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SPLITTING INTERVALS

BY MicHAEL D. BRENNAN! AND RICHARD DURRETT?

Utah State University and University of California, Los Angeles

In the processes under consideration, an interval of length L splits with
probability (or exponential rate) proportional to L*, a € [ — 00, 0], and when
it splits, it splits into two intervals of length LV and L(1 — V) where V has
d.f. Fon (0,1). When « = 1 and F(x) = x, the split points are i.i.d. uniform
on (0,1) and when a = oo (a longest interval is always split), the model is a
splitting process invented by Kakutani. In both these cases, the empirical
distribution of the split points converges almost surely to the uniform
distribution on (0, 1). On the other hand, when a = 0, the model is a binary
cascade and the empirical distribution of the split points converges almost
surely to a random, continuous, singular distribution. In this paper, we show
what happens in the other cases. Can the reader guess at what point the
character of the limiting behavior changes?

1. Introduction. In this paper we consider a class of discrete and continuous
time stochastic processes in which the unit interval undergoes random subdivi-
sion at successive points {X;, i > 1}. The problem is to determine the limiting
behavior, in the sense of weak convergence of probability measures, of the
empirical distribution function
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In discrete time the processes are as follows: {V,, n > 0} are iid. with
distribution function F on (0,1). At time n = 0, there is one interval, [0,1]. At
time n = 1, [0,1] splits into a left interval of length V| and a right interval of
length 1 — V,. At time n, there are n + 1 intervals with lengths L,, L,,..., L, ;.
One interval is chosen from the n + 1 intervals according to the probability law
which assigns mass proportional to L{ to the ith interval, a« € [ — o0, c0]. (For
a = oo a longest interval is always chosen and for « = — oo a shortest interval is
always chosen.) The chosen interval, say of length L, splits at time n + 1 into a
left interval of length LV, | and a right interval of length L(1 — V, ;).

Special cases of this model have been previously studied. For a« =1 and
F(x) = x, the X, X,,... are i.i.d. uniform on (0,1) and n~'N,(x) — x as. for
each x € (0,1) by the classical strong law of large numbers. a« = oo is a stochastic
version of a deterministic scheme for splitting [0, 1] invented by Kakutani (1975).
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In this case and indeed whenever a > 1, there is a greater tendency to split longer
intervals than when a = 1, so it is natural to conjecture that n~'N,(-) converges
to the uniform distribution for & = oo and for 1 < a < c0 by “interpolation.”
This conjecture is correct and has been proved by Lootgieter (1977) and van Zwet
(1978) for a = o0 and F(x) = x, Lootgieter (1978) for a = c0 and F with a
Lebesgue component, and by Lootgieter (1981) for 1 < @ < oo and F arbitrary.
The case a =0 is radically different. Here n"!N,(-) converges weakly to a
random, strictly increasing, continuous distribution function which depends on F
and is always singular with respect to the uniform distribution. These random
measures were first constructed by Dubins and Freedman (1967) and have been
studied in detail by Peyriere (1979) and Graf, Mauldin, and Williams (1986).

The case a = —oo is trivial. For n > 1, |X,,, — X,| < 27" ! and thus {X,)
converges to a limit X and n~'N,(-) converges weakly to the point mass at X_.

At this point the reader might like to test his or her intuition by guessing the
limit behavior for a € (—00,0) or (0,1). @ € (0,1) is the most intriguing case.
Why is a = 0 singular? Roughly because small intervals are as likely to split as
large intervals so when a subinterval gets a split point it increases its probability
of getting later split points and the split points “pile up.” To a lesser degree this
is true for 0 < « < 1; since x*+ (1 — x)*> 1for0 < x <1 and « < 1, when an
interval splits it increases its probability of splitting later. Is this effect strong
enough to produce singular limit measures for 0 < a < 1?

Our first step in the solution of this problem is to reformulate the splitting
processes in continuous time. The continuous time process is as follows: At ¢ = 0,
there is the interval [0, 1]. After creation, an interval of length L waits mean L~ *
exponential time and then splits into a left interval of length LV and a right
interval of length L(1 — V). V has distribution function F on (0,1) as above.
Both V and the waiting time to split are independent of the past and the other
present intervals.

Let Z(t) = the number of intervals at time ¢ and N(¢, x) = the number of
intervals contained in [0, x] at time ¢ Since a version of the discrete time
splitting process is embedded in the continuous time splitting process at the split
times T, = inf{¢ > 0: Z(t) = n + 1}, the original problem is solved by determin-
ing

I N ( L, )
i Z(t)
for each a and F.

There is a nice way to view the continuous time processes which makes the
correct answer intuitively plausible. If an interval of length L is associated with a
particle at —log L, then the system becomes a Markovian branching random
walk where a particle at x waits a mean e** exponential time and then splits into
two particles at x — logV and x — log(1 — V). From this viewpoint, the behav-
ior for a < 0 is easy to see. The time between splits decreases exponentially fast,
so the number of intervals (or particles) explodes in finite time and at the
explosion time only one nested sequence of intervals has split infinitely many
times. It follows that the split points { X} for this sequence of intervals converge
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almost surely to a random limit X, and n 'N,(-) almost surely converges
weakly to the point mass at X . Details are given in Section 3.

For a > 0 as particles move away from the origin their waiting times to split
grow exponentially large. This keeps the particles close together, i.e., the intervals
about the same length, and suggests that the limit will be uniform. Unlike a < 0,
this argument is far from a proof and requires quite a bit of work.

A key to our analysis for a > 0 is to observe that the splitting processes on
[0, X,] and [ X,,1] are independent (this is not true in discrete time); moreover,
after scaling they are replicas of the original process on [0, 1]. More precisely,

1 fort < T\,
(1) 2(2) = {ZI(X{‘(t— 7)) + Z((1 - X,)*(¢ = Ty)) fort =T,

where Z, and Z, are independent with the same distribution as Z and indepen-
dent of T, and X,. Consequently,

LN X)L Z(Xit)
(1.2) e T Z(8) | e Z(X0t) + Zy((1 — X))

To understand how to attack (1.2) for a > 0, we first analyze (1.2) for a = 0
which is easy. When « = 0, all intervals split at rate one so Z(t) is a binary Yule
process. Consulting Ross (1983), we find Z(t) has a geometric distribution with
mean e’ and e ?Z(t) » W a.s. where W is a mean one exponential. Substituting
these observations into (1.2), gives

N(t, X,) . e~ Z,(¢)

lim ———— =
(1.3) P Z(t) P e Z\(t) + e Zy(2t)
=W(W,+W,) '=U as.

W, and W, are independent copies of W, hence U is uniform on (0,1) (and
independent of X,). By considering other split points, it is easy to see that
N(t, -)/Z(t) almost surely converges weakly to a random distribution function
which is strictly increasing and continuous. To see that this measure is
Lebesgue-singular is a little more difficult. It turns out this construction is a
special case of a general random construction by Dubins and Freedman (1967)
which almost surely produces Lebesgue-singular measures on (0, 1). Here Dubins
and Freedman’s p is dF X dx on the unit square. Other results about the limit
measure and the a = 0 discrete time splitting process are found in Peyriere (1979)
and Graf, Mauldin, and Williams (1986).

Returning to a > 0 and motivated by computation (1.3), we next analyze the
behavior of Z(¢)/m(t) for m(t) = EZ(t). Taking expectations in (1.1), we obtain

m(t)=e '+ 2/()te‘s‘/;lm(x“(t —5)) dF(x) ds,

or,in differential form
m/(t) = —m(t) + 2 [ 'm(x°t) dF(x),

(1.4) 0

m(0) = 1.
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F(x) = (F(x) + 1 — FQ1 — x — ))/2 is the symmetrization of F about ;. Since
only F enters into (1.4), we can and will, without loss, assume F is symmetrlc
about ;

(1 4) is easy to solve when 1/« is an integer and then m(t) 1s a polynomial of
degree 1/a. For example, when F(x)=x and a = 1, I, and 3, m(¢)=1+1¢,
1+ ¢+ t%/6, and 1 + t + t2/4 + ¢*/60. The polynomials do not tell us much
about m(t) for other a’s, but they were one clue that led us to guess m(¢) grows
like ¢'/2. This guess is correct and in Section 2 we analyze (1.4) to show

(1.5) m(t) ~ Kt'/*

as t > o. K> 0 is a constant whose value depends on a and F. A similar
computation for v(t) = Var Z(t) gives

o(t) = —o(t) + zfo‘u(xat) dF(x) — 2m(t)m/(t)
(1.6) +/)1f(x,t)h(x,t)dF(x),

v(0) =0

for f(x, t) = m(x%t) + m((1 — x)*) + m(t) and h(x,t) = m(x°t) +
m((1 — x)°¢) — m(t). In Section 2 we show (1.6) implies

(1.7) o(t) < Ct¥* ¢,

where C > 0 and 0 > 0 are constants depending on a and F. Here we run into
some technical difficulties. We are unable to get good enough estimates of h(x, ¢)
in (1.6) to prove (1.7) without additional assumptions on F. To estimate h(x, ¢),
which we do in Section 2, we use a coupling constructed by Ney (1981) to
estimate the rate of convergence in the classical renewal theorem (i.e., the rate of
convergence of the expected number of renewals in (¢, ¢ + h] to p 1h as ¢t = o).
To use Ney’s couplmg, we must assume that the distribution function G, defined
by G( y)=1— [¢ ~2xdF(x), has a nonzero Lebesgue component for some
n-fold convolution. In particular, this hypothesis is satisfied if F' has a nonzero
Lebesgue component.
In Section 2 we show that (1.5) and (1.7) imply

(1.8) Z(t) ~ Kt'/* as.

as t = oo. Substituting (1.8) into (1.2), we obtain

N(t, X)) Z(Xpt) K(Xpt)”
Z(t)  Z(t) K&/

as t — oo. Clearly (1.9) remains true with X, replaced by any split point and
with X, replaced by x by density of the split points.

Combmlng our results with the earlier results mentioned above, we obtain our
fnain result.

(1.9) =X, as.

THEOREM 1.1. Let the distribution function G(y) = ¢ 2xdF(x) have a
Lebesgue component for some n-fold convolution. For the discrete or continuous
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time splitting process with splitting distribution F and parameter «, there are
three possibilities depending on «:

(1) For a € (0,0], n"'N,(-) almost surely converges weakly to the uniform
distribution.

(2) For a = 0, n™'N,(-) almost surely converges weakly to a random distribution
function which is strictly increasing, continuous, and singular with respect
to the uniform distribution.

(3) For a € [—0,0), n"!N,(-) almost surely converges weakly to a random
point mass.

We have proved our contribution to this theorem except for the following
details: The analysis of the integral-differential equations (1.4) and (1.6) for m(¢)
and o(¢) leading to asymptotic estimate (1.8) is in Section 2. The explosion
argument for a <0 is in Section 3. We only use the hypothesis on G for
0 < a < o0 and a # 1/n for some integer n.

2. Asymptotic estimates for Z(¢), 0 < a < co. In this section we prove the
asymptotic formulas

(2.1) m(t) ~ Kt'/*,
(2.2) o(t) < Ct¥* 9,
(2.3) Z(t) ~ Kt~ as.

as t > . K, C, and @ are positive constants depending on « and F. (Here and
below C denotes a positive constant whose value is unimportant and may change
from line to line.)

First we recall that m(¢) satisfies the integral-differential equation

m(t) = —m(¢) + 2/01m(x°‘t) dF(x),

m(0) = 1.
It will be convenient to rewrite this equation as

2.4) m'(t) = —m(t) +/f01x_‘m(x"‘t) dF(x),

m(0) =1,

where F(x) = [F2udF(u) is a distribution function by the symmetry of F.
The first result of this section establishes the polynomial solutions to (2.4)
when 1/a is a positive integer.

PROPOSITION 2.1. m(t) has a power series representation m(t) =1+ t +
Y% ,a,t" which is absolutely convergent for 0 < t < co. If 1/a = n, the series
terminates and m(t) is a polynomial of degree n with positive coefficients. If 1/a
is not an integer, set p = the smallest integer larger than 1/a, then a, > 0 for
k <p, a,,, <0, and the series alternates thereafter.
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PROOF. It is an easy computation to check that (2.4) uniquely determines the
a,’s by the formula @, = 1and a,,, = a,(k + 1)/ }(x**~' = 1) dF(x) and that
the resulting series is absolutely convergent and satisfies (2.4). O

Except when 1/« is an integer, the power series for m(¢) tells us little about
m(t) for large t. To determine the behavior of m(t) as t = 0, we will make
repeated use of renewal theory and the renewal theorem. Chapter 11 of Feller

(1971) contains all the renewal theory we use. The renewal theorem is on page
363.
We need a technical result.

LEMMA 2.2. Let X,, X,,... be an i.i.d. sequence of positive random vari-
ables with distribution function G having mean p and satisfying [e* dG(x) =
M < <. Then for S, =0, S, = L7, X,, and N, = inf{k > 0: S, > t}, it follows
that sup,, . , ., E(exp(Sy — t)) < oc.

PrOOF. Setting R(¢t) = E(exp(Sy, — t)), we have

R(t) = fo e**~'dG(x) P(S, € dy)

n=0%0

sM}:P(S,,st)<oo

n=0

and R satisfies the renewal equation
R(t)=| e'dG(y)+ | R(t-y)dG
(=" )+ ['R(t =) dG(y),
SO

lim R(¢t) =p~' [ €1 - G(y))dy=p"'(M-1).0

t— x 0

Returning to the analysis of (2.4), for ¢ > 0 and — o0 < u < oo, we make the

substitutions ¢ = e® g(u) = e “m(e®"), h(u) = e “m’'(e®), and y = —logx
in (2.4) and obtain
(2.5) &) = [“glu-y)d6(y) - h(w),

(

where G(y) =1 - Fle™ —). G has mean fi = [} — 2x log xdF(x) < oo.

A

We let Y,,Y,,... be an ii.d. sequence with distribution function G, S, = 0,

and S, = £"_,Y.. By iterating (2.5) n — 1 times, we obtain
n-1

(2.6) g(u)=E(g(u—Sn)— L h(u =S,
k=0

For —x < T <u, we set N(u)=inf(k>1: u—-S,<T} and N(u, k)=
min{N(u), k}. It is a straightforward exercise in manipulation of stopping times
to check that (2.6) remains true when n is replaced by N(u, k). For y < u,
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8(y) < m(e*)e™”. Consequently,
&(u ~ Sy, 1)) < m(e™)exp(Snqy, 1) — 1)
< m(e**)exp(Sn(u) — u)
and
E(exp(Swe, — u)) = e "E(exp(Sy, — (u = T))) < o

by Lemma 2.2. So replacing n by N(u, k) in (2.6) and letting & — o0, we obtain
by dominated convergence on the first term and monotone convergence on the
second term

N(u)—1
g(u)=E(g(u—SN(u)))—E( Z h(u_Sk))

(2.7) k=0
=dJ(u) — H(u).
J(u) < oo and J(-) satisfies the renewal equation
Jw) = [T glu-y)dG(y)+ [ I(u - y)dG(y)
(u—T)+ 0
for u > T. By the renewal theorem, we obtain

limJ(u)=ﬁ_1/w/w g(s — y) dG(y) ds
(28) u—occ Toc (s—T)+
=7 | 8(T=s)(1 - G(s))ds < 0.

This integral is finite since g(T — s) ~ Ce® as s = oo and [{%e%(1 — G(s))ds = 1.
We next establish bounds on the growth of m(¢) and m/(¢).

PROPOSITION 2.3.
m(t) = O(t"*) and m'(t) = O(tV*"') ast— .

Proor. H(u) >0 so m(t) = O(t'/*) follows from (2.7) and (2.8). If
{L,: 1 < i< Z(t)} are the interval lengths at time ¢ and L(¢) = L#9L%, then
m'(t) = EL(¢). If 0 < a < 1, m/(t) is increasing so m'(¢)t < [?'m'(s)ds < m(2t).
If 1 < @, then m’'(¢) is nonincreasing so m'(t)t < m(t). O

By Proposition 2.3, A(u) = O( e“"") as u — o00; so returning to (2.7), we see
that H(u) satisfies the renewal equation

H(u) = h(u) + /()"‘THw — y)dG(y)

for u > T, and by the renewal theorem

lim H(u) =" och(s)ds < o0.
uUu—x< T

We have established
(29)  lim g(u) =4~ [ (T —s)(1~ G(s))ds — ™" [ "h(s)ds,
u— 0 T
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so (2.1) is proved once it is shown that the right side of (2.9) which is evidently
constant in T is not zero. The next proposition is needed to show this. It relates
the values of m(t#) for fixed ¢, fixed F, and varying a.

PROPOSITION 2.4. Let m(t,a) be the solution of (2.4), then if t> 0 and
a, < a,, m(t, a;) > m(t, ay).

Proor. We construct two splitting processes SP(«,) and SP(«a,) on the same
probability space such that P(Z(t, a;) > Z(¢, a,)) = 1 and P(Z(t, o)) > Z(t, a))
> 0 for t > 0.

Both processes split at the same set of points {U;: i > 1} determined by
splitting distribution function F. We think of these points as predetermined
before ¢ = 0. U, is the split point of [0,1], U, is the split point of [0, U,], U, of
[U,,1], U, of [0, U,], Uy of [U,, U,], and so on.

The processes are coupled as follows: Both processes split at the same time at
U,. Thereafter, if I is an unsplit subinterval of length L of SP(«,), there are two
possibilities: (1) I is also an unsplit subinterval of SP(«;). In this case, both
processes split I simultaneously with exponential rate L*> and SP(a,) splits I
alone with rate L* — L*. (2) I has already split in SP(«;). In this case, SP(«,)
on the subintervals of I and SP(«,) on I run independently. O

Returning to the analysis of (2.9), we assume 1/a is not an integer and set
q = the integer such that 1 /(¢ + 1) <a <1/qif0 <a<1land ¢ =0if a > 1.
When ¢q > 1, m(t,1/q) is a polynomial of degree g with positive coefficients by
Proposition 2.1. By Proposition 2.4, m(¢, a) > m(¢,1/q) > a,t?. When g = 0,
m(t) > 1. In either case, g(u) > Cexp((aqg — 1)u). We have

[ T8(T )1 - G(s)) ds = i [ Cexpl(ag ~ 1)(T - £))(1 - G(s)) ds
(2.10) > Ce<“q“”ﬁ“fx(l — G(s))ds

= Cefa— 1T,

Substituting (2.10) into (2.9) and using Proposition 2.3 to bound the second
integral of (2.9), we obtain

lim g(u) = Ce® VT — Ce o> 0
u—oc
for T sufficiently large since —a < aqg — 1 < 0. The proof of (2.1) is complete.

We now turn our attention to proving (2.2). We recall that v(¢) = VarZ(t)
satisfies the integral-differential equation

| o(t) = —o(t) + 2flu(x“t)dF(x) — om(t)m/(¢)
(2.11) +f‘f(x, t)h(x, t) dF(x),

v(0)=0
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for

f(x,t) = m(x°t) + m((1 — x)°t) + m(¢)
and

h(x, t) = m(x°t) + m((1 — x)°t) — m(¢).

We need bounds for the last integral in (2.11). f(x, t) < 3m(t) < C(1 + ¢/%),
and we establish bounds on the growth of A(x, ¢) next.

LEMMA 2.5.
/1|h(x, t)|dF(x) < C(1 + £/°%)
0

for a § > 0 which depends on a and F.

ProOF. We first consider 0 <a <1. Let 0 <z<x <1 and X, X,,... be
i.i.d. with distribution function F. X, =1, W, = X,X, --- X,,and J = inf{i > 1:
W, < z}. Starting with

1 N
(2.12) m(t) = [y~ 'm(y°t) dF(y) = m/(2),
we iterate this equation J — 1 times to obtain
Q]_l
(2.13) m(t) = E(W; 'm(Wst)) — E( - W'i_lm'(Wfi"t)).
i=0

[As JJ is random, a more rigorous development of (2.13) is to recognize that it is a
rearrangement of (2.7).] Since m’(t) is increasing,

E(’Z W, lm'(W;*t)) < m'(t)E(Jf W)

=0 =0

2.14) J-1
( =2_‘m’(t)E( Z e—(—logz—S,))
1=0
=z"'m'(t)R(z),
where S, = —log W,. An argument similar to the proof of Lemma 2.2 shows
sup, -, . R(z) < oo so we have verified
(2.15) 0 < E(W;'m(Wst)) — m(¢t) < Cz"'m/(¢).

Next, we repeat the above procedure with a new i.i.d. sequence X'l, X'2, e
Everything is as above except X, = x. Then (2.12) is replaced by

x 'm(x°t) = f](yx)_lm((yx)“t) dF(y) — x 'm’(x°t).

The right-hand term in (2.14) -becomes z“m’(t)R( z/x) and (2.15) remains true
with W, replaced by WJ and m(t) replaced by x~'m(x°t). C on the right side of
(2.15) does not depend on x in this case.

Next we use a couphng of Ney (1981) to construct the sequences X, X;, X,, ..
and X,, X,, X,,... so that for small z, W,, and VI{, have high probability of
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being the same random variable. Ney constructed his coupling to estimate the
rate of convergence in the classical renewal theorem so it is easier to apply his
results by initially working with the sums S, = —log W, and S, = —log W,. We
set K(r)=inf{n >0: S, > r} with a s1m11ar definition for K(r)

Ney constructs a joint realization of {S;} and {S } on the same probablhty
space with a random variable, 7, such that

216) SK(r) {r<r} _dSK(r)I{Tsr)

and
N

(2.17) P(ﬁr>r)sCP(ZZi>r+logx),
i=1

where N and {Z;);2, are independent. {Z;} are iid. with P(Z,>r) <
C[r1 - G(y)dy and P(N > i) < C&' for some 0 < & < 1. [Equation (2.17) fol-
lows from Lemma 2.1 of Ney’s paper.]

1-G(y)=Fle?-) < ]:_y2udF(u) < 2e7”.

Consequently, P(Z; > r) < Ce™" and

o

( Y Z,> r) e " Y (E(exp(vZ,)))'P(N = i) < Ce™ ™

i=1

for0<y<1 sufﬁmently small.
We next set r = —log z in (2.17) and convert (2.16) to a statement about W,

and Wj. From our computations above

(2'18) VVJI(‘rs—logz} =dWJI{‘rs—Iogz)
and

(2.19) P(r> —logz) < Cx 2.
Next,

|x " 'm(xt) — m(¢)|
< E(W; 'm(Wst) — m(t))
+ E(Wy 'm(W5t) — x~im(x°t))
+| B(Wy m(Wet) — Wy 'm(We))|
< Cz 'm/(t) + E(|lem(W}’t) - Wy 'm(Wjt)
< Ca'm(t) + E(W; ' m(Wit) I, g2y
+E(VVJ m(W:,t) (r> - logz})
by (2.15) and (2.18). m(t) < C(1 + ¢'/*) and
E(W;') = E(exp(S,)) = 2 'E(exp(S, + log ) < Cz™"'
by Lemma 2.2, so
E(W; 'm(WSt),, . o)) < C(E(W;Y) + £/°P(z > —log 2))
< C(z7 '+ x7z7/*)

I(r>—logz})
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from (2.19), and a similar calculation holds for the W term. We have
lx 7 'm(xt) — m(¢t)| < C(27'm/(t) + x %27/,
and finally replacing z by ¢ ° for 0 < p < 1 gives
lx " 'm(x°t) — m(¢)| < C(tPm/(t) + x "¢ PY+1/2)
forO0 <t ?<x<1land
f()llh(x, t)|dF(x) < j(;lxlx“m(x"t) - m(t)|
+(1 - x)l(l - x) 'm((1 - x)°t) - m(t)ldF(x)

= 2flx|x“m(x“t) — m(t)|dF(x)
(2.20) b
< C(f[ (1 + xt'/*) dF(x)

+ /lpx(t"m’(t) + x 7Y PYE/A) dF(x))

< C(1 4+ tPm/(t) + ¢ PY+1/e),

The lemma is now proved for 0 < a < 1 since m’(¢) < C(1 + ¢t'/*"1). If 1 < q,
m’(t) is nonincreasing and we bound m/(Wt) by 1 in the argument leading to
(2.14) and (2.15). (2.15) and (2.20) remain true with m’(¢) replaced by 1. The
lemma follows from (2.20) by taking 0 < p < 1/a. O

Since we have made no attempt to compute the largest possible 6 in Lemma
2.5, in the computations that follow we assume 0 < fa < 1. By Lemma 2.5 and
our earlier bound on f(x, t), we have

f‘| f(x, t)h(x, t)|dF(x) < C(1 + t2/=~°).

We let B(t) = C(1 + t?>/%~%). Since m(t)m’(t) > 0, by a simple comparison test
v(t) < w(t) where w(t) satisfies

w(t) = —w(t) +flx“w(x“t)dﬁ'(x) + B(¢),
(2.21) 0

w(0) > 0.
w'(t) > 0 as w(0) = w(0) + C > 0, and if inf{t: w'(t) =0} = s < o0, then
w”(s) = f]x"‘“w’(x"s) dF(x) + B'(s) > 0,
0
which is a contradiction. Replacing w’(¢) by zero and making the substitutions

t=e", y= —logx, g(u) =e “w(e*"), and h(u) = e “B(e*") in (2.21), we
obtain

g(u) sf(fgw—y)dé(y) + h(u).
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By the argument used to obtain (2.7), we have

g(u) <E(g(u- SN(,,))) +E

N(u)-1
Z h(u - Sk))

k=0
=dJ(u) + H(u). .
By the same renewal arguments used to analyze (2.7), lim,, _, , J(u) exists and
is finite and H(u) ~ Ce~*®“ This shows that w(e®*) < Ce® ' a5 u — o,
which in turn shows v(¢) < Ct?/*% as ¢t - oo. This completes the proof of (2.2).
We are finally ready to show (2.3) which follows easily from (2.1) and (2.2). For
any ¢ > 0,

Z(¢) v(¢) _
(2.22) P(’m—l >£) Smﬁct .

We let A > 0 be such that A6 > 1. By the Borel-Cantelli lemma and (2.22), we
have

AR
(2.23) "Ln’:C m_(nT) =

a.s.
If n* <t < (n + 1), then

Z(n*) A Z((n+1)")
m((n + 1)}‘) T m(t) T m(nt)

Since m(t) ~ Kt'/*, lim,_,  m((n + 1))/m(n*) = 1. So by (2.23) and (2.24), we
have

(2.24)

which together with (2.1) implies (2.3).

3. Explosion argument for — w0 < a < 0. This section provides the details
of the explosion argument sketched in Section 1 which leads to the conclusion
n~'N,(-) almost surely converges weakly to a random point mass for a < 0.

T, = inf{¢t = 0: Z(t) = n + 1} are the split times and X,, the split point added
to [0,1] at time T,. Set T, = sup T, = sup{¢ > 0: Z(¢) < oo }. For any subinter-
val I, determined by the split points, set T, (I) = the first time after the creation
of I that the number of subintervals contained in I is infinite. The proof now
proceeds in steps.

Step 1. P(T, < o) =1and T, has a continuous distribution.

“ PROOF. Let 0 <S8, <8, < --- be the successive split times of the leftmost
interval.
1

S,=aé0+ X W%,
k=1
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where {£,} are mean one exponential, W, = [1*_|V, where {V;} are i.i.d. with
distribution function F on (0, 1), and {§,} and {V} are independent.

T, < llmS =§,+ ZWkaﬁk,
k=1

+ k[i.: (E(Vlia))k < ®

The second assertion is proved by noting that
T,=T + min{Too([O’ Xl])’ Tac([le 1])} .

The summands are independent and T, has an exponential distribution so 7
has a continuous distribution. O

STEP 2. Construct a nested sequence of closed intervals as follows: I, = [0,1]
and if I, splits into I, and I}, I, ,=1, if T, (I’) <T/(I/), and =1/
0therw1se This construction is well defined by step 1 since LXI)T, (I)=,T, for
L(I) = the length of I. Let {X_} = NI, which consists of only one point since
L(I,)— 0.

STEP 3. Given ¢ > 0, we set m so that L([,) < e. By the construction in step
2, only finitely many splits occur outside I,, before T,. Let T be the last such
split time and N be the first split time after 7. Then for n > N, X, belongs to
I, and |X, — X_| <e This proves that X, - X as. and n 'N,(-) almost
surely converges weakly to the measure with mass one at X__.
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