition on the matrices

quite a bit without sacrificing too much in the conclusion,

(7) If A has no real eigenvalue then there are C and y which depend on A

and P(B) so that P ( sup I (A * > y) ~ Ce-YY

Before proving this we would like to make two remarks which explain the
condition and the conclusion.

1. The result is false if A has a real eigenvalue for if v Rd is an

associated real eigenvector and we

t
let Yt = ~ + / 0 v . dBs
let a = inf {t: Yt ~ (0,1) }

and let Xt = Yt~~
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then X~ = 1(Y - 1) but

(A * X) = 

03C30 

Av . dBs

= 03BB 03C30 v . dBs = 03BB(Y03C3 - Y0)

so A * X is bounded.

2. Well known formulas for Brownian motion show that when A = B 
1 ) the

left hand side of (7) is (here C,y (o,~) are constants whose values may

change from line to line) and the John Nirenberg inequality (see Meyer (1976) or
Durrett (1984), Section 7.6) implies that for any matrix A .

P ( sup I(A * > y)  
t 

" "

where C,y depend only on A and P(B) so we cannot hope for a better lower
bound.

Proof of (7). Let X = 1B, Xt = E(X~ ~ t~. We will prove (7) by showing that

although may not be a time change of Brownian motion, there is a

part of A * X which is independent of X and which is a time change of a Brownian

mition run for an amount of time > eT where T is the time defined in the proof
of (2).

To isolate the part of A * X we want, we introduce the following orthogonal

decomposition of Ax

Ax = C(x)x + F(x)

where C(x) is a number and F(x) E Rd has

F(x) . x + 0.

It is easy to see that the last two equations specify C(x) and F(x) and we have

~F(x)~  . To prove (7) we need a bound in the other direction. To do this we

observe that if A has no real eigenvalues then F(x) f 0 for all x ~ 0 and

scaling implies that for y ~ 0

I
so we have

(8) inf = inf ~F(z)~ I > 0.

y~0 yl 

With (8) established our next step is to decompose (A * X)t. If
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~ 
~ 

= j 
0 

t 

~~ ~ ~~

then

(A * X) = /(AH~) . dB
so we let

~t = ’o t 
Z~ * / t dB~.

0

The formula for the covariance of two stochastic integrals (see Meyer (1976) or

Durrett (1984) Chapter 2) implies

= ~0 
t 

~~ ~~ = ~

and (8) tell s us that

~~~~~ :: = ~0~ ~~

~ ~~~~~t
At this point we have found the part of A * X we referred to at the beginning of
the proof. The next step is to show Z has the desired properties. To do this we

let

Yu> = inf it: > ui for u  

and define

~q 
u 

= { Z Y ( U ) 
U  

Wu = {
Where B iS a one dimensional Brownian motion which is independent of the d-dimen-
sional Brownian motion B. Ue have added I after the end of Z so that the

foll owing hol ds.

(9) U iS a Brownian motion Which iS independent of t n 0).
Proof. This is a consequence of a theorem of F. Knight (1971) but the proof

is short so we will prove it. It ,is easy to check that u u u - > o is a local

martingale and U 
u 

> u (for more details see Meyer (1976) ’ or Durrett (1984)
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Section 2.11) so it follows from Lévy’s characterization that Wu is a Brownian

motion. To check the independence

let U = fs dXs

and let V = 

be stochastic integrals with

ds  ~

and gs 
= 0 for Unscrambling the definitions we see that

fs dXs = (fsHs) . dBs
and

As dWs = As dZy(s)
= dZt

= dBs,

so it follows from the formula for the covariance of two stochastic integrals that

EUV = E F(Hs) ds = 0.

It is trivial that we have EUV = 0 if gs 
= 0 for s  so the last

equality holds for any f,g which satisfy (*) and hence for any V E 

t > 0)) and V E L (~(Wu: u > 0)) which proves (9).
With (9) established the rest is simple but requires a little trickery. Zt

is a time change of W u u  and by (8) tZ?~ - > E2~Xf~ , , so we have

sup sup 
t 

where E 6(Xt: t ~ 0) is independent of W. To get a lower bound on

sup i(A * [ find the first point u~ ~ where the sup on the right

occurs. If we let y(uO) (which is finite since then

(A * X)t0 = Yt0 + Z03B3(u0).
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At this point we could get unlucky and Y could cancel but the sign of

x 
is independent of the sign of Y to so at least 2 of the time Y to will

make I(A * }) and it follows that

P(|(A * X)t0| > y} ~ ½P( sup |Wu | > y)
o 

2014 

~ ~ X~ 
U

To compute the quantity on the right hand side and complete the proof of (8) we
observe that since X ~ is independent of Wu

sup I d = e sup ]
u~~2(X)~ u~X> ~

and the distribution of the right hand side is given in Remark 2.

Having proved (7) for one matrix, it is natural, especially if you have heard
of Janson’s (1977) theorem (see e.g. Durrett (1984), Section 6.7.), to ask what

happens if we have a family of matrices without a common real eigenvector. The

answer is just what you should expect:

(10) If AI, ..., A are matrices without a common real eigenvector then there
are constants C and y which only depend on P(B) (and the matrices) so

that

P(sup sup |(Ai * 1B)t| y) ~ Ce-03B3y

Since this is a rather straightforward generalization of (7) we will explain
why we want to prove this before we describe how to do it. In our discussion of

(4) above we observed that if d is odd then A must have a real eigenvector, so
the hypothesis of (7) cannot be satisfied in this case. With the matrices of (5)
in mind you might realize that in the first nontrivial case (d = 3) it is easy to

write down two matrices which have no common real eigenvector

0 1 0 B / 0 0 1 B

-1 0 0 A2 = 0 0 0

0 0 0 -1 0 0
Congratulations, you have just (re)discovered the Riesz transforms. Gundy and
Varopolous (1979) (and later by a different method Gundy and Silverstein (1982))
have shown that if we define a process Wt -co  t  0 in H = Rn x which
is a Brownian motion which "starts at time -co from Lebesgue measure on Rn x {co}
and exits H at time 0," then the Reisz transforms are related to martingale
transforms of W.
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To explain the relationship we need some notation. Let f be a function on

aH which is in L2 and let

~(z) = Ezf(BT)
where T = inf{t: B. / H}. If we let Ai be the matrix which has

1 j = 1 k = i

Aijk = -1 j = i k = 1

0 otherwise

then the ith Riesz transform may be written as

Rif(w0) = E (0-~Ai~u(ws) . dws | w0) .
Since the Riesz transforms are (for the theory of Hardy spaces at least) the

appropriate generalization to H of conjugation in D, it is natural to ask if

|{x: sup Ri1B(x,0) > 03BB}| ~ Ce-03B303BB

where C and y are constants which depend only on |B|. (10) shows that the

analogous result is true for martingale transforms and that the stochastic integral
in (11) is unbounded. Unfortunately the conditional expectation might convert the

integral into a bounded function so we have not been able to use this to solve the

(still open) question posed above.
proof. For simplicity, we will give the proof only for m = 2. The reader

can obtain a proof of the general result by changing 2 to m and inserting ... at

appropriate points. As in the proof of (7) we begin by introducing orthogonal

decompositions

Ax = c~(x)x + F~(x)

A2x = c6(x)x + + F2(x)

where F~ (x) ~ x = 0 i = 1, 2 and F~(x) . F~(x) = 0.

Now if A~ and A2 have no common real eigenvector then

{Fl(x) = 0} n + F~(x) = 0} = 0

i.e. {Fl(x) = 0} n {F2(x) = Oi = ~ and repeating the proof of (8) shows

(11) inf t~x) , F2(x) _ ~ > 0.

xto ’"’

The next step is the decompose the (A~ * X)t and time change some of the

pieces to produce independent Brownian motions.
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Let Zit = / t0 Fi(Bs) . dBs
let Yit = (Ai * x) ’ Zit
let ~i(u) - inf{t: > u}

and let

Wiu = 
Zi03B3i(u) u Zi>~

Zi~ + Biu-Zi>~ u ~ Zi>~

where B1 and B2 are independent Brownian motions which are independent of B.

A simple generalization of (9) (or invoking Knight’s theorem) implies that

W1u and W2 u are independent Brownian motions which are independent of

Q(xt: t > 0) and (11) implies that + (z2)~. > E2~x~~ so now we can complete
the proof almost as before.

Let j = .inf{i: e~/2 ( X)~} ,

Let Uo be the first point at which

sup is attained.

. u-(E2/2)~xy~ 
u

Let to = 

(Aj * X)
t0 

= Yjt0 + Zj03B3j(u0)

and again the signs of the two terms on the right are independent so

* X)~ ~ > > y)~ u(E 2 /2)~X~~ 
u

proving the desired result.
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