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Extension of Domains with Finite Gauge 

K. L. Chung*,  R. Durret t**,  and Zhongxin  Z h a o  

Department of Mathematics, Stanford University, Stanford, CA 94305, USA 

Let  {X,} be the Brownian mot ion  in R n, d >  1; E x and  px denote  respectively the 
expectat ion and  probabi l i ty  for the process with X o = x. Let D be a domain  in R n, 
d > 2, with re(D)< ~ where m is the Lebesgue measure  in R n. All given sets and 
functions below are Borel measurable .  Fo r  a bounded  function q in R n, and 
positive ( > 0) ] on ~D, we define 

where 

and 

u(D, q, ]; x) = EX{eq(zD)J(X(zD))} 

e q(t)=exp (i q(X s)ds ) 

(1) 

zv = inf{t > O[X(t)r 

It  is p roved  in [4] that  if u(D,q,]; .)~-oo in D, then it is bounded  in D. We call 
u(D, q, 1 ;. ) the gauge for (D, q). Since q is fixed in this paper  but  D will vary, we will 
denote  the gauge by u o, and say it is finite when u o ~  ~ in D. We write also IjuDJ ] 

for sup UD(X ). The impor tance  of the gauge is evident f rom the results in [4]. In this 
x ~ D  

paper  we study the question : if u ,  is finite, can we enlarge D to a domain  G so that  
u G is still finite? First, we prove  that  we can always add  a finite n u m b e r  of  balls 
centered on ~D to get such a G. But as we add more  and more  such balls, their radii  
may  have to shrink to zero so that  it is not  always possible to cover  the entire 
bounda ry  of D. In fact, we shall give a simple example  of  a regular  domain  D with 
u o < 0% such that  if par t  of  D is added, the resulting domain  G m a y  have u G = oo. 
However ,  if D satisfies a uniform cone condit ion,  in part icular ,  if D is Lipschitzian,  
then there exists a domain  G 3/3 such that  u~ < oo. A discussion of these results f rom 
the point  of  view of eigenvalues follows the theorems.  
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Let ze  OD and B(z, ~) be the ball with center z and radius e. We write B, for 
B(z, E) below, and put 

q~(x) = u(D, q, 1~ ; x) . (2) 

If u o < oo, then lira (p,(x)=0 for all xeD ,  because the singleton {z} is a polar set. 
e ~ 0  

That is why we have supposed d>2.  Moreover, (p, eC(1)(D). Hence the con- 
vergence of r as el0 is uniform in each compact subset of D by Dini's theorem. 
This is not sufficient for our later application, and we need the strengthening given 
below. 

Lemma. Suppose UD< o0. Let  A be a compact subset oJ F) and zr Then 

lim ~o~(x)=0 unijormly jor  x e  A. 
~ 0  

Prooj. There is s > 0  such that A is disjoint from B(z, ~). Let Xoe A and fix a number 
r > 0  so that r<Q(A,B(z,e)),  where ~ denotes the distance, and also such that 

sup E~{exp(Qz~o,,))} < oo (3) 
xeB(xo, r) 

where Q = sup Iq(x)]. Writing zr for ~8{ . . . .  ), we have by the strong Markov property, 
x 

for each x e  B(xo, r) : 

~o~(x) = EX{rr < z ,  ; e~(zr)~o~(X(z~))}. (4) 

Put ~ =  1D~o ~ and define for xeB(xo ,  r): 

~p~(x) = EX{eq(*r)(p~(X(z,))} = u(B(x o, r), q, (p~ ; x). 

Since % < uo, % is bounded in/3 and ~5~ is bounded in R e. Now (3) implies that 
un( . . . .  )< oo, hence ~p~eC(l)(B(xo, r)) by Theorem 2.1 of [4]. By Dini's theorem, 

lim~p~=0 uniformly in B(xo, r/2). Since q~<~p,, we have lim q~=0 uniformly in 
~-'-~ 0 E ~ O  

Bfxo, r/2 ). This being true for every x o e A ,  and A being compact, the lemma 
follows. 

Theorem 1. Let  D be a domain in R d, d >2, with re(D)< oo and u D < ~ .  For any 
ze  OD there exists ~ > 0 such that ij G = DuB(z ,  ~), then u G < ~ .  Furthermore,.for any 
6 > 0  there exists e(z,6) such that r[uor[ < i[uD[r +~ ij ~ < e(z,6). 

Proof. Given 0 < 5 <  1, let q be such that 

sup E~{exp(Qv~,,))} < 1 + 6. (5) 
xeB(z, q) 

Observe that B(z,~l)c~D may not be connected (see the blackened area in Fig. 1). 
Let 

A = (OB(z, tl))c~D. 

We apply the lemma to find e so that 0 < e < q and 

s u~? q~,(x) < 6. (6) 
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Fig.  

N o w  put  
C = G n B(z, ;1) 

F = (~3D)nB(z, e) 

where G is given in the s ta tement  of  the theorem. Let  x~ DmB(z,  O. We shall p rove  
that  u(G, q, 1 ; x ) <  ~ .  Then u G will be finite by Theorem 1.2 of  [4], as reviewed 
above.  

The  me thod  of p roof  is similar to that  of  Theorem 1 in [1]*, which treats the 
case of a half  line (instead of the D here) in R 1. I t  is somewhat  more  compl ica ted 
owing to the geomet ry  of R d. Define T O = 0, and  for n > 1 : 

T2n- I = T2n- 2 + zc ~ 2, 

T2n= T2n- I +'rD ~ . . . .  ' 

R , = T , ^ r  a . 

On { T z , _ l < r ~ } ,  we have X ( T z , _ I ) ~ A ;  on {T2,<ro} ,  we have X(Tz , )~F.  On 

{T,<rG},  T,<T,+ v Let Too=limTT.. On {Too<oo}, the pa th  of  the Brownian  
n 

mot ion  undergoes  infinitely m a n y  oscillations of  distance exceeding ( q -  0 /2  before 
the time Too, since Q(F, A) = ~ / -  e. The  cont inui ty of  paths  implies that  Too = oo a.s. 
(almost  surely). Since z G < ~ a.s., it follows tha t  there exists n > 1 such tha t  T,_ 1 

< z a < T,. But bo th  sets C and D are subsets of  G, and T, is either an exit t ime f rom 
C or  an exit t ime f rom D, the last inequalities entail that  r e = T,, namely  r e = R,. 
Hence if we define 

then N < ~ a.s. 
It follows f rom (5) that  

N = m i n  {n > 01R, = re} ,  

sup E~'{e(Zc)} < 1 + 6. (7) 
x E F  

Applying the s t rong M a r k o v  proper ty  repeatedly  to T,, n > l ,  and using the 
est imates (6) and (7), we obta in  

EX{e(zo); N = 2 n -  1} ~ [(1 + 6)a]"- 1(1 + 6); 

EX{e(z~); N = 2n} < [(1 + 6)6]"-  x(1 + a)ll uo II. 
(8) 

* There is a minor error on p. 351. Replace the definition of S by za^Tc, and put 
N=min{n>OlT2.+ l ='rc} 
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Let  (1 + 3)6 < 1. Adding up (8) over  n ~  1, we obtain  

u~(x)< [ 1 - ( 1  +6 )6 ] -1 (1  +6) (1  + IluDll) < ~ .  

In the above  we have taken xeDc~B(z,e). A similar a rgument  works  for any 
xe  D\B(z, e). Indeed,  a slightly more  refined a rgument  shows that  by taking e small 
enough, we can m a k e  [JUG! ] as near  to qjuDI [ as we wish. To  see this let B=B(z,  rl) 
and replace (7) by the following, for x e  F:  

E~{e(z,)IA(X(z,))} < (1 + 6)0~, 

E~{e(zB)leB_ A(X(zs))} < (1 + 6)(1 -- 0~); 

where 0~ is the rat io  of  the spherical area of  A to the total  area of  OB. Al though 0~ 
varies with x on F, by taking ~ small enough in compar i son  with q, we can make  
0' < 0~ < 0 for all x~  F and 0 -  0' < 6. The  estimates on the right sides of  (8) are then 
replaced by 

[(1 + 3)06]"- x(1 + 3)(1 - 0') and [(1 + 3)03]"-  1(1 + 6)O[luv H, 

respectively. The result is that  

u6(x) < [ 1 - (1 + 6)03] - x(1 + 6) (1 - O' + 0 Jl up JJ), (9) 

for xeDc~B(z, 6); and similarly 

uo(x) < [ 1 - (1 + 6)60] - 1 [ [i u it, + 6( 1 + 6) (1 - 0 ' )] ,  (10) 

for xeD\B(z,5).  Observe  that  tluD] h > 1 because up(z)= 1 if z~OD and z is regular 
(for De). I t  follows that  as 6~0, the right m e m b e r  of  (9) approaches  Hub[ 1 as well as 
that  of (10). Thus  I[uaH approaches  I[uDI I as claimed. 

We come next to the example  ment ioned  in the introduction.  

Example. Let q -  1 in R a. It  is well known that  there exists a number  r 1 such that  

E~ ~B~~ < 

if and only if r < r  r Let r3-<rz<rl, Bi=B(o,Q,  and C = B I - / ~  3. We may  make  
r ~ -  r 3 so small that  

sup u(C ; 1, 1 ; x ) < 2 .  
xc-C 

Since u(B 2, 1, 1;x)  is cont inuous in B 2 and u(B 2, 1, 1A;X) decreases to zero as AS0, 
where A is an arc on the circle ~B 2, we may  make  A small enough that  

s u~ u(B 2, 1, 1A ; X) < �89 . 

Let L be a closed line segment  connect ing OB 1 and OB 2 - A .  N o w  define 

O = B  1 - [(t~B 2 - A)wL] .  

Thus  D is a s imply connected domain  (L is used only to ensure this). It  is easy to see 
that  D is a regular  domain.  If  we denote  (C~BE-A)uL by E, then ECOD and 
D u E = B  1, and uB~ = ~ by the definition of r r Clearly, for any domain  GD/)  we 
have u~ = ~ .  It remains to show that  u D < ~ .  
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Fig. 2 
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The p roof  is similar to and  simpler than  that  of Theorem 1. 
Let T o = 0, and for n _-> 1 : 

r 2 . -  l =  T2.-  2 + Ze2~ 2, 

T20 = T2,- 1 + Zc ~ l , 

N = m i n { n > O [ T , = z n } .  

Then N < oe a.s. We have 

E ~ {e(zo); N = 2 n -  1 } = (2/3)"- i uB~, 

E~ = 2n} =(2/3)".  

Hence E~ < oe. 
The  cone condit ion is well known in Dirichlet 's  bounda ry  value problem. Let 

us denote  by C(z,O) the cone with vertex z and relative angle 0; namely  the 
intersection of the cone with the sphere OB(z, 1) has an area in the ratio 0 : 1 to the 
total  area  of  the sphere. A domain  D is said to satisfy a cone condit ion at  ze  t~/) iff 
there exist a > 0, 0 > 0, so that  C(z, O)n B(z, a) ( D c. If so, z is regular  for D c (see, e.g., [2] 
where a weaker  cone condit ion is given). The  condi t ion is uniform iff the numbers  
a and 0 can be taken to be the same for all ze  0D. If  D satisfies a cone condit ion at  
every ze~?D (not necessarily uniform), then it follows f rom Lebesgue 's  density 
theorem for measurable  sets that  m(OD)=O. It  is easy to see that  a bounded  
Lipschitz domain  satisfies a uniform cone condition. We owe the last two remarks  
to N. Falkner.  

Theorem 2. Let D be a bounded domain with u D < oe, and satisJyin 9 a unijorm cone 
condition. Then there exists a domain G containing D with u G < oe. 

Pro@ Put  

G = {xe Ra[o(x, D) < e}, (1 i) 

for some 5 > 0  to be determined later. Given  6 >0 ,  let 0 < %  < a  such that  

EX{exp(Qzn(x, co))} < 1 + 6 ; (12) 

the number  in (12) being independent  of  x. We decrease 5 o if necessary so that  for 
any domain  E w i t h / ~ C D  and 0(/] , t?D)=%, and  any G defined in (11) with 5 < % ,  
m ( G - E )  is small enough to satisfy the following conditions, where C = G - / ] :  

su x~EX{exp(Qzc)} < 1 + 6 ;  (13) 

sup un(x) < 1 + 6. (14) 
x~OE 
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Fig. 3 

Since m(OD)=O, m(C)~O as e <Co+0; hence (13) is satisfied for small enough eo by 
Lemma A of [4]. Since D is regular, Uo is continuous o n / )  with boundary value 
one by Theorem 1.3 of [4]. Hence (14) is also satisfied for small enough Co- 

Now let el <%. Then 8B(z,e~)nD c has relative area >0  by the uniform cone 
condition, since ~1 <a.  For any 0 < 0 ' < 0 ,  by shrinking the angle of the cone, we 
obtain a subset S(z,a) of 8B(z,a)~D ~ which has relative area >0',  but with the 
additional property that 

0 < ~(S(z, a), D) <e 0 . (15) 

This number Q(S(z, a), D) may be taken to be the same for all z~ 8D, and we use it as 
the e in the definition (11) of G. This choice ofe  makes G disjoint from S(z,e~), so 
that 

OB(z, e~)~G ~ has relative area > 0'. (16) 

At the same time, since Q(/~,SD)=e o >ca, we have 

B(z, e 1) ("~/~ = •. (17) 

The geometrical preparation is now complete, and we are ready for the key 
estimate below. 

Fix z~OD, and write B=B(Z, el). We shall prove that uG(z)<oo. Under P~, 
OC=(OG)u(~E), and {Zc<ZG} = {X(~c)ESE} C {z~<~c}~{X(zn)~G}. Hence the 
first inequality below follows from the strong Markov property: 

E~{exp(Qzc) ;X(zc)e OE} < EZ{'rl~ < z c ; exp(Qzn)l~(X(zB))EX(~')[exp(Qzc)] } 

< E~{exp(Qzn)IG(X(zB))} (1 + 6) 

= EZ{exp(Qz,)}Pz{X(zn)~ G} (1 + 6) 

__<(1 + ,~)~(1-03. 

The second inequality above follows from (13); the third from (12), (16), and 
spherical symmetry ; the equality follows from the stochastic independence of z e 
and X(zn) under P~. Since 6 is arbitrarily small, the resulting bound may be made 
strictly less than one, which will suffice. 

Define T o = 0, and for n ~ 1 : 

Tzn- I = Tzn- z +'~c ~ 2, 

T2.= T2n-l + Zo ~ 

N = m i n { n >  l lT2 ,_ l=r~} .  
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Then N < ~ a.s. We have 

EZ{e(zG);N = 2 n -  1} < [(1 + 6)3(1 - 0 ' ) ]  n- 1(1 + 6), 

where the third 1 + 6 factor comes from (14), when the path moves from dE back to 
0D. Choose 6 so that (1+ 6)3(1- 0') <1. It follows by summing over n that 
uG(z ) < ~ ,  indeed, uG(z ) is arbitrarily near 0-1 for sufficiently small 6, since 0' may 
be arbitrarily near 0. For any xE G, the same argument yields a bound for uG(x) 
arbitrarily near IluollO -1. Thus, there exists G containing /5 such that IluGql is 
arbitrarily near 11%110-1. 

We do not know whether the last inequality can be improved as in the case of 
Theorem 1. 

The results above about enlarging the domain while keeping the gauge finite 
are intimately connected with the variation of eigenvalues with the domain. 
Consider the following eigen equation: 

(A +q) q~=2q~ in D; 

q~=0 on ~D. (18) 

It is known that there exists a maximum eigenvalue 2x(D ) for which (18) is solvable 
with ~o~C~ provided that q is H61der continuous in D (as well as 
bounded). If D is regular, then it is shown in I-3] and [-6] by different methods that 
u D < ~ is equivalent to 21(D ) <0. Now there is a "principle" in classical analysis 
which asserts that 2 ~(D) varies continuously with D (at least when q-= 0). It should 
follow from this that if 21(D)<0, then for a domain G "slightly larger" than D we 
should have 21(G)<0. However, it is not clear under what precise conditions the 
said principle is valid. Conditions given in [5] are very strong in comparison with 
that used in Theorem 2 above, whereas Theorem 1 requires no condition on D 
except m(D)< ~ .  These results are proved without any reference to eigenvalues. 
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