(c) Springer-Veriag 1983

Extension of Domains with Finite Gauge

K. L. Chung ${ }^{\star}$, R. Durrett ${ }^{\star \star}$, and Zhongxin Zhao
Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Let $\left\{X_{t}\right\}$ be the Brownian motion in $R^{d}, d \geqq 1 ; E^{x}$ and P^{x} denote respectively the expectation and probability for the process with $X_{0}=x$. Let D be a domain in R^{d}, $d \geqq 2$, with $m(D)<\infty$ where m is the Lebesgue measure in R^{d}. All given sets and functions below are Borel measurable. For a bounded function q in R^{d}, and positive ($\geqq 0$) f on ∂D, we define

$$
\begin{equation*}
u(D, q, f ; x)=E^{x}\left\{e_{q}\left(\tau_{D}\right) f\left(X\left(\tau_{D}\right)\right)\right\} \tag{1}
\end{equation*}
$$

where

$$
e_{q}(t)=\exp \left(\int_{0}^{t} q\left(X_{s}\right) d s\right)
$$

and

$$
\tau_{D}=\inf \{t>0 \mid X(t) \notin D\} .
$$

It is proved in [4] that if $u(D, q, f ; \cdot)$ 丰 ∞ in D, then it is bounded in \bar{D}. We call $u(D, q, 1 ; \cdot)$ the gauge for (D, q). Since q is fixed in this paper but D will vary, we will denote the gauge by u_{D}, and say it is finite when $u_{D} \neq \infty$ in D. We write also $\left\|u_{D}\right\|$ for $\sup _{x \in D} u_{D}(x)$. The importance of the gauge is evident from the results in [4]. In this paper we study the question : if u_{D} is finite, can we enlarge D to a domain G so that u_{G} is still finite? First, we prove that we can always add a finite number of balls centered on ∂D to get such a G. But as we add more and more such balls, their radii may have to shrink to zero so that it is not always possible to cover the entire boundary of D. In fact, we shall give a simple example of a regular domain D with $u_{D}<\infty$, such that if part of D is added, the resulting domain G may have $u_{G}=\infty$. However, if D satisfies a uniform cone condition, in particular, if D is Lipschitzian, then there exists a domain $G \supset \bar{D}$ such that $u_{G}<\infty$. A discussion of these results from the point of view of eigenvalues follows the theorems.

[^0]Let $z \in \partial D$ and $B(z, \varepsilon)$ be the ball with center z and radius ε. We write B_{ε} for $B(z, \varepsilon)$ below, and put

$$
\begin{equation*}
\varphi_{\varepsilon}(x)=u\left(D, q, 1_{B_{\varepsilon}} ; x\right) . \tag{2}
\end{equation*}
$$

If $u_{D}<\infty$, then $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}(x)=0$ for all $x \in D$, because the singleton $\{z\}$ is a polar set. That is why we have supposed $d \geqq 2$. Moreover, $\varphi_{\varepsilon} \in C^{(1)}(D)$. Hence the convergence of φ_{ε} as $\varepsilon \downarrow 0$ is uniform in each compact subset of D by Dini's theorem. This is not sufficient for our later application, and we need the strengthening given below.

Lemma. Suppose $u_{D}<\infty$. Let A be a compact subset of \bar{D} and $z \notin A$. Then $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}(x)=0$ uniformly for $x \in A$.

Proof. There is $\varepsilon>0$ such that A is disjoint from $\overline{B(z, \varepsilon)}$. Let $x_{0} \in A$ and fix a number $r>0$ so that $r<\varrho(A, \overline{B(z, \varepsilon)})$, where ϱ denotes the distance, and also such that

$$
\begin{equation*}
\sup _{x \in B\left(x_{0}, r\right)} E^{x}\left\{\exp \left(Q \tau_{B\left(x_{0}, r\right)}\right)\right\}<\infty \tag{3}
\end{equation*}
$$

where $Q=\sup _{x} \mid q(x)$. Writing τ_{r} for $\tau_{B\left(x_{0}, r\right)}$, we have by the strong Markov property, for each $x \in B\left(x_{0}, r\right)$:

$$
\begin{equation*}
\varphi_{\varepsilon}(x)=E^{x}\left\{\tau_{r}<\tau_{D} ; e_{q}\left(\tau_{r}\right) \varphi_{\varepsilon}\left(X\left(\tau_{r}\right)\right)\right\} \tag{4}
\end{equation*}
$$

Put $\tilde{\varphi}_{\varepsilon}=1_{D} \varphi_{\varepsilon}$ and define for $x \in B\left(x_{0}, r\right)$:

$$
\psi_{\varepsilon}(x)=E^{x}\left\{e_{q}\left(\tau_{r}\right) \tilde{\varphi}_{\varepsilon}\left(X\left(\tau_{r}\right)\right)\right\}=u\left(B\left(x_{0}, r\right), q, \tilde{\varphi}_{\varepsilon} ; x\right)
$$

Since $\varphi_{\varepsilon} \leqq u_{D}, \varphi_{\varepsilon}$ is bounded in \bar{D} and $\tilde{\varphi}_{\varepsilon}$ is bounded in R^{d}. Now (3) implies that $u_{B\left(x_{0}, r\right)}<\infty$, hence $\psi_{\varepsilon} \in C^{(1)}\left(B\left(x_{0}, r\right)\right)$ by Theorem 2.1 of [4]. By Dini's theorem, $\lim _{\varepsilon \rightarrow 0} \psi_{\varepsilon}=0$ uniformly in $B\left(x_{0}, r / 2\right)$. Since $\varphi_{\varepsilon} \leqq \psi_{\varepsilon}$, we have $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}=0$ uniformly in $B\left(x_{0}, r / 2\right)$. This being true for every $x_{0} \in A$, and A being compact, the lemma follows.

Theorem 1. Let D be a domain in $R^{d}, d \geqq 2$, with $m(D)<\infty$ and $u_{D}<\infty$. For any $z \in \partial D$ there exists $\varepsilon>0$ such that if $G=D \cup B(z, \varepsilon)$, then $u_{G}<\infty$. Furthermore, for any $\delta>0$ there exists $\varepsilon(z, \delta)$ such that $\left\|u_{G}\right\|<\left\|u_{D}\right\|+\delta$ if $\varepsilon<\varepsilon(z, \delta)$.

Proof. Given $0<\delta<1$, let η be such that

$$
\begin{equation*}
\sup _{x \in \boldsymbol{B}(z, \eta)} E^{x}\left\{\exp \left(Q \tau_{B(z, \eta)}\right)\right\}<1+\delta . \tag{5}
\end{equation*}
$$

Observe that $B(z, \eta) \cap D$ may not be connected (see the blackened area in Fig. 1). Let

$$
A=(\partial B(z, \eta)) \cap D .
$$

We apply the lemma to find ε so that $0<\varepsilon<\eta$ and

$$
\begin{equation*}
\sup _{x \in A} \varphi_{\varepsilon}(x)<\delta \tag{6}
\end{equation*}
$$

Fig. 1

Now put

$$
\begin{gathered}
C=G \cap B(z, \eta) \\
F=(\partial D) \cap B(z, \varepsilon)
\end{gathered}
$$

where G is given in the statement of the theorem. Let $x \in D \cap B(z, \varepsilon)$. We shall prove that $u(G, q, 1 ; x)<\infty$. Then u_{G} will be finite by Theorem 1.2 of [4], as reviewed above.

The method of proof is similar to that of Theorem 1 in [1]*, which treats the case of a half line (instead of the D here) in R^{1}. It is somewhat more complicated owing to the geometry of R^{d}. Define $T_{0}=0$, and for $n \geqq 1$:

$$
\begin{gathered}
T_{2 n-1}=T_{2 n-2}+\tau_{C^{\circ}} \theta_{T_{2 n-2}}, \\
T_{2 n}=T_{2 n-1}+\tau_{D^{\circ}} \theta_{T_{2 n-1}}, \\
R_{n}=T_{n} \wedge \tau_{G} .
\end{gathered}
$$

On $\left\{T_{2 n-1}<\tau_{G}\right\}$, we have $X\left(T_{2 n-1}\right) \in A$; on $\left\{T_{2 n}<\tau_{G}\right\}$, we have $X\left(T_{2 n}\right) \in F$. On $\left\{T_{n}<\tau_{G}\right\}, T_{n}<T_{n+1}$. Let $T_{\infty}=\lim _{n} \uparrow T_{n}$. On $\left\{T_{\infty}<\infty\right\}$, the path of the Brownian motion undergoes infinitely many oscillations of distance exceeding $(\eta-\varepsilon) / 2$ before the time T_{∞}, since $\varrho(F, A)=\eta-\varepsilon$. The continuity of paths implies that $T_{\infty}=\infty$ a.s. (almost surely). Since $\tau_{G}<\infty$ a.s., it follows that there exists $n \geqq 1$ such that T_{n-1} $<\tau_{G} \leqq T_{n}$. But both sets C and D are subsets of G, and T_{n} is either an exit time from C or an exit time from D, the last inequalities entail that $\tau_{G}=T_{n}$, namely $\tau_{G}=R_{n}$. Hence if we define

$$
N=\min \left\{n \geqq 0 \mid R_{n}=\tau_{G}\right\},
$$

then $N<\infty$ a.s.
It follows from (5) that

$$
\begin{equation*}
\sup _{x \in \mathcal{F}} E^{x}\left\{e\left(\tau_{C}\right)\right\}<1+\delta . \tag{7}
\end{equation*}
$$

Applying the strong Markov property repeatedly to $T_{n}, n \geqq 1$, and using the estimates (6) and (7), we obtain

$$
\begin{gather*}
E^{x}\left\{e\left(\tau_{G}\right) ; N=2 n-1\right\} \leqq[(1+\delta) \delta]^{n-1}(1+\delta) ; \\
E^{x}\left\{e\left(\tau_{G}\right) ; N=2 n\right\} \leqq[(1+\delta) \delta]^{n-1}(1+\delta)\left\|u_{D}\right\| . \tag{8}
\end{gather*}
$$

[^1]Let $(1+\delta) \delta<1$. Adding up (8) over $n \geqq 1$, we obtain

$$
u_{G}(x) \leqq[1-(1+\delta) \delta]^{-1}(1+\delta)\left(1+\left\|u_{D}\right\|\right)<\infty
$$

In the above we have taken $x \in D \cap B(z, \varepsilon)$. A similar argument works for any $x \in D \backslash B(z, \varepsilon)$. Indeed, a slightly more refined argument shows that by taking ε small enough, we can make $\left\|u_{G}\right\|$ as near to $\left\|u_{D}\right\|$ as we wish. To see this let $B=B(z, \eta)$ and replace (7) by the following, for $x \in F$:

$$
\begin{gathered}
E^{x}\left\{e\left(\tau_{B}\right) 1_{A}\left(X\left(\tau_{B}\right)\right)\right\}<(1+\delta) \theta_{x}, \\
E^{x}\left\{e\left(\tau_{B}\right) 1_{\partial B-A}\left(X\left(\tau_{B}\right)\right)\right\}<(1+\delta)\left(1-\theta_{x}\right) ;
\end{gathered}
$$

where θ_{x} is the ratio of the spherical area of A to the total area of ∂B. Although θ_{x} varies with x on F, by taking ε small enough in comparison with η, we can make $\theta^{\prime}<\theta_{x}<\theta$ for all $x \in F$ and $\theta-\theta^{\prime}<\delta$. The estimates on the right sides of (8) are then replaced by

$$
[(1+\delta) \theta \delta]^{n-1}(1+\delta)\left(1-\theta^{\prime}\right) \quad \text { and } \quad[(1+\delta) \theta \delta]^{n-1}(1+\delta) \theta\left\|u_{D}\right\|
$$

respectively. The result is that

$$
\begin{equation*}
u_{G}(x) \leqq[1-(1+\delta) \theta \delta]^{-1}(1+\delta)\left(1-\theta^{\prime}+\theta\left\|u_{D}\right\|\right) \tag{9}
\end{equation*}
$$

for $x \in D \cap B(z, \delta)$; and similarly

$$
\begin{equation*}
u_{G}(x) \leqq[1-(1+\delta) \delta \theta]^{-1}\left[\|u\|_{D}+\delta(1+\delta)\left(1-\theta^{\prime}\right)\right] \tag{10}
\end{equation*}
$$

for $x \in D \backslash B(z, \delta)$. Observe that $\left\|u_{D}\right\| \geqq 1$ because $u_{D}(z)=1$ if $z \in \partial D$ and z is regular (for D^{c}). It follows that as $\delta \downarrow 0$, the right member of (9) approaches $\left\|u_{D}\right\|$ as well as that of (10). Thus $\left\|u_{G}\right\|$ approaches $\left\|u_{D}\right\|$ as claimed.

We come next to the example mentioned in the introduction.
Example. Let $q \equiv 1$ in R^{d}. It is well known that there exists a number r_{1} such that

$$
E^{0}\left\{e^{\tau B(0, r)}\right\}<\infty
$$

if and only if $r<r_{1}$. Let $r_{3}<r_{2}<r_{1}, B_{i}=B\left(o, r_{i}\right)$, and $C=B_{1}-\bar{B}_{3}$. We may make $r_{1}-r_{3}$ so small that

$$
\sup _{x \in C} u(C ; 1,1 ; x)<2 .
$$

Since $u\left(B_{2}, 1,1 ; x\right)$ is continuous in B_{2} and $u\left(B_{2}, 1,1_{A} ; x\right)$ decreases to zero as $A \downarrow \emptyset$, where A is an arc on the circle ∂B_{2}, we may make A small enough that

$$
\sup _{x \in B_{3}} u\left(B_{2}, 1,1_{A} ; x\right)<\frac{1}{3} .
$$

Let L be a closed line segment connecting ∂B_{1} and $\partial B_{2}-A$. Now define

$$
D=B_{1}-\left[\left(\partial B_{2}-A\right) \cup L\right] .
$$

Thus D is a simply connected domain (L is used only to ensure this). It is easy to see that D is a regular domain. If we denote $\left(\partial B_{2}-A\right) \cup L$ by E, then $E \subset \partial D$ and $D \cup E=B_{1}$, and $u_{B_{1}}=\infty$ by the definition of r_{1}. Clearly, for any domain $G \supset \bar{D}$ we have $u_{G}=\infty$. It remains to show that $u_{D}<\infty$.

Fig. 2

The proof is similar to and simpler than that of Theorem 1.
Let $T_{0}=0$, and for $n \geqq 1$:

$$
\begin{gathered}
T_{2 n-1}=T_{2 n-2}+\tau_{B_{2}} \circ \theta_{T_{2 n-2}}, \\
T_{2 n}=T_{2 n-1}+\tau^{\circ}{ }^{\circ} \theta_{T_{2 n-1}}, \\
N=\min \left\{n \geqq|n| T_{n}=\tau_{D}\right\} .
\end{gathered}
$$

Then $N<\infty$ a.s. We have

$$
\begin{gathered}
E^{0}\left\{e\left(\tau_{D}\right) ; N=2 n-1\right\}=(2 / 3)^{n-1} u_{B_{2}}, \\
E^{0}\left\{e\left(\tau_{D}\right) ; N=2 n\right\}=(2 / 3)^{n} .
\end{gathered}
$$

Hence $E^{0}\left\{e\left(\tau_{D}\right)\right\}<\infty$.
The cone condition is well known in Dirichlet's boundary value problem. Let us denote by $C(z, \theta)$ the cone with vertex z and relative angle θ; namely the intersection of the cone with the sphere $\partial B(z, 1)$ has an area in the ratio $\theta: 1$ to the total area of the sphere. A domain D is said to satisfy a cone condition at $z \in \partial D$ iff there exist $a>0, \theta>0$, so that $C(z, \theta) \cap B(z, a) \subset D^{c}$. If so, z is regular for D^{c} (see, e.g., [2] where a weaker cone condition is given). The condition is uniform iff the numbers a and θ can be taken to be the same for all $z \in \partial D$. If D satisfies a cone condition at every $z \in \partial D$ (not necessarily uniform), then it follows from Lebesgue's density theorem for measurable sets that $m(\partial D)=0$. It is easy to see that a bounded Lipschitz domain satisfies a uniform cone condition. We owe the last two remarks to N. Falkner.

Theorem 2. Let D be a bounded domain with $u_{D}<\infty$, and satisfying a uniform cone condition. Then there exists a domain G containing \bar{D} with $u_{G}<\infty$.
Proof. Put

$$
\begin{equation*}
G=\left\{x \in R^{d} \mid \varrho(x, D)<\varepsilon\right\}, \tag{11}
\end{equation*}
$$

for some $\varepsilon>0$ to be determined later. Given $\delta>0$, let $0<\varepsilon_{0}<a$ such that

$$
\begin{equation*}
E^{x}\left\{\exp \left(Q_{B\left(x, \varepsilon_{0}\right)}\right)\right\}<1+\delta ; \tag{12}
\end{equation*}
$$

the number in (12) being independent of x. We decrease ε_{0} if necessary so that for any domain E with $\widetilde{E} \subset D$ and $\varrho(\bar{E}, \partial D)=\varepsilon_{0}$, and any G defined in (11) with $\varepsilon<\varepsilon_{0}$, $m(G-\bar{E})$ is small enough to satisfy the following conditions, where $C=G-\bar{E}$:

$$
\begin{align*}
& \sup _{x \in C} E^{x}\left\{\exp \left(Q \tau_{C}\right)\right\}<1+\delta ; \tag{13}\\
& \sup _{x \in \mathcal{E} \in} u_{D}(x)<1+\delta . \tag{14}
\end{align*}
$$

Fig. 3

Since $m(\partial D)=0, m(C) \rightarrow 0$ as $\varepsilon<\varepsilon_{0} \downarrow 0$; hence (13) is satisfied for small enough ε_{0} by Lemma A of [4]. Since D is regular, u_{D} is continuous on \bar{D} with boundary value one by Theorem 1.3 of [4]. Hence (14) is also satisfied for small enough ε_{0}.

Now let $\varepsilon_{1}<\varepsilon_{0}$. Then $\partial B\left(z, \varepsilon_{1}\right) \cap D^{c}$ has relative area $>\theta$ by the uniform cone condition, since $\varepsilon_{1}<a$. For any $0<\theta^{\prime}<\theta$, by shrinking the angle of the cone, we obtain a subset $S(z, a)$ of $\partial B(z, a) \cap D^{c}$ which has relative area $>\theta^{\prime}$, but with the additional property that

$$
\begin{equation*}
0<\varrho(S(z, a), D)<\varepsilon_{0} . \tag{15}
\end{equation*}
$$

This number $\varrho(S(z, a), D)$ may be taken to be the same for all $z \in \partial D$, and we use it as the ε in the definition (11) of G. This choice of ε makes G disjoint from $S\left(z, \varepsilon_{1}\right)$, so that

$$
\begin{equation*}
\partial B\left(z, \varepsilon_{1}\right) \cap G^{c} \text { has relative area }>\theta^{\prime} \tag{16}
\end{equation*}
$$

At the same time, since $\varrho(\bar{E}, \partial D)=\varepsilon_{0}>\varepsilon_{1}$, we have

$$
\begin{equation*}
B\left(z, \varepsilon_{1}\right) \cap \bar{E}=\emptyset . \tag{17}
\end{equation*}
$$

The geometrical preparation is now complete, and we are ready for the key estimate below.

Fix $z \in \partial D$, and write $B=B\left(z, \varepsilon_{1}\right)$. We shall prove that $u_{G}(z)<\infty$. Under P^{z}, $\partial C=(\partial G) \cup(\partial E)$, and $\left\{\tau_{C}<\tau_{G}\right\}=\left\{X\left(\tau_{c}\right) \in \partial E\right\} \subset\left\{\tau_{B}<\tau_{C}\right\} \cap\left\{X\left(\tau_{B}\right) \in G\right\}$. Hence the first inequality below follows from the strong Markov property:

$$
\begin{aligned}
E^{z}\left\{\exp \left(Q \tau_{C}\right) ; X\left(\tau_{C}\right) \in \partial E\right\} & \leqq E^{z}\left\{\tau_{B}<\tau_{C} ; \exp \left(Q \tau_{B}\right) 1_{G}\left(X\left(\tau_{B}\right)\right) E^{X\left(\tau_{B}\right)}\left[\exp \left(Q \tau_{C}\right)\right]\right\} \\
& \leqq E^{z}\left\{\exp \left(Q \tau_{B}\right) 1_{G}\left(X\left(\tau_{B}\right)\right)\right\}(1+\delta) \\
& =E^{z}\left\{\exp \left(Q \tau_{B}\right)\right\} P^{z}\left\{X\left(\tau_{B}\right) \in G\right\}(1+\delta) \\
& \leqq(1+\delta)^{2}\left(1-\theta^{\prime}\right)
\end{aligned}
$$

The second inequality above follows from (13); the third from (12), (16), and spherical symmetry; the equality follows from the stochastic independence of τ_{B} and $X\left(\tau_{B}\right)$ under P^{z}. Since δ is arbitrarily small, the resulting bound may be made strictly less than one, which will suffice.

Define $T_{0}=0$, and for $n \geqq 1$:

$$
\begin{gathered}
T_{2 n-1}=T_{2 n-2}+\tau_{C^{\circ}}{ }^{\circ} \theta_{T_{2 n-2}} \\
T_{2 n}=T_{2 n-1}+\tau_{D}{ }^{\circ} \theta_{T_{2 n-1}} \\
N=\min \left\{n \geqq 1 \mid T_{2 n-1}=\tau_{G}\right\}
\end{gathered}
$$

Then $N<\infty$ a.s. We have

$$
E^{z}\left\{e\left(\tau_{G}\right) ; N=2 n-1\right\} \leqq\left[(1+\delta)^{3}\left(1-\theta^{\prime}\right)\right]^{n-1}(1+\delta),
$$

where the third $1+\delta$ factor comes from (14), when the path moves from ∂E back to ∂D. Choose δ so that $(1+\delta)^{3}\left(1-\theta^{\prime}\right)<1$. It follows by summing over n that $u_{G}(z)<\infty$, indeed, $u_{G}(z)$ is arbitrarily near θ^{-1} for sufficiently small δ, since θ^{\prime} may be arbitrarily near θ. For any $x \in G$, the same argument yields a bound for $u_{G}(x)$ arbitrarily near $\left\|u_{D}\right\| \theta^{-1}$. Thus, there exists G containing \bar{D} such that $\left\|u_{G}\right\|$ is arbitrarily near $\left\|u_{D}\right\| \theta^{-1}$.

We do not know whether the last inequality can be improved as in the case of Theorem 1 .

The results above about enlarging the domain while keeping the gauge finite are intimately connected with the variation of eigenvalues with the domain. Consider the following eigen equation:

$$
\begin{gather*}
\left(\frac{\Delta}{2}+q\right) \varphi=\lambda \varphi \text { in } D \\
\varphi=0 \text { on } \partial D . \tag{18}
\end{gather*}
$$

It is known that there exists a maximum eigenvalue $\lambda_{1}(D)$ for which (18) is solvable with $\varphi \in C^{0}(\bar{D}) \cap C^{(2)}(D)$, provided that q is Hölder continuous in D (as well as bounded). If D is regular, then it is shown in [3] and [6] by different methods that $u_{D}<\infty$ is equivalent to $\lambda_{1}(D)<0$. Now there is a "principle" in classical analysis which asserts that $\lambda_{1}(D)$ varies continuously with D (at least when $q \equiv 0$). It should follow from this that if $\lambda_{1}(D)<0$, then for a domain G "slightly larger" than D we should have $\lambda_{1}(G)<0$. However, it is not clear under what precise conditions the said principle is valid. Conditions given in [5] are very strong in comparison with that used in Theorem 2 above, whereas Theorem 1 requires no condition on D except $m(D)<\infty$. These results are proved without any reference to eigenvalues.

References

1. Chung, K.L.: On stopped Feynman-Kac functionals, Séminaire de probabilités XIV (Univ. Strasbourg). Lecture Notes in Mathematics, No. 784. Berlin, Heidelberg, New York: Springer 1980
2. Chung, K.L. : Lectures from Markov processes to Brownian motion. Grundlehren der Mathematik, Nr. 249. Berlin, Heidelberg, New York: Springer 1982
3. Chung, K.L., Li, P.: Comparison of probability and eigenvalue methods for the Schrödinger equation. Adv. Math. (to appear)
4. Chung, K.L., Rao, K.M.: Feynman-Kac functional and the Schrödinger equation, Seminar on Stochastic Processes, pp. 1-29. Basel, Boston, Stuttgart: Birkhäuser 1981
5. Courant, R., Hilbert, D. : Methoden der mathematischen Physik, Vol. 1. Berlin : Springer 1931
6. Zhongxin Zhao: Local Feynman-Kac semigroup. J. Sys. Sci. Math. Sci. 2, 314-326 (1982)

Received 17 December 1982

Added in proof. Theorems 1 and 3 can be extended to the class of unbounded functions q, considered by Aizenman and Simon in Comm. Pure Appl. Math. 35, 209-271 (1982)

[^0]: * Research supported in part by NSF grant MCS-80-01540 at Stanford University
 ** Alfred P. Sloan Fellow ; research supported in part by NSF grant MCS 80-02732 at University of California, Los Angeles

[^1]: * There is a minor error on p.351. Replace the definition of S by $\tau_{a} \wedge \tau_{c}$, and put $N=\min \left\{n \geqq 0 \mid T_{2 n+1}=\tau_{c}\right\}$

