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Summary. Let W 1 ... .  , W N be N nonnegative random variables and let 9J~ be 
the class of all probability measures on [0, m). Define a transformation T 
on 9J~ by letting T# be the distribution of W a X  1 + . . .  + WNXN, where the X i 
are independent random variables with distribution /~, which are inde- 
pendent of W1, ..., W N as well. In earlier work, first Kahane and Peyriere, 
and then Holley and Liggett, obtained necessary and sufficient conditions 
for T to have a nontrivial fixed point of finite mean in the special cases that 
the W~ are independent and identically distributed, or are fixed multiples of 
one random variable. In this paper we study the transformation in general. 
Assuming only that for some 7 > 1, EWES< oe for all i, we determine exactly 
when T has a nontrivial fixed point (of finite or infinite mean). When it 
does, we find all fixed points and prove a convergence result. In particular, 
it turns out that in the previously considered cases, T always has a nontri- 
vial fixed point. Our results were motivated by a number of open problems 
in infinite particle systems. The basic question is: in those cases in which an 
infinite particle system has no invariant measures of finite mean, does it 
have invariant measures of infinite mean? Our results suggest possible 
answers to this question for the generalized potlatch and smoothing pro- 
cesses studied by Holley and Liggett. 

1. Introduction 

A number of authors have studied interacting particle systems in which the 
state of each site x ~ Z  ~ is described by a nonnegative real number ([5, 11, 14], 
for example), or more generally the state of the system is a random measure on 
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R d ([-1, 2, 7, 8, 10, 15]). In most cases it has only been possible to find sufficient 
conditions for the existence and for the nonexistence of invariant measures of 
finite mean. Once there is one invariant measure of finite mean there is 
normally at least a one parameter family of them indexed by the mean. A 
familiar example is "independent motions" where the invariant measures are 
Poisson processes with mean measures 2dx, 0_<_2< oo. 

As in the last example, the existence of a one parameter family of invariant 
measures with finite mean usually makes it possible to rule out the existence of 
nontrivial invariant measures with infinite mean. The idea is to show that any 
extremal invariant with infinite mean must be stochastically larger than 
all the members of the known one parameter family and hence must be the 
pointmass on the configuration which is identically infinity. When there is no 
invariant measure of finite mean (e.g. branching random walks in d < 2), it is 
natural to ask whether the process has invariant measures of infinite mean. 
However, the ideas used in the finite mean case simply do not shed much light 
on this. In most cases, it has been difficult even to formulate a reasonable 
conjecture concerning this question. Examples of situations in which this 
question has been raised either explicitly or implicitly are: (i) open problem b 
of Sect. 8 of Holley and Liggett (1981) for generalized potlatch and smoothing 
processes, (ii) conjecture 1.6 of Liggett (1978) for independent particle systems, 
(iii) Theorem 1.2 of Kallenberg (1977) for critical cluster fields, and (iv) Theo- 
rem 3.1 of Dawson (1977) for measure diffusion processes. (In the latter two 
cases, the question is implicit in the finite intensity assumptions in the theo- 
rems. In Dawson's theorem, this assumption appears in the proof rather than 
in the statement of the theorem.) 

This paper is an attempt to shed some light on the above question by 
considering a simplified version of the generalized smoothing process of Holley 
and Liggett (1981), which we will call the smoothing transformation. In order 
to define the smoothing transformation fix N nonnegative random variables 
W 1 , . . . , W  N with P(W~>0)>0, but which otherwise have an arbitrary joint 
distribution, and let 93l be the class of all probability measures on [-0, oo). The 
smoothing transformation T on ~Jl is defined by letting T# be the distribution 
of W1XI+. . .+WNXN,  where X 1 , . . . , X  N are independent random variables 
with distribution ~, and are independent of (W 1 . . . .  , WN). Of course, T can be 
regarded as a (nonlinear) transformation on the class E of Laplace transforms 
q~ of elements of gJL With this interpretation, T takes the form 

N 

(Tcp)(O)= E 1-[ q~(O W~). 
i=1 

Kahane and Peyriere (1976) gave necessary and sufficient conditions for T 
to have a fixed point of finite mean in the case that W1, ..., W N are independent 
and identically distributed. Their work was motivated by questions raised by 
Mandelbrot relating to a model for turbulence. Holley and Liggett (1981) did 
the same in the case that W1,... , W N are constant multiples of a fixed random 
variable. In their case, the problem was motivated by the connection between 
the smoothing transformation T and the generalized smoothing process. 



Fixed Points of the Smoothing Transformation 277 

In this paper we will study the transformation in general assuming only 
that for some 7 > 1, E WJ< oe for all i and will determine when T has fixed 
points of finite or infinite mean. To state our results we will need a number of 
definitions. Let ~ be the set of all nontrivial fixed points of T: 

~={#EgJ~: T/2=# and/24=6o}. 

The condition for the existence of a nontrivial fixed point for T is given in 
terms of the function 

v(c0 = log (i~1E(Wff; W~ > 0) ) 

which is defined for all ~ > 0  and is finite for 0 < ~ <7. 

Theorem 1. ~4=~/ f  and only if for some ~ ( 0 ,  1], v(~)=0 and v'(~)<O. 
Although the statement of this result is a simple dichotomy, its proof is not 

a two part affair - it is a combination of five propositions: (2.7), (2.12), (3.1), 
(3.2), and (3.5). Perhaps the best way of indicating the elements of the proof 
and how they fit together is to outline the argument for the example which led 
us to the theorem stated above. 

Suppose N = 2 and W 1 = W 2 with distribution given by 

P(W~=A)=p, P ( W ~ = A - 1 ) = I - p  

for some A > 1 and pc(O, 1). In this example 

v (c~) = log (2 [p A ~ + (1 - p) A - ' ] )  

so by Theorem 1, 54=r if and only if for some ee(0, 1], 

(a) 

and 

(b) 

u(cO - 2[p A~ + (1 - p)A -~] = 1 

u'(c 0 2 ( p A ~ - ( 1 - p ) A - ' ) l n A  
v '  ( c~) - - -  - < _ 0 .  

u(~) 2(pA ~ + ( 1 - p ) a - ~ )  - 

This conclusion was arrived at by considering four cases. 

Case I. v(1)=0. In this case 

E ( W  1 + We) = 2 [p A + (1 - p )A-  1] = u(1) = 1 

so a result of Holley and Liggett (1978) (see Theorem 7.1 on p. 190) can be 
applied to conclude that there are fixed points of finite mean if and only if 

E(2 W~ log (2 W~)) < - 2(�89 log �89 = log 2 

(the analogous transformation in their setting is T X = W ( X I + X 2 ) / 2  ). If we 
observe that E(2W~)= 1 we can write the condition above as 2E(W~ log W~)<0 
or in view of Theorem i and the fact that 
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v'(1) = u'(1)= 2(pA In A + (1 - p ) A -  ~ in A-  1) 

we can write the condition as v'(1)<0. 
In the last simplification we have relied on knowing the solution of the 

problem. Even before solving the problem however, it is easy to see that the 
transition between existence and nonexistence of fixed points of finite mean 
occurs at a special point. 

In order for the equality v(1)=0 above to hold, we must have 2 p A Z - A  
+ 2 ( 1 - p )  = 0, i.e. 

1 • ] /1  -- 16p(1 --p) 
A =  

4p 

In order for this to be real and larger than one, we must have p < p c = [ t h e  

smaller root of 16p(1-p) ]  = ( 2 - ] / 3 ) / 4  ~0.067. When p <Pc there are two possi- 
ble values of A. Checking the value of v'(a) one finds that the smaller value of 
A always has v'(~)<0 and the larger value always has v ' (a)>0 so the cutoff 
corresponds to the point on the curve 2 ( p A + ( 1 - p ) A - 1 ) =  1 which is above Pc- 
This curve is sketched in Fig. 1. 

A 

1 v(1)=O 

F 

0 Pc 0.1 

Fig. 1 

Case II. (3.1) Suppose v(ct)=0 and v'(c~)<0 for some ee(0, 1). Then ~=~0 (this 
covers the shaded region in Fig. 1). Define l~ = W~ ~ and let ~, 7 ~, and ~ be what 
results when we replace W~ by l~. It is easy to check that ~(1)=0 and ~'(1)<0 
so by Case I, there is a 0 ~  with finite mean. Let cp(0)=0(0~). If we let X(t) be 
the one sided stable process with index ~ and let z be an independent random 
variable with Laplace transform ~ then q~(O)=Eexp(-OX(z)) so ~0 is a Lap- 
lace transform. It is easy to check that Top = cp. 

Case III. (3.5) Suppose that v(c0=0 and v'(c~)=0 for some ~e(0, 1]. Then {}4=0 
(this covers the dotted line at the border of the shaded region in Fig. 1). Since v 
is strictly convex, v(fl)> 0 and v'(fl)< 0 for all fl < e. Let W/,e = W/exp(-v(fl)/fl) 
and v~, T B and ~t~ be what results when we replace W/ by W/,p. Then v~(fl)=0 
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and v}(fl)<0 so T~ has a nontrivial fixed point ~ by Case II. It turns out (see 
(3.2)) that Op(oo)= t o is independent of fl so by scaling we can choose the fixed 
point ~,~ so that O~(1)=(t0+l)/2 and hence we can let fl~e to construct a 
nontrivial fixed point for T. 

Case IV. (2.12a) If ~4=0 then there is an ,E(0, 1] so that v( , )=0.  (This shows 
that Cases I-III  give us all the cases in which fixed points exist.) Let D,(x) 
=e"X(1-q)(e-~)). If we let Y~ be a random variable with distribution given by 

N 

Ef(Y, )=e-~(")~ ,  E [ / ( - l o g  W/)W/~; W/>0] 
i = 1  

and let 

,+  
i =  i = 1  

then a little calculation (see (2.3)) shows that 

D.(x) = e~(~)ED.(x + Y~) - G~(x). 

Replacing x by x + y  in the last expression, dividing both sides by D~(x), and 
setting h~(y) = D.(x + y)/D.(x) gives 

hx(y)=eV(~)Ehx(y + y~) G.(x) 
D~(x)" 

If the second term on the right hand side were not there then we would know 
all the solutions of this equation. To get rid of it we let x ~ oo and show 

(i) hx(.), x~lR, are uniformly bounded and equicontinuous on compact 
subsets, so subsequential limits exist, 

(ii) if h is a subsequential limit then 

h(y) = e ~ ) E h ( y +  Y~) 
and consequently 

(iii) h must be Cld"-ol)X+Cze ~-~2)~ where fll and f12 a r e  the (at most two) 
fl's which have v(fl)=0. That these fl's lie in (0, 1] follows from the monoto- 
nicity and convexity of (p. 

The last statement is possible only if v(/~)=0 has at least one root in (0, 1] 
so this completes Case IV. To close the gap between this and the existence 
result we observe that if e is the smaller root then the convexity of v implies 
that v'(e) <0. 

Having found a necessary and sufficient condition for the existence of fixed 
points the next logical step is to describe the set of all fixed points. As we 
mentioned before, when there is a fixed point of finite mean there is typically 
exactly a one parameter family of them, so given the method of constructing 
fixed points in Cases II and III it seems natural to conjecture that is also the 
case in general. This turns out to be true if one considers "typically" to mean 
"under suitable irreducibility assumptions." 

We will say that the problem is of lattice type if there is an s > 0 so that 
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with probability one each log W~ is an integer multiple of s. We will always 
take s to be the largest possible such number and will refer to it as the span. If 
the problem is nonlattice we will set s=0 .  The set of all fixed points is 
parametrized by a class ~3~, s which we will now define. If s>O and c~e(0, 1), let 
~3~,~ be the collection of all strictly positive infinitely differentiable functions p 
on R 1 which satisfy 

(a) p(x+s)=p(x) for all xeR 1, and 
d k 

(b) ( -  1) k ~ [O~p(-log 0)] < 0  

for all k = 1, 2,. . .  and all 0e(0, oo). As will be seen in Sect. 5, ~3~,~ is rather large 
for these choices of a and s. If s = 0  and ~e(0, 1] or if a = l  and s>0 ,  let ~3~,s be 
the set of positive constant functions on R ~. (It is interesting to note that 
periodicities play a role if e < 1, but not if c~--1.) 

Note that v - 0  if and only if P (W~= I )+P (W ~=0 )=I  for each i and 
N 

P ( W I = I ) = I ,  and in this case 5=99l\{60}. Thus in the next result we will 
i = l  

assume that v is not identically zero, in which case there is at most one 
c~s(0, 1] at which v(c0=0 and v'(~)<O. When ~ = r  Theorem 1 guarantees that 
there is exactly one such e. 

Theorem 2. Suppose that v is not identically zero and that ~4:0. Let c~ be the 
unique point in (0, 1] for which v(c0=0 and v'(e)<O. 

(a) Then there is a natural one-to-one correspondence between ~oE~ and 
p ~ , , ,  which is given by 

1 -  q~(O) 1 /f v'(e) <0, lira 
o+o O~p(-logO) 

and 
1 - ~ o ( 0 )  

- 1  lira /f v'(cO = O. 
0+o O~p(-log O)llog OI 

(b) Suppose q ~  and 0~9~. I f  

l i r a  1 - (0) _ 1 ,  

0~o 1-0(0)  
then lim T" 0 = q~. 

n ~ c x )  

Part (a) says that the fixed points can be identified by the behavior of their 
Laplace transforms at O. When ~=1 and v'(~)<O this just says that the fixed 
points are parametrized by their means. Part (b) is our convergence theorem. It 
says that if the behavior of 0 matches that of q~ at 0 then T"O ~ ~o as n ~ ~ .  
When c~= 1 and v'(~)<O this just says that the two random variables have the 
same mean. In other cases the condition is more restrictive, but this situation is 
analogous to that for sums of independent random variables: when the vari- 
ance is finite, (S,-nm)/n 1/z converges to a normal, but when we deal with 
convergence to stable laws we require special assumptions on the tail of the 
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distribution--information about the behavior of the characteristic function at 
0. 

Our last result concerns the size of the tails of the distributions of the fixed 
points in the finite mean case. 

Theorem 3. Suppose v(1)=0 and v'(1)<0. Then for any # ~  and ~> 1 

~x~d# < oo if and only if v(~) < O. 
0 

The proof of this is a straightforward generalization of the proof of the 
corresponding result of Kahane and Peyriere (1976). To see what it says in a 
concrete case let W~= e zl where Z i has the normal distribution with mean m 
and variance o -2 > 0. Then ~ 4= ~ if and only if 

m < - o -  2 ~ N  if o -> l /21ogN 
and 

172 
m=< - l o g  N - ~ -  if o-_-<]//21og N. 

Elements of ~ have a finite moment of order /~ > 1 if and only if m = - l o g  N 
o-2 

- ~  and <log N. 

It is also interesting to apply this result to the first example considered 

above. If we let P<Pc and A = ( 1 - ] / 1 - 1 6 p ( 1 - p ) ) / 4 p  so v(1)=0, then as p--*0 
the number of moments which are finite increases to oo. Reversing this and 
recalling how the fixed points were constructed in Case II we see that as we 
move up the curve the number of moments which are finite decreases to 0. 

In view of the results of Holley and Liggett (1981), our theorems suggest 
the following conjecture about the behavior of the generalized smoothing 
process: the existence or nonexistence of stationary measures should cor- 
respond to the transience of recurrence of the underlying symmetrized random 
walk, while the effect of the spread of W should be only to determine the size 
of the tails of the stationary measure when it exists. If this were the case, the 
behavior of the generalized smoothing and potlatch processes would be con- 
sistent with the behavior of critical cluster fields (see Kallenberg (1977) for 
example). Resolving these questions even in special cases seems to be quite 
difficult. 

Perhaps it should be mentioned at this point that the connection between 
the generalized smoothing process and the smoothing transformation is 
stronger than mere analogy. To see this connection, consider the generalized 
smoothing process ~/t corresponding to the random variable W and the simple 

probabilities p(x, Y)=2~ for Ix-y[ = 1 on Z d. Suppose 
- i  

random walk transition 

the translation invariant initial distribution is a product measure, or more 
generally, has positive correlations in the sense of Harris (1977). Let q~t(0) be 
the Laplace transform of ~/t(0). By Theorem 1.1 of Harris (1977), the distribu- 
tion of the process at time t has positive correlations as well, so 
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d [_O~lxl= 1 dt ot(O)=E exp ~ qt(x)]-Ot(0) 

Ixl= 1 

r W 3)  2d ={Eexp -Or(0) 
= To, tO)-  Or(0), 

W 
where T is the smoothing transformation corresponding to W ~ = ~  for 

1 <_i<_2d. Therefore 

t ~ 
ot(O)>=e -' ~ ~(. T"Oo(O), 

n=O 

so that lira T"O0(0)= 1 for all 0 implies that lira or(O) for all 0. 
n~oo n~oo 

The proofs of our results are organized according to the tools used. In 
Sect. 2 the arguments use random walk ideas (potential theory and renewal 
theory); Section 3 concerns the stable law transformation; Section4 deals with 
an associated branching random walk. Section5 contains the parts of the 
proofs which do not fit naturally into the earlier sections. Theorem 1 is 
obtained by combining Theorems 2.7, 2.12, 3.1, 3.2, and 3.5. Theorem 2a is 
obtained from Theorems 2.18, 4.2, and 5.1. Theorems 2b and 3 are just 
Theorems 4.2 and 5.3, respectively. 

2. The Associated Random Walk 

Throughout this section, e will always be a point in (0, 1]. Let Y~ be a random 
variable with distribution determined by 

N 

(2.1) Ef(Y~)=e -v(~) ~ EEf( - - log  W/) W_:i, W~>0] 
i = 1  

for nonnegative continuous functions f on R 1. This is possible since the right 
hand side of (2.1) is a positive linear functional with unit norm. The random 
walk to be used in this section is the one whose increments have the distribution 
of Y~. Initially, the arguments are similar to those used in Holley and Liggett 
(1981). 

Given O z ~  with 0 ~ 1, define D~(x) and G~(x) by 

D~(x)-e [1-o(e-X)], and 
(2.2) N 

Put ~ = TO, and define/9~ and d~ analogously in terms of ~. 

(2.3) Lemma.  b~(x)=eV(')ED~(x + Y~)-G~(x). 

Proof Using the appropriate definitions, one checks that 
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D~ (x) = e ~:̀  [ 1 - b (e- x)] 
N 

N 

=e~E ~ [l-e(e-~w/)]-G~(x) 
i = 1  

N 

= ~ E[w/~D~(x-aog W~), W/>0]-Go(x) 
i = l  

= e~(~)ED~(x + Y~) - Go(x ). 

(2.4) Lemma. (a) G~(x)>O. 
(b) e-~XG~(x) is a decreasing fimction of x. 

(c) I f  (o> (p, then d~(xl<G~(x). 

Proof All three statements follow from the following fact: if 0 < u/__< v i < 1, then 
N N N N 

(2.5) I-[ u i - l +  y~ (1--tti)=> H v , - l +  Z (1-v~). 
i = l  i = 1  i = 1  i = 1  

To verify this fact, note that 

x i - 1 + (1 - x i )  = I~ x i -  1 <=0. 
~Xj  i -  i = 1  i t - j  

N 
(2.6) Lemma. (a) G~(x)<_e~XEF(ZV~(x)e-~), where Z =  ~ max(W/, l) and 

i ~ l  

f e - ~ - l + u  if  u < N  
F ( u ) = [ e - N - I + N  if u > N  

(b) lira ~ ) = 0  . . . .  ( )  - 

Proof For part (a), use the inequality u=<e (z-") to obtain 

N 

G.(x)<=e"~E e-~_ - 1 +  [ 1 -  ~p(e-~ W/)] 
i = 1  

N 

since ~, [1- (p(e-XW/)]<N.  Since (pe~, 1-(p(u)) is decreasing and 1-(p(u) is 
i = 1  U 

increasing in u. Therefore 

1 -  ~o(e-X W/)< max (W/, 1 ) [ 1 -  ~0(e-X)]. 

Part (a) now follows from the monotonocity of F on [0, ~).  For part (b), note 
that since 
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lim D=(x)e-=X= lim [1-~o(e-X)]  =0 ,  
X~O9 X~O9 

it suffices, by changing variables t=D=(x)e -~x, to show that 

EF(Zt) 
lim - -  = 0. 
t ~ m  t 

But this follows from the dominated convergence theorem since F(u) is bound- 
u 

ed and tends to zero as u + 0, and since Z has a finite first moment. 

(2.7) Theorem. Suppose v(1)=0 and v'(1)<0. Then ~ contains elements of finite 
mean. 

Proof. Put 9o(O)=e-~ and define q~,(O) recursively by q~,+l=T~o~. By Jensen's 
inequality, 

q~l(0)=Eexp [ - 0  ~ W~] >exp [-OE ~ Wi]=~Oo(0), 
i = 1  i=1  

since v(1)=0. Therefore 

(2.8) 

for all n. As a consequence, 

q,. + ~(0) >__,p.(0) 

r = lim ~o.(0) > ~Oo(0 ) 
tl~co 

exists and is a fixed point for T. Since ~o(0)>e -~ the measure in 9~ with 
Laplace transform ~0 has a mean which is at most one. In order to show that 
~oe~, it then suffices to show that ~o is not identically one. In order to do this, 
let D. and G, be defined as in (2.2) in terms of ~o,, with e =  1. By (2.8) and 
Lemma 2.4 (e), G,+l(x)<<_G,(x ) for all n > 0  and x~R 1. Since v(1)=0, Lemma 
2.3 gives 

D.+ l(X) = ED.(x + Y1)- ~.(x) 

> ED,(x + YO - Go(x). 

Iterating this, we see that 
n - 1  

( 2 . 9 )  D.(x)>EDo(x+S,)-E ~ Go(x+S k) 
k = 0  

where S. is the random walk with So=0 and increments which are distributed 
like I11. By (2.1), 

N 

EYI=- 2 E W i l ~  W i = - v ' ( 1 ) > 0 ,  
i=1  

so that lira S, = + oo a.s. Since Do(x ) is bounded and lira Do(x ) = 1, 
n~oo x~oo 
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(2.10) lim EDo(x + S , ) =  1. 
n ~ o o  

Since Do(x)< 1 and F is nondecreasing, Lemma 2.6a gives (recall c~= 1) 

Go(x)dx<=E ~ exF(Ze-Xldx 
- - o o  - o o  

F(z) 
=E Z ~ 5 - d z ,  

0 

which is finite since E Z < ~ ,  F(z) is bounded, and F(z)~�89 2 as z+0. By 
Lemma 2.4b, e-XGo(x) is decreasing in x. Therefore G o is directly Riemann 
integrable, so by the renewal theorem, 

lira E ~ Go(X + Sk)=O. 
x ~ m  k = 0  

This, together with (2.9) and (2.10) implies that 

lira lira D,(x) = 1. 
x ~ c o  n ~ o o  

Therefore, by the definition of D,(x), 

lira eX[1 - q~(e-X)] -- 1, 

so q~ is the Laplace transform of a distribution of mean one. This completes 
the proof of the theorem. 

The next theorem involves ideas from the Martin boundary theory for the 
random walk which corresponds to Y~. In preparation for that we need the 
following lemma. 

(2.11) Lemma. Fix ~ ( 0 ,  1] and assume that the problem is nonlattice. Let .~ 
be the set of all functions g on R 1 which satisfy (i) g(0)=l ,  (ii) g(y)e -~y is 
decreasing in y, (iii) g(y)e (1-~)y is increasing in y, and (iv) 

g(y) = eV(~) E g(y + Y~). 

Then .~ is the set of convex combinations of g~(y)=e (~-~)y for the (at most 
two) fl's which satisfy O<=fl~ 1 and v(fl)=0. 

Proof It is easy to check that gp~.~ if and only if 0__<fl__<l and v(fl)=0. 
Therefore the statement of the lemma is immediate if ~ = ~. Assume then that 
.~  is not e mp t y . .~  is a compact convex subset of C(R ~) with the topology of 
uniform convergence on bounded sets. Hence it is the closed convex hull of its 
extreme points by the Krein-Milman theorem (see Royden (1968), for example). 
Suppose that g is an extreme point of .~  and let 

g(u + y) 
g~(y) = 

g(u) 

By property (iv) of the definition of ~= and the fact that Eg(Y~)= e -vt=), 
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Eg(y+ Y~) _~ ~ gu(Y)g(u)e[Y~Edu] 
g(y) - 

Eg(Y~) ~ g(u)P[Y~du] 
- -  c t ?  

Since g ,~ .~  for each u and g is extremal, this implies that g = g ,  for all u in the 
support of the distribution of Y~. Therefore 

g(u + y) = g(u) g(y) 

for all y and all u in the support of Y~. Since g is continuous and the problem 
is nonlattice, it follows that g = ga for some fl, thus completing the proof of the 
lemma. 

(2.12) Theorem. Suppose that q ) ~ .  7hen (a) there is an c~[0, 1] so that v(~) 
=0, and (b) if v is not identically zero and c~e(0, 1] is such that v(a)=0 and 
v'(c~) <O, then 

D~(x + y) < 
limsup~o~ D~(x) =1 if v'(cr 

and 

lira D~(x+Y!=I if v'(cr 
x~oo D,(x) 

where y > 0 is any multiple of s if the problem is of lattice type, and is arbitrary 
otherwise. 

Proof Fix an cr 1], and put 

By Lemma 2.3, 

D.(x + y) 
h~(y) = 

D~(x) 

D,(x) = eV(")ED~(x + Y,) - G,(x). 

Evaluating this at (x +y) and dividing by D,(x) gives 

(2.13) hx(y)=eV~)Ehx(y + Y") G,(x + y) hx(y). 
D~(x + y) 

Since q ~ ,  Do~(x)e -~x= 1-(p(e -~) is decreasing in x and D.(x)e 0-~)~ is increas- 
ing in x. Therefore 

( 2 . 1 4 )  - (1  - ~ ) D ~ , ( x )  < D'~ (x) < ~ D~ (x), 

so evaluating this at (x + y) and dividing by D~(x) gives 

- (1 - ~)h~(y) N h'x(y ) N cchx(y). 

Since hx(O)= 1, it follows that 

(e ~y for y >  0 
h~(Y)<le-(l-~)Y for y<0 ,  
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which by the previous inequalities gives bounds on h'x(y ). In particular, the 
collection {hx(.), xeR 1} is uniformly bounded and equicontinuous on bounded 
subsets of R ~, and hence is relatively compact in the topology of uniform 
convergence on bounded sets. By the definition of Y~, 

E(e~r~)=e~(~ < 0% and 
(2.15) E(e-(1 - -  ~t) Y ~ )  = e,(1)-~(~) < oo. 

Now suppose x , o ~  and hx~(y)-~h(y) uniformly on bounded sets of R x. Then 
by Lemma 2.6b and the dominated convergence theorem, we may pass to the 
limit in (2.13) to obtain 

(2.16) h0,) = e~(=)Eh(y + Y~). 

Assume from now on that the problem is nonlattice. The lattice case is similar. 
Then h e ~ ,  so by Lemma 2.11, there is a fie[O, 1] for which v(fi)=0. This 
proves part (a) of the theorem. For part (b), suppose now that v(a)=0 and 
v'(e)<0. Since we are in the nonlattice case, v is not identically zero. By the 
convexity of v, if v(fi)=0 then f i>~ if v'(~)<0 and fi=c~ if v'(c0=0. Therefore 
by Lemma 2.11, h(y) is decreasing in y if v'(c0<0 and is constant if v'(a)=0. 
Since h(0)= 1, it follows that h(y)__< 1 if y >  0 when v'(c 0 <0  and h(y)= 1 when 
v'(e)=0. Since this is true for all limit points of h~(y) as x ~ o o ,  the proof of the 
theorem is complete. 

(2.17) Corollary. Suppose that ~oe~, c~e(0,1], v(c0=0, v'(c0<0, and v is not 
identically zero. Then G~(x) is directly Riemann integrable on R 1. (See p. 348 of 
Feller (1966) for the definition.) 

Proof By Lemma 2.4b, e-~G~(x) is decreasing in x. The first step is to use this 
monotonicity to show that if G~ is integrable, then it is directly Riemann 
integrable. To do this, take h>0,  and let _m,(h) and n~(h) be the minimum and 
maximum values of G~ on the interval [ ( n -  1)h, nh]. Then by the monotonicity 
of e-~G~(x), 

and 

Therefore 

N,(h) <__ e~hG~[(n-- 1)hi 

_m (h)> e-~hG~[nh]. 

M M - - 1  M 

[~n(h)-m_n(h)]<=e ~h ~ G~[nh]-e -~h ~ G~[nh] 
n = L  n = L - 1  n = L  

<=[e~h--e -~h] ~ G~[nh]+e~hG~((L-1)h) �9 
n= - o o  

Using the monotonicity of e -~ G~(x) again, 

nh 

S G~(x)>he-~hG~(nh) �9 
( n  - 1 ) h  

Therefore if ~G~(x)dx<ov, it follows that ~r~  ( h ) < ~  and ~_m(h)< oo, and 
- c o  n n 
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that 

h ~ [rfi,(h)-_m,(h)-l<(eZ~h-1) 7 G~(x)dx. 
n :  - - 0 O  - - c O  

Since the right side of this inequality tends to zero as h~0, G~ is directly 
Riemann integrable. To show that G~ is integrable, note that by Lemmas 2.4a 
and 2.6a, 

0 < G.(x) < e~EF(ZD~(x)e-=X). 

Since F is bounded, 
G~(x)dx < oo. 

- - o 0  

To deal with integrability at +o% choose f l>0  so small that f l<a/2  and 

<7. Since D=(x)e -~:' is decreasing in x, Theorem 2.12b implies that 
~ - f i  

1 
lira sup - log D~(x) <0. 

x ~ o o  X 

Therefore there is an x o so that for x > x o 

D~(x) < eel  
Since F is monotone, 

G~(x) < e~EF(Ze(e-~) 0 

for x > x  o. By making a change of variable u=Ze  (#-=)x in the integral and 
using Fubini's theorem (the integrand is nonnegative), 

T G~(x)dx<= 7 e~EF(Ze(#-~)~)dx 
XO XO 

=E 7 e~xF(Ze(#-~)~) dx 
XO 

7 Z ~/(~-e) F(u) 
< E  du. lo u 

The last integral is finite since EZ=/(=-#)<o% F is bounded, and F(u)~u2/2 as 
uS0. 

The following result is the key to identifying the elements of 5- 

(2.18) Theorem. Suppose that v is not identically zero and that ct~(0, 1] satisfies 
v(~)=0 and v'(a)__<0. I f  c p ~  then there is a p~3,,  s so that 

1 - ~o ( 0 )  
(a) lim - 1  /f v'(a)<0, and 

0~o 0"p( - log  0) 
1 - q~ (0)  

(b) lira - 1  /f v'(~)=0. 
0;o 0"[log 01p(- log 0) 
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Proof. Let S, be the random walk with S O = 0 whose increments have distribution 
Y,. Since v(e )=0  and ( p s i ,  Lemma 2.3 gives 

(2.19) Do(x ) =ED~(x + Y~) - G,(x). 

This is known as Poisson's equation for the random walk S,. In order to prove 
our theorem, it is necessary to determine the behavior at + oe of the solution 
Do(x ) of this equation. The result we need would follow from the general 
theory of Poisson's equation if either the random walk were transient, or if it 
were recurrent and its distribution were either lattice or nonsingular (see Port 
and Stone (1969), for example). In our situation, however, these assumptions 
are not necessary for the desired conclusion, so we will give our own de- 
rivation of the necessary facts which takes advantage of special properties of 
our solution Do(x ). We begin with the case v'(c0<0. In this case S, is transient 
since 

N 

EYe= - Z EW/~ l~ Wi= -v'(c~)>0. 
i = 1  

Iterating (2.19) and passing to the limit, we see that 

D~(x)= lim ED~(x + S,)-  ~ EG~(x + Sk). 
n ~ o o  k - O  

Here the sum is finite by Corollary 2.17, the renewal theorem (Theorem 1 of 
Sect. XI.9 of Feller (1966)), and the fact that EYe>O, while the limit exists 
because ED~(x +S,) is increasing in n. Of course 

p(x) = lim ED~(x + S,) > D,(x) > 0 

is harmonic for the random walk. Since D,(x)e -~x is decreasing in x and 
D~(x)e ~ is increasing in x, p(x) is continuous. By the renewal theorem and 
Corollary 2.17, 

~ EG~(x +S k) 
k = O  

is bounded on R 1 and tends to zero as x--* + ~ .  Since D~(x)<e ~, lira p (x )<  ~ .  
x ~  - o o  

Therefore since E Y~>O, p(x) is constant in the nonlattice case and periodic of 
period s in the lattice case. Hence 

lim [D(cO-p(x)] = - lira ~ EG~(X+Sk)=O. 
X ~ O O  X ~ o O  k = O  

Putting 0 = e -~ and recalling the definition of Do, it follows that 

(2.20) lim 1-~o(0) _1.  
0,o 0~ p ( - l og  0) 

To check that in the lattice case 
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d k 

( -  1) k ~ lOOP(- log 0)] <0  

for all k > 1 and 0 > 0, use the periodicity of p to write 

0~p( - log  O)=O~p(-log O + ns) 
~e -"~s-' lo-  n - n s ) ]  =0,~,[0 _ ~,t-,~,~,~- [l_e(Oe_.S)]. J I_ 1 - cp (0 e -"s) 

Therefore 
0~p(- log  0)= lim e"~S[1 -(p(0e-nS)]. 

n~ct3 

Since q0E :~, it follows that the derivatives of O~p(-log 0) have the correct signs. 
i - ~0 (0) . 

Note that since - -  is monotone, if ~= 1 then p is both monotone and 
0 

periodic, and hence constant. Turning now to the recurrent case, assume that 
v'(~)=0. Let ~ be the first time that S, enters (0, oo), so that S t is the strict 
ascending ladder variable associated with Y~. Recall that Y~ $ 0  since v ~ 0  and 
that EY~=O since v'(c0=0. Therefore ~< oo a.s. By (2.19), 

n - - 1  

D J ~ + S . ) -  F. G~(~+S~) 
k = O  

is a martingale. By the martingale stopping theorem, 

~An--i 

(2.21) ED~(x+S~.)-E ~ OJx+S~)=Djx). 
k=0 

By (2.15) and (3.6a) of Chap. XII of Feller (1966), 

(2.22) E e ~s~ < oo. 

Therefore, since D~(x)<e ~'~ and S,<S~ for n<'c, we may pass to the limit in 
(2.21) to obtain 

ED~(x+S~)-E ~ G(x+Sk)=D~(x ). 
k = 0  

This is again Poisson's equation, but for the random walk whose increments 
have the distribution of S t. Put 

(2.23) R(x)=E ~ G~(x +Sk)=ED~(x +S~)-D~(x ). 
k = O  

By the duality lemma of Sect. XII.2 of Feller (1966), 

R(x)=  ~ EG~(x+Tk) 
k = O  

where T k is the random walk whose increments have the distribution of the 
weak descending ladder variable for the original random walk S.. So, by the 
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renewal theorem and Corollary 2.17, there is a strictly positive continuous 
function p(x) which is constant in the nonlattice case and periodic of period s 
in the lattice case so that 

(2.24) lim [R(x) -p (x ) ]  = 0. 

Consider now the nonlattice case only, since the lattice case is handled similar- 
ly with derivatives and integrals being replaced by differences and sums re- 
spectively. Rewrite (2.23) as 

S~ 

(2.25) E ~ D'~(z+y)dy=R(z). 
0 

Since D~(x)<e ~, (2.14) and (2.22) can be used to justify the interchange of 
expectation and integration in (2.25) to obtain 

oo 

D'~(z + y)P(S >= y)dy=R(z)  
0 

Integrating both sides of this identity with respect to z (using (2.14) and (2.22) 
again to justify the interchange of order of integration), 

-i (2.26) ~ D~(x + y)P(S~> y ) d y -  e(z)dz  +c 
0 0 

where c =  ~ D~(y)P(S~>y)< oo. Since D~(x)e ~ is decreasing in x, 
0 

D~(x + y) < e ~y 
D (x) - 

for y>0 .  Therefore, dividing (2.26) by D~,(x) and using (2.22), Theorem 2.12b, 
and the dominated convergence theorem, we see that 

• R(z)dz+c 
lim o -ES~,  
x~ oo D~(x) 

which is positive and finite. Therefore, by (2.24), 

lim D~(x)_ 1 lim 1 
x~o x ES~ x ~  x ~ P(z)dz 

exists and is positive and finite. In the lattice case, the corresponding con- 
clusion is that 

(2.27) lira D~(x + ns) _ p(x) 
n~oz x+rls ES~ 
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for each xeR  ~. To deduce from this that 

D~(x) 1 
(2.28) x.oolim xp(x) - ES~' 

proceed as follows. Let 

D~(x + ns) 
u . ( x )  = 

x+ns  

for 0<x_<s. Then (2.27) asserts the pointwise convergence of u,, while (2.28) 
asserts the uniform convergence of u, on [0, s I. But by the monotonicity of 
D~(x)e - ~  and (2.27), D,(x)/x is bounded at + oo. Hence by (2.14), D~(x)/x has a 
uniformly bounded derivative at + oo. Hence the family {u,(x)} is equicon- 
tinuous on [0, s], so pointwise convergence implies uniform convergence. Part 
(b) of the theorem now follows from (2.28) with p(x) replaced by p(x)/ES~, by 
putting 0 = e  -x. The verification that p(x)~3,, s is the same as in the transient 
case, which was dealt with earlier in this proof. 

3. The Stable Transformation 

This section is devoted primarily to the construction of fixed points for T of 
infinite mean. This is done by stopping a one sided stable process at a random 
time whose distribution is a fixed point of finite mean for a closely related 
smoothing transformation. This approach is natural since fixed points of finite 
mean have already been constructed under appropriate assumptions in Theo- 
rem 2.7, and since in view of Theorem 2.18, any fixed point must have stable 
like tails. 

(3.1) Theorem. Suppose v(~)=0 and v'(c~)<0 for some ~(0 ,1) .  Then ~ is 
nonempty. 

Proof Define I~ = W~ ", and let ~, 7 ~ and ~ be defined in terms of {17V 1 . . . .  , WN} 
just as v, r and ~ were defined in terms of {W 1 . . . .  , WN}. Then ~(fl)=v(efl), so 
that ~(1)=v(c~)=0 and V(1)=ev'(:~)<0. Therefore by Theorem 2.7, there is a 
~ s ~  with finite mean. Put 

q~ (0) = q, (0~). 
Then 

N 

Trp(O)=E I~ qo(OW~) 
i = 1  

N 

= ~  [ I  O(0~w, ~) 
i = 1  

= ~ O ( 0 " )  

= O ( 0 " )  = ~o(0) .  

To check that (pe~, it then suffices to verify that qo is a Laplace transform. To 
see this, let X(t) be the one sided stable process of index a whose Laplace 
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transform is 

e - t O  ~ 

(see Sect. XIII.6 of Feller (1966), for example), and let z be a random variable 
with Laplace transform 0 which is independent of X(.). Then X(0  has Laplace 
transform ~o, since 

E(e-~ [g(e-~ 

=E[e -~ = 0(0~) = p(0). 

(3.2) Theorem. Suppose that ~ is nonempty and that v is not identically zero. 
Then 

(a) v(0) > 0, and 

(b) for any (pe~, ~o(oe) is equal to the unique fixed point in [0, 1) of the 
function 

Proof For q~ ~ ~, 

(3.3) 

f ( t ) = k ~  ~ tkP l(w,>oi=k �9 
= i = l  

N 

~o(0)=E [I ~o(0~). 
i = l  

Therefore, taking the limit as 0T 0% we see that 

N 

~o(ov)=E lq [l{w,=o~+~~176 
i=1  

= f[q~(oe)], 

so f has a fixed point in the interval [0, 1). Since f is convex, f ( 1 ) =  1, and 

f ' (1)=k=o ~ kP i---~,l~w'>~ 

N 

= 2 P ( ~ > 0 )  =ev(~ 
i = l  

it follows that v(0)>0 or that f ( t )=t  for all t. In the latter case, 

N 

l{wi>o}= 1 a.s., 
i = l  

so if we let W =  W 1 + . . .  + Ws, (3.3) becomes 

(3.4) ~o (0) = E ~o (0 W), 

or in terms of random variables, X = X W. Taking logarithms and iterating, we 
see that this can only happen if W - 1 ,  in which case W~--1 on {W~ > 0}. This 
implies that v is identically zero, which is ruled out by the assumptions of the 
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theorem. Thus v(0)>0, and f has a unique fixed point in [0, 1), which proves 
both parts of the theorem. 

(3.5) Theorem. Suppose that v is not identically zero, but that v(e)=0 and v'(a) 
= 0  for some ~ ( 0 ,  1]. Then ~ is not empty. 

Proof Since v is strictly convex under the given assumptions, v(fl)>0 and 
v'(fl)<0 for all ]~e(0, e). Define 

for 1 <_iNN and fie(0, ~), and let v~ and Tp be the corresponding function and 
smoothing transformation. Then 

N 

=,o,I 
k e i=  1 

~,(fl) 
= v ( ~ )  - -  

Therefore v~(fi)=0 and v } ( f i ) = v ' ( ] ~ ) - ~ < 0  for fie(0, e). Therefore T~ has a 

nontrivial fixed point 0~ by Theorem 3.1. Note that the function f of Theo- 
rem3.2 does not depend on ]~, so by that theorem, O~(c~)=toe[0, 1) is inde- 
pendent of ]~. Since O~ (cO) is a fixed point of T~ whenever O~(0) is, we may 
choose the fixed point ~ so that 

~ ( 1 ) =  t ~  
2 

Let X~ be a random variable with Laplace transform 0~, and choose a 
sequence fin T~ so that X~  converges vaguely to X < oo as n--* oo. Put q~(0)= 1 
and 

q)(O)=E(e -~ X <  oo) 

for 0>0.  Then Oe~(0)~q)(0) for all 0, so in particular q)(1)= 

a fixed point for Tp, 

N 

O~ (0) = E I~ ~ ( 0  W~ e- v~/~). 
i = 1  

Since v(]~n)~0, we may pass to the limit as n--*oo to obtain 

N 

(3.6) qo(0)=E l~ qo(0W~). 
i = l  

1 + to. Since Op is 
2 
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Letting 0+0, we see that ~o(0+)=f[cp(0+)] ,  where f is the function defined in 
Theorem 3.2. Since 

qo(0+)>~o(1) > to, 

it follows that qo(0+)=l .  Therefore X < c ~  a.s., so ~oe~ and hence ~oE~ by 
(3.6) and the fact that (p(1)< 1. 

4. The Associated Branching Random Walk 

This section is devoted to the proof of the convergence theorem for iterates of 
T. This convergence theorem also plays a role in the characterization of~, ~ given 
in Theorem 2a from the introduction. It is convenient to introduce the follow- 
ing discrete time branching random walk on [ -  0% oo). At each unit of time, 
each individual produces N offspring and then dies. If x is the position of the 
parent, then the offspring are placed at the positions { x + l o g W  1 .... ,x  
+ log  WN}, where the vector (W1,..., Wu) is chosen independently by each 
parent. Note that this is well defined even if x or log W~ is - oo. Let t/, be the 
configuration of the branching random walk at time n. Since 

E" [-[ [cp(eX)] "1(~)= [ I  [T(p(eX)] "(x), 
th (x) > 1 ~/(x) > 1 

a simple iteration yields 

rnr',~ =E{l~ [ I  [cp(eX)] ""(x)" 
tl. (x) > 1 

Let L, = max{x:t/~(x)> 1} be the position of the rightmost particle. 

(4.1) Lemma. Suppose that v is not identically zero, but that v(c0=0 for some 
c~>0. Then 

l i m L , = - o o  a.s. 
n~oo  

Proof. Since v is not identically zero and v(e)=0 for some c~>0, 

P ( m a x  W / = I ) < I .  
l <i<_N 

Therefore, if P ( m a x  W~<I)=I ,  L , ~ - o o  a.s. trivially. On the other hand, if 
l__<i__<N 

P ( m a x  W~>l)>0,  
l<_i<_N 

P(lim sup L, = - c~) + P(lim sup L~ = + oo) = 1. 
n~oo  n~oo  

Therefore it suffices to show that sup L, < oo a.s. In order to do this, let e > 0  
be such that v(c0=0. Then 

M.= Z 
x: r/n(X)~ 1 
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is a (nonnegative)  mart ingale ,  since 

N N 

E E e~'~ E Wi ~--1 '  
i = 1  i = 1  

This mar t inga le  was used by K a h a n e  and Peyriere (1976) and by K i n g m a n  
(1975). By the mar t inga le  convergence theorem,  l im M ,  exists and is finite a.s. 

n ~ o o  

Since e'L"<M,, it follows that  sup L , <  oo a.s., thus comple t ing  the p roof  of the 
lemma.  

(4.2) 
~a. I f  

then 

Theorem.  Assume that v is not identically zero. Suppose that ~pE~ and ~ 

l im 1 - (p ( 0 )  = 1,  
o~o 1 - 0 ( 0 )  

l im T" #J = cp. 

Proof By Theo rems  3.2a and 2.12a, v ( 0 ) > 0  and v ( e ) = 0  for some ee(0,  1]. Let  
be  the smallest  such value. Then  v ' ( e )<0 .  By T h e o r e m  2.18, 

and 

1 - q~ (c O) p( - log c + x) 
l im inf = c a min 

oso 1-~o(0) o<=x<=~ p(x) 

- p ( - l o g c + x )  l im sup 1 q~(c O) = c ~ max  
o~o 1 - r  o<_x<=s p(x) 

for c>O,  where  ps~3~,~. Since p ~  .... O~p(-logO) is strictly increasing on 
[-0, 09). Therefore  

and 

Fix c > 1 and put  

l im inf 1 - q) (c 0) > 1 if c > 1 
0+o 1-~o(0)  

l im sup 1 - (p (c O) < 1 if c < 1. 
o+o 1 - (p(O) 

~(O)=q)(cO) and (o(0)=~o(c-10). 

Then  ~, ~ and  for some 0 o > 0  and all 0 < 0 < 0  o, 

~(0)__< 0(0)_-_ ~(0). 
Therefore  

igl [~~ "(~)< l-I [~(e~)] ""(~)< [ I  
rln(x)>= 1 tl.(x)>= i tin(x)> 1 

[@(~)l',-(x~ 
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on the event {L ,< log  0o}. Since (~(0)< 1, Lemma 4.1 now gives 

lim inf T"~(O) <lira inf T"O(O) 
n ~ o o  n ~ o o  

<l im sup T"~(O) 
n ~ o o  

<l im sup T"~o(O). 
n ~ o o  

Since T"q)=~0 and T"(~=~5, it follows that all limit points of T"O(O) lie 
between q)(cO) and (p(c-~O). Since c >  1 is arbitrary, 

lim T"O(O) = (p(O). 
n ~ ( x 3  

5. The Totality of Fixed points; Moments 

From Theorems 2.7, 3.1 and 3.5, we now know that if v(c0=0 and v'(e)__<0 for 
some ee(0, 13, then ~ is nonempty. Furthermore, Theorem 2.18 limits the 
possible behavior at the origin of any ~0e~. The first result in this section says 
that each behavior permitted by Theorem 2.18 in fact can occur. 

(5.1) Theorem. Suppose that v is not identically zero and that v(cQ=0 and 
v'(~)<O for some c~(0, 1]. I f  pEg~ .... then there is a unique ~o~  so that 

lim 1-(p(0) - 1  /f v'(c0<0 
0;o 0~p(- log  0) 

and 

lim 1 -  q0(0) - 1  /f v'(e) =0. 
o~o O~p(-log 0)[log 0] 

Proof. The uniqueness comes from Theorem 4.2. If the problem is nonlattice or 
c~ = 1, then ~3~,s consists only of constants, so this result follows from Theorems 
2.7, 2.18, 3.1 and 3.5. So, we can assume that c~<1 and s>0 .  Let g(0)=e -~ if 
v'(c~) < 0 and 

e -Ox  g(o)= 2- dx, 
7~ 0 

which is asymptotic to 1 -0 ] log0 l  as 0+0, if v'(e)=0. Then by criterion 2 of 
Sect. XIII.4 of Feller (1966), since P ~ , s  it follows that 

O(O)=g [O~P(-~ l~ O)] 

is in !~. It is easy to check that 

lim 1 - 0(0) 
o~o O~p(-log 0) 

- 1  if v'(~)<O 
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and 
-4,(0) 

lim - 1  if v'(c0 = 0. 
o + o O ~ p ( -  log 0) tlog 0l 

By Theorems 3.1 and 3.5, ~ is nonempty. Take ~ e ~ ,  which by Theorem 2.18 
satisfies 

lim 1 - ~ ( 0 )  - 1  if v '(~)<0 
o+o 0~}( - log  0) 

and 
1 - ~ ( 0 )  

lim - 1  if v'(cO = 0 
0,o 0 ~ ( - l o g  0)llog 01 

for some P ~ , s .  Since b ~ 3  .... 0 ~ ( - l o g  0) is strictly increasing on [0, oo) and 
is 0 at 0 and tends to oo at oo. Hence u(O) can be defined by 

[u(0)]~  [ - l o g  u(0)] = O ' p ( - l o g  0). 

By the periodicity of p and ~, u satisfies 

u(Oe s) = u(O)e s. 

Therefore, if we define cp(0)= ~ [u(0)], it follows that 

and hence that 
~o(o w~) = ~ [u(O w,)] = 47 I-u(0) w3, 

N N 

[I ~0(0W0=E 13i ~[u(0)W3 
i = 1  i = 1  

=(,[u(O)] =~o(0). 

Furthermore, since u(O)/O is bounded away from 0 and ~ on (0, oo), 

Hence 

and 

lira log u(O) _ 1. 
0~o log0 

lim l-q0(0) - 1  if v'(c0<0 
o~o O~ 'p( - log  0) 

lim 1 - ~o (0) =1  if v'(~) = 0, 
o+ o O~ 0)llog 01 

by the corresponding properties of ~. It remains to show that (pe1~. In order to 
do this, it suffices to note that T"4'e!~ for all n and to use the argument of the 
proof of Theorem 4.2 to show that 

lim T" 4' = (p. 
n ~ c o  

The point of the next result is to show that ~3~, s 
e~(0, 1) and s>0 .  For simplicity, we will take s=2~c. 

is relatively large for 



Fixed Points of the Smoothing Transformation 299 

(5.2) Theorem. Take e~(0, 1), let a, and b, be numbers which satisfy 

+ b  1 +  <1  
n=l  j=O 

and let 

p(x) = 1 + ~, [a,  sin n x + b. cos nx].  
n=l  

Then P ~ , 2 ~ .  

Proof  Let D denote differentiation. Then  it is easy to check by induction that 
for k > l ,  

k--1 

So, it suffices to show that 

k-1 ] 

for k _-> 1 and x~R .  Define %"(k), blk) and c (k) by 

Then c (~  - 1, a (~ - - h(~ = h dk+ 1) = ( k -  cOc (k), 

n ( k + l ) _  ( k ) _  b~k) 
an - -  an  k - -  ~x 

and 

b~k+ 1 ) _  (k) n . (k )  
- b .  + k _ ~ %  . 

Therefore  c (k) >_ 0 for k_> 1 and 

[ b , ]  }, (k+l) 2 ] ~ _ ~ )  {[a(k)] 2 ~_ (k) 2 [G  ] + [b~k+ 1)] 2=  n2 

so iterating, n2] [a(k)]2 + [b(k)]2 < (a~ + b. 2) ~ 1 + ~  . 
j=O 

By the assumption,  then, 

{ Ea~,k)3 ~ + Eb(,~)] 2} ~/2 < 1 
n ~ l  

for k >  1. The result then follows from the fact that 

sup [a sin x + b cos x] = l ~  + b2. 
x 
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The proof of the following theorem follows that of the corresponding result 
in Kahane and Peyriere (1976). 

(5.3) Theorem. Suppose v(1)=0 and v'(1)<0. Then for any i~e~ and fl> 1, 

~xad#< oe if and only if v(fl)<O. 
0 

Proof. Let X, X1,. . .  , X N be independent random variables with distribution #. 
Suppose first that EX p < oo. Then write 

N 

> ~ W..BX ~ i i ,  
i = 1  

where the inequality is strict on a set of positive probability. Then 

N 

EX~>EX ~ ~ EW~ ~, 
i = i  

so that v(fl)<0. For  the converse suppose v(fl)<0 and let k be the integer 
which is determined by k < fl _<_ k + 1. Then for x i > 0, 

x#i l (k+ 1) x i < 
i= i= 

N 

i = 1  

for appropriate constants cj1 ..... j~. Note that only terms with maxji<k and 
N 

ji<=k+ 1 appear in the second summation. Therefore, if Y, I71 . . . . .  YN are 
i = l  

independent and identically distributed nonnegative random variables, it fol- 
lows that 

(5.4) E i~1 YIW/ <(EY~)eV(~)+c[Eyk]~/k 

for some c which may depend on fl but not on the distribution of Y. This can 
be restated as 

~xad(Tv)<e~{a'~xadv+c[ixkdv]~/k 
0 0 

for any vegJt. Recalling from the proof of Theorem 2.7 that 

# =  lim Tn61 
n ~ o o  
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oo 

where 61 is the pointmass at 1, we see that v(fl)<0 and ~xkdl~< oe imply that 
0 

~ oe. Since v(fl)<0 and v(1)=0 imply that v < 0  on (1, fl], the previous 
0 

statement can be iterated to complete the proof of the theorem. In the first step 

of the iteration, of course, ~ xd#< Go is used, but that is part of the statement 
of Theorem 2.7. 0 
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Added in Proof. After completion of this paper, B. Mandelbrot suggested that some of the remarks 
and conjectures in his papers in C.R. Acad. Sci. Paris, Series A (volume 278, pp. 289-292 and 355- 
358) might be directly relevant to our work. The closest point of contact appears to be his conjec- 
ture in paragraph 17, which our results show is incorrect. 


