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AN INTRODUCTION TO INFINITE PARTICLE SYSTEMS*

Richard DURRETT
Department of Mathematics, University of California, Los Angeles, CA 90024, U.S,A.

In 1970, Spitzer wrote a paper called “Interaction of Markov processes” in which he intro-
duced several classes of interacting particle systems. These processes and other related models,
collectively referred to as infinite particle systems, have been the object of much research in the last
ten years. In this paper we will survey some of the results which have been obtained and some of the
open problems, concentrating on six overlapping classes of processes: the voter model, additive
processes, the exponential family, one dimensional systems, attractive systems, and the Ising
model.
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1. Introducticn

Since this survey is based on 111z lecture I gave in Evanston, I would like to begin
my paper as I should have begui: mv calk — by describing in an informal fashion some
of the processes we wili considcr 2nd some of the questions we would like to answer.
You should notice that I said “would like to answer” in the last sentence - there are
many basic questions which have not been answered. This is, for me, one of the
exciting aspects of infinite particle systems. There are many conjectures which are
obviously true but which are very difficult to prove.

I will state some of these conjectures before long, but before I can do this I need to
introduce some notation and terminology:

Let S be a countable set. S, which will usually be Z¢=!(ny,..., nq): n; are
integers}, is a set of sites (locations in space) where the events of interest occur.

Let F be a two element set (or if the reader wants some finite set). F, which will
always be {0, 1} or {—1, 1} in this paper, is the set of states in which we can find the
various sites (occupied or not, infected or healthy, spin up or down).

* This survey paper is based on a |l hour lecture given at the Ninth Conference on Stochastic Processes and
their Applications, Northwestern University, August 6-10, 1979. The author would like to thank the
organizers (E. Cinlar et al.) for the invitation to speak and the National Science Foundation (grant MCS
77-02121) for partial support during the preparation of this paper.
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Lety=F $ = th= se. of all functions from S to F. If n € x, then n(x) gives the state
at x, so i describe the configuration of the system.

1et A =set of all subsets of S. If a € F, the mapping n->{x: n(x)=a} gives a
1-1correspondence of A and x. In some examples A is a more convenient state space
than y. '

In the abstract aa infinite particle system is a strong Markov process with state
space x or A. To prove interesting results we will have to assume somewhat more
than this and at a barc minimum we will always assume that the process is described
by giving a function ¢: A X x [0, ) which determined the evolution through the
equation:

P(n.+5(x) # n(x) for all x EAln, =7n)=

=( 5 (:(B,n))6+o(6) as - 0. (1)
BoA
In words ¢ (A, n) the rate at which we flip the values at all the sites in A when the
configuration is 7. In most models that have been studied c(A, n) =0 unless |A|, the
cardinality of A, is 1 or 2, and in nearly all these cases the process is one of the
following two types:

(a) Spin flip systems. c(A, n) =0 unless |A| = 1. In these models only one site flips
at a time so we write c({x}, n) as c(x, n).

(b) Particle motion systems. F ={0, 1}and c(A, n) =0unless A ={x, y}and n(x) =
1, n(y)=0 or |A| = 1. In these models, ones mark the locations of particles. In the
first case a particle jumps from x to y. In the second a particle appears or disappears.

Taking (1) as our way of defining n, there is immediately the question of whether
the 1ransition rates specify a unique Markov process. As the reader might expect the
ansv er is ‘‘sometimes yes and sometimes no’’. Later in the paper we will state
condlitions on the c (A, n) which guarantee that the flip rates specify a unique Markov
proc zss but for the moment our purposc is to discuss scme examples so we will ask
the -eader to believe that the examples we will describe below have unambiguous
defiiiitions.

W e start our consideration of examples with a trivial one:

Example 1. Independent flips. S = any set, F ={0, 1},

a. ifnx)=0,

c(x’")={b, if n(x)=1.

Since the value of the flip rate at x does not depend upon the values of the n(y) for
y # x, the coordinate processes {n,(x), t =0} x € § are independent two state Markov
chains which flip from 0 to 1 at rate a from 1 to 0 at rate b. The asymptotic behavior of
this system as ¢ —» o0 is trivial to determine: n, converges weakly (precise definition
given below) to the probability measure on {0, 1}> which makes the coordinates
independent and have P(n(x)=1)=a/a +b (we call this distribution the product
measure with density a/a + b and denote it v,,,+5).
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Even though the last result is trivial it already indicates some of the difficulties in
the subject. If we let , and 7n; be two realizations of this process which start from
configurations which have 7.(x) # n;(x) for infinitely many x, then the distributions
of n, and n; arc mutually singular for all times and so the theory of Markov chains on
a general state space cannot be used even in this trivial example.

Example 1 was trivial because the sites did not interact and hence the fact that S
was infinite was irrelevant. Things become considerably more interesting when the
sites interact even a little bit:

Example 2. One sided nearest neighbor systems. S =Z', F ={0, 1},
clx,n)=f(n(x),n(x+1))>0 forall x, n.

Even though these systems are simple it is not yet known whether the processes in
this class always have a unique stationary distribution. The answer is known to be yes
in three cases:

@) f(n(x), n(x+1))=g(n(x+1)) (or g(n(x+yi1),..., n(x+y,)), where all y; #
0), then »y/,, product measure with density 3 is the unique stationary distribution (for
a proof of this see Section 6).

(b) If (0, 1)=£(0, 0) and f(1,0)=£(1, 1), then the system is an additive process
(see Section 4) and the duality theory associated with these processes allows us to
show the stationary distribution is unique. The stationary distribution for this process
cannot be described in 25 words or less but duality gives a (not very practical)
procedure for calculating its finite dimensional distributions.

(©) f(n1, n2)=1+an,+bnr+cnin.. where |a|+|b|+|c|<1. Any nonnegative
function of 7, and 7, is a constant multiple of a function of this type. When a, b, ¢
have special properties the process has a dual in a sense more general than Section 4.
Holley and Stroock [79] have shown that the stationary distribution is unique if one
of the following conditions are satisfied: (i) abc <0, (ii) a >0, b, ¢ <0, or (iii) b >0,
a, ¢ <0. This shows the stationary distribution is unique in at least § of the cases.

On the basis of the last two examples and by analogy with what happens when S is
finite, the reader might think that if c(x, n)>0 for all x, 5, then the process is
‘irreducible’ and will always have a unique stationary distribution. The next example
shows that this is not true.

Example 3. The Ising model. $ = Z°, F={-1, 1},

ctr,m)=exp(~p T n(x)n(x+u)) B=0.

wllull=1

In the Ising model the sites are thought of as iron atoms whose individual magnetic
north pole may be pointed up (1) or down (—1). Since n(x)#n(x +u)=1if and only if
1(x) = n(x + u), the sum in the exponent measures the extent to which n(x} is aligned
with its neighbors. If the alignment is bad the flip rate is large and conversely.
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The Ising model is not hard to analyze in one dimension. A simple calculation
(done in Sections 5 and 6) shows that if u is the distribution on {0, 1}* which makes
the coordinates n(n)— 00 < n <00 a Markov chain with transition matrix

B 8

BByl &
e’ +e ( _ ),
( V8 oo

then wg is a stationary distribution. Holley and Stroock [75] have shown there are no
other stationary distributions so in one dimension the stationary distribution is
unique for all 8.

Things get much more interesting in dimensions d =2 (Section 8). In these cases
there can be more than one stationary distribution. There is a critical value B4 so that
if B < B, the stationary distribution is unique and if B8 > B, itis not. When d =2 itis
known that g, = 2 'arcsinh(1) =0.44 and if B>p,, then the set of stationary
distributions # is a convex set with two extreme points «#* and u~ which have
[ f(m) du™(n)={f(-=m) du"(n). The last sentence gives a compiete description of
the size of # in dimension 2. In contrast very little is known when d = 3: itis easy to
sho.w B3 =<, and with some he'p from Dobrushin [6, 7] or van Bijeren [48] that if
B > B2, # has an infinite number of extreme points, but we cannot compute the value
of B3 (or to my knowledge even show rigorously that 83 < ;) and we are far from
determining the structure of ¥ for B > B;. There are however precise conjectures
about what happens. Based on numerical results it seems that 83 =~18,. As for %,
today I think it is reasonable to conjecture that |.%,|, the number of extreme points of
4, is given by

1 B € (—CO, BS]’
|7el=42 Be(8s, B2l
9 B € (ﬂZ’ m)

but on other days I have thought that |#.| = co for all 8; <. I will leave it to you to
decide which side you want to bet on.

The Ising model (or to be precise its stationary distributions, the Gibbs states)
arose in statisticai mechanics in 1925 and has been much studied by mathematical
physicists. Physics however has not been the only source of models. The last two
examples I will mention have socio-political and biological interpretations.

Example 4. Voter model. $ = Z°, F ={0, 1},

cle, )= X pW)l (nix+y)enin

yeS

where

p(y)=0 and ¥ p(y)=1.

yeS
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In the voter model the sites can be considered to be the homes of individuals who
live in a (large) idealized city. The states 1 and O represent be:ing for and being against
a particular issue or proposition. The individual at x assigns weight p(y) to the
opinion of the person at x + y and changes his opinion at a raie which is equal to the
sum of the weights for the opposite opinion.

In this system =0 and n = 1 are absorbing states so it is natural to ask if there are
any other stationary distributions? The answer (due to Holley and Liggett [72]) is no
if the random walk generated by j(x)=3(p(x)+p(—x)) is recurrent and yes if it is
transient. In the transient case they showed that ., the extreme points of .# is a one
parameter family and in both cases they obtained convergence theorems which allow
us to determine the limiting distribution for a large class of initial distribution. (The
reader will find a precise statement of these results in Section 3.)

The last example we want to mention is:

Example 5. Contact processes. S =Z 4 F={0,1},

1, ifnkx)=1,
c(x, m)= {k)\, if n(x)=0and ¥ n(x+y)=k,
yeD
where D is a finite subset of Z*.

In a contact process, the sites should be thought of as plants arranged in regular
rows or cells in the human body. The states 0 and 1 correspond to the site being
‘healthy’ or ‘infected’. In these terms the flip rates say that infected sites recover at
rate 1 while healthy individuals get infected at a rate proportional to the number of
sites in x + D which are infected.

Visualizing the contact process as the spread of an infection there are a number of
natural questions to ask:

(a) For what parameter values is the process supercritical, i.e. starting from one
particle at O (i.e. no(x) = 1(g)(x)) is there positive probability that n,50 .r all #?

(b) If the infection has positive probability of persisting for al: . ¢ then at what
rate does the number of particles grow? Does the infected region he - an asymptotic
shape?

(c) n=0 is an absorbing state. Under what conditions is theis a nontrivial
stationary distribution?

(d) How are questions (a) and (c) related?

The list of questions could go on and on but I won’t let it, since I'm not going to talk
about contact processes --there just happens to be a survey paper on contact
processes by David Griffeath in this issue (see pp. 151-185).

The list of examples above is just meant to whet your appetite. It does not exhaust
the processes I will consider in this paper much less the list of processes which have
been studied so far. In this paper I have concentrated on spin flip systems and have



114 R. Durrett | Infinite particle systems

not discussed, except briefly in Section 4, any of the particle motion systems. These
processes are discussed extensively in Liggett [86] and Griffeath [64], sources which I
would like to enthusiastically encourage the reader to consult for information on this
and other topics.

Another obvious omission from the survcy is any consideration of work in
progress. I have tried to remedy this defect by listing in the bibliography the most
recent papers and where they are to appear. If the reader tracks down these papers,
he will see what was happening in infinite particle systems now and, hopefully, wiil
enlarge the class of knouwn results.

2. Definitions ana preliminaries

In the introduction the reader got a preview of the processes to be considered in
Sections 3-8. As is the curse of most aspects of mathematics, before we can have a
serious discussion of the subject it is necessary to introduce a fair amount of notation
and definitions. This section is dedicated to this task. Hopefully the reader will
persevere. As David Williams might say, to visit some of the most beautiful Mayan
ruins in Mexico, one must hike for several hours through the jungle.

The first thing to deal with is the state space y = F° or, equivalently, A the set of all
subsets of S. Since F is a two element set, F' is compact (in the obvious topology) and
hence y is compact in the product topology, i.e. the topology of coordinate-wise
convergence. To get a mental picture of y consider (w log) the case F ={0, 2}.
$={1,2,...} and observe that  » fo:, 37"n(n) is a continuous map which sends x
to the usuz] Cantor set.

Once we have a topology on y we can define the Borel sets X to be the o-algebra
they generaie and 2(X) to be the set of probability measures on .X. To define a
topology on 2 (X ) we say that probability measures u,, converge weakly to a limit u
if { fdw., - | f du for all f € C(x), the continuous functions on . It is well known that
P(X) is compact in this topology, a fact which will be useful below.

Our next concern is the flip rates ¢ (A, n) which define the evolution. The flip rates
were defined above as functions from A X y [0, c0) but we will consider only spin
flip systerns on Z¢ so we will redure ourselves to that level of generality now and

write the flip rates as ¢ (x, n) instead of ¢({x}, n). The first step in constructing », from
c is to define the infinitesimal generator

Lf(m) ==X clx, D)(f(n™)—f(n)), (1
where 1" € x is the configuration with the spin at x flipped

#n(x), if y=zx,
=7n(y), otherwise

nx(y):{

and, to make sure that the sum in the definition of Lf(n) converges, we assume
f € Co(x) the functions which only depend upon finitely many coordinates.
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Having defined L on a subset of C(x) which is dense (using the sup norm on C(y))
the nextstep is to apply the Hille~Yosida theorem to show that L (or, to be precise, its
closure) is the generator of a semigroup S, t=0 on C(x) which defines a unique
Markov process through the formula S,f(n) = E(f(n,)| no = n). Needless to say this
cannot be done without some assumptions on c. Liggett [85] has shown (see Liggett
[86] for a more recent treatment) that if we assume ¢ satisfies

(i) translation invariance: if yeZ* and 6,m has ,n(x)=n(x+y), then c(x +
y, 6,m) =c(x, ) and

(i) Lipschitz continuity: if we let |glo =sup,|g(n)| and |fli=X If(n*) = F (1),

then |lc (0, - )| <o, then L generates a unique Markov semigroup S, and we have

d
a—ts‘?:f(n) =LS,f(n)= S.Lf(n), (2)
IS ll<e“""fl, (3)

where a =||c(0, -)|| and 8 =inf,|c(0, 1) +¢(0, n*)|.
This result requires some explanations:

Remark 1. The assumption that c(0, -) is continuous is insufficient to obtain the
desired conclusion. There are strictly positive continuous attractive translation
invariant flip rates for which the conclusion is false, see Gray [62].

Remark 2. Assumptions (i) and (ii) hold whenever c(x, ) has finite range, that is,
c(x,n)=gnx+x1),...,n(x+y,)), where {xy, ..., x,} is some finite subset of A

Remark 3. It is only fair to mention that there are other approaches to constructing
finite range and more general infinite particle systems which can be found in Harris
[65], and Holley and Stroock [74]. The first is a direct construction of n, 0=t <1,
using random islands, the second is a martingale approach.

Liggett’s result guarantees the existence of all the infinite particle systems we will
consider so we turn our attention now to the terminology required to discuss the two
basic problems of infinite particle systems

(i) determining 4, the class of stationary distributions, and

(ii) computing the limiting distribution starting from any initiai distribution.

If u e P(X), let nf be a version of the process with initial distribution u and let uS;
be the distribution of n!. In order for u € # it is necessary and sufficient that for
fe Colx),

d v
0= uSf(m)li-o0= j Lf(n) d(n) @)

(see Liggett [86] for details). If one writes out the right-hand side one sees that the
finite dimensional distributions of w satisfy an infinite system of linear equations.
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(Exercise: do this for the basic contact process.) These equations give some informa-
tion about x but usually not enough to determine it so we have to resort to other
tricks to determine 4.

The reader will see in Sections 3-8 that these tricks vary considerably from
example to example. The situation is not total chaos, however there are some
common themes (coupling, duality, monotonicity) and even several general results.
The most basic is that .# is a non-empty convex set. £ is clearly convex. Toshow # #
let w, = (1/n) f uS, dt, pick a convergent subsequence w,,, and observe that if yu is
the weak limit, then uS, = u for all ¢ {computation left to the reader). The second
general result I want to mention is a consequence of (3). If « <8 (i.e. ¢c(0,n)=c or
almost constant), then a —8 <0 so ||S,f|| = 0. By the previous result & #@. If u € 4,
then uS,f is constant and since ||S,fl|]-»0 we have ||S,f — uSofllo = 0 showing that
F ={u} and u is the limit starting from any initial distribution. Other sufficient
conditions for |#| =1 and for |#|>1 can be found in Sections 4 and 8.

3. The voter model

In this section we will study the voter model:

clx,n)= Z P(y)l(n(x-*-y)#'nu))s
y

where

p(y)=0 and Y p(y)=1.
.

The first step is to give a special construction of the process:

~ Let {N,(¢): =0}, z € Z* be independent Poisson processes with rate 1,

~ Lei T, =inf{t =0: N,(t) = ] be the time of the nth event in N.,.

~ Let{Y,.: n =1}, z€ Z* be independent i.i.d. sequences with the property that

P(Y..=y)=p(y)iorally, z, n.

In making these definitions we have in mind that at time T, the voter at z decides
for the nth time to change his mind, he picks a neighbor z + Y, at random and
adopts the opinion of that neighbor (which may be t 1e same as his own). Since the
voter only changes opinion when he picks a y with n(z + y) # n(z) itis easy to see that
we get a process having the flip rates given above.

To use the recipe given above to compute the state of the process at time ¢ is not
completely trivial because there are infinitely many flips in any positive amount of
time. To carry out the construction we will use the graphical representation invented
by Harris {69] and developed by Griffeath [64]. Draw the family of line segments
{z}x[0, 1], z€ Z*. Mark the points (z, T,..), ze Z% n=1, with §’s and draw an
arrow from (z + Y, ,, T, ,) to (z, T,,.) (see Fig. 1 for a picture). The § indicates that

the voter at z has decided to chznge his mind and the arrow indicates the neighbor he
chooses to imitate.
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To construct the process from this ‘percolation structure’ we imagine fluid entering
the bottom at the points, where n¢(x) = 1 and flowing up the structure - the §’s being
dams and the arrows being pipes which allow the fluid to fiow in the indicated
direction. With this interpretation the {x: n.(x) = 1} is the set of wet sites at height .
To make this definition mathematical we say that there is a path from (x, 0) to (y, ¢t) if
there is a sequence of times 0<s;<s,--- <s5,<t and spatial locations xo=
X, X1, X2, ..., X, =y so that

(i) fori=1,2,..., n there is an arrow from x;_; to x; at time s; and

(ii) the vertical segments {x;} X (s;, 5i+1), i=0,1,...,n (50=0, s,+;=1) do not
contain any &’s.

(On Fig. 1 we have indicated some sample paths.)

time t 1 1 1 1 1
| T
l 5 |
:
o P, | |
| !
l el
|
Ol l
-5 | |
5] _____ s l
time 0 l I
0 1 0 1 1

Fig. 1. One realization of the graphical representation.

When there is a path from (x, 0) to (y, ¢) it follows that the individual at time ¢ has
the same opinion as individual x at time 0. Since every individual at time ¢ has the
same opinion as some individual at time 0, it follows that if A is the set of individuals
at time O who have opinion 1, thzn the set of individuals at time ¢ which have that
opinion is given by

£D = {y: for some x € A there is a path from (x, 0) to (y, 1)}.

The last definition gives the ‘graphical representation’ of the voter model. One of the
nice aspects of this construction is that it defines all the &2 on the same probability
space so that we have

monotonicity: if A < B, then £;* < ¢7 forall 1. (1)

additivity: for any A, B, and ¢, £°% = ¢ U &7 )
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These two properties are very useful and we will consider them later. For computing
the asymptotic behavior of the voter model the most important fact about the
graphical representation is that it allows us to construct a dual process £P which has
the property that for any A, B

P’ "B #M)=PEF N A=), (3)
One process which satisfies (3) is

¢? ={x: for some y € B there is a path from (x, 0) to (y, 1),
for then

forsome x € A, y € B there is

[ A =
& NnB#@} { a path from (x, 0) to (y, t)

} ={{FnA =0}

The sample paths of {7 have huge jumps (consider a contact process) and ¢ 2 is not
Markov so we will replace ¢{¢ by a tamer process ff’ which has the same one
dimensional distributions (and hence satisfies (3)).

To construct £2 ¢ = 0 it suffices to give the distribution of £8 0<s<tforallt. Todo
this we define a dual percolation structure P, by reversing the arrows in the original
structure 2 and changing time by the mapping § =t—s (see Fig. 2). Since the
distribution of a Poisson process is unchanged by time reversal it is clear that

1 0 1 0 1 time 0

time £

0 0 0 1 1

Fig. 2. The dual percolation structure of the example in Fig. 1.

(i) the finite dimensional distributions we have defined are consistent,
(i) £2 2 ¢P for any ¢ and
(iii) the dual process could be constructed from a single percolation structure P
with gadgets which are obtained from the original ones by reversing the arrows.
In order for (3) to be useful we need to know how f P evolves (and if we want to get
results, the evolution has to be simple). When &, is the voter model the dual
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percolation structure has ‘8-arrows’ from x to x +y at rate p(y). By considering the
four possible cases one sees that the effect of 5-arrow is given by the following table:

before after
£(x) é(x+y) £'(x) £'(x+y)
Ex) Ex+y) 1 1 0 1
é ltime 1 0 0 !
0 1 0 1
Ex) €x+y) 0 0 0 0

If we think of the 1’s as particles and 0’s as empty sites, then é‘, may be described as a
coalescing random walk. A §-arrow from x to x + y causes a particle at x to jump to
x +y and if x +y is occupied the two particles coalesce to 1.

When the dual process starts from B = {0} its behavior is trivial to compute. For
any t =0, £ (our abbreviation for éﬁm) has only one element and its position X is a
random walk which takes steps with distribution p(y) at rate 1. Combining this
observation with the duality equation (3) shows

POc¢l)=P(X,cA). 4)

The last formula allows us to compute the one-dimensional distributions of £;* and
implies in particular that if the initial distribution is », product measure with density
p, then P(0 € &) = p, for all ¢. To determine the limiting behavior of &, in this case we
compute the two dimensional distributions. Let & (y)=1,ifye £2 and 0 otherwise.
Now

P (0)# €7 () < P(E] # &)
and from the graphical representation of £ we have &) U£F = £ 5o
P(¢7(0) = £ (x) <P =2).

The particles which make up é? and £* perform independent random walks until
they hit so if X, and X; are independent random walks with distribution p and
Xo=0, Xo =x, then

P(£*Y|=2)=P(X,~ X, #0 forall 0<s<1).

X, =X,—X_. is itself a random walk which takes steps with distribution j(x)=
3} p(x) +p(—x)) at rate 2. If X, is recurrent, then

P& (0)# £ (x))»0 as t>00. (5)

So the system approaches total consensus: that is, if A is a any initial configuration
anc B a finite set

P& (0)= ¢ (x) torall xe B)> 1. (6)

If X is transient P(é? # éi‘) does not converge to 0 so differences of opinion may
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persist. If £7 is a voter model with initial distribution »,, then
P(£7(0)# £ (x) = 2p(1—p)P(E # £)

which converges to a nonzero limit as £ - 00, With a little more work we can show that
the finite dimensional distributions converge to those of a limit £, which is a
stationary distribution for the voter model;

P& B =0)= | PES B =0)dv,(4)

_ J P(£2 N A =) dv,(A) = E((1 - p) ")

Since |£Z| can only decrease, it follows that if B is finite, then as t 1 0 |£7| decreases to
a limit |2 and

P(£? A B =0)->E((1-p)"%) (7)

proving the asserted convergence of finite dimensional distributions.

At this point we have constructed a one parameter family {u,: 0<p =<1} of
stationary distributions so it is natural to ask if . is the closure (in the weak topology)
of the convex hull of the w, (# certainly must contain this set of measures). Holley
and Liggett [72, pp. 659-660] have shown that the anser to this question is yes. The
idea behind their proof is to show that if x € # and By, is a sequence of k element
sets with inf{||lx — y||: x, y € Bi.n, X # y} = 20, then

lim u(n:n A Bix =0)=pi (8)

and the numbers p, satisfy

m

5 (’f)(—l)’pkﬂzo for all k, m =0. )

r=0
Lookingat Thecrem 2 in[99, Vol. I1, p. 223] we see that these inequalities imply that
there is a probability measure y on [0, 1] so that

1
o= L (1-p)*y(dp). (10)

Since lim, w0 pp{n: n "By, =0} =(1—p)" the last equality suggests that u(S)=
f{ 4,(S)y(dp) for all measurable subsets S (and proves that if u is some convex
combination of the u, it must be this one). By investigating tk- ~inction

h(F)=u(m:nnF=0)

which is harmonic for the process f 2 (ie. h(B)= Eh(‘ffg )) Holley and Liggett prove
this and thus conclude that all u €.# can be written as

u(-)=j wo(+)y(dp). (11)
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It is easy to show using (10) that such a decomposition is unique so we have shown
that £ is a convex set with exireme points {u,: 0s<p<1}.

Having determined the set of stationary distributions the next step is to investigate
the convergence of £¢; (which denotes the process with initial distribution »). On this

subject Holley and Liggett have the following remarkable result [72, Theorem 5.16,
p. 660]:

(12) Theorem. Let p,(i, j) be the transition density of the randon’ walk X,. £} = u, as
t >0 if and only if

(@)  lim Lo, prinin(j)=0t=1-p
and

()  lim X (i, )pis k)v {n: m(j) =0, m(k)=0}=(1 ~p)*.
-0 J,

If v is translation invariant and v{n: n(0) = 1} = p, then (a) holds. If in addition the
coordinates n(x) form an ergodic stationary sequence under », then (b) holds, so
& > u, as t >0,

The results above describe the stationary distributions for the voter model and the
limiting behavior of the finite dimensional distributions. In the recurrent case the
limit is total consensus so it is natural to inquire about the rate at which this is
approached. In one dimension when p(1) =p(-1)= 3 this is an easy problem. When
&2 # @it is always an interval [a,, b,] and the end points perform independent simple
random walks until b, < a, at which time £; becomes @. From this it follows easily that
if p, = P(¢? # @), then p, ~1/v'mtand

P(p,lb,‘-a,|>x‘|f? #0)—)6_)‘2/2

the Rayleigh distribution (see Durrett [56] for the relvant conditional limit
theorems).

In dimensions d =2 the situation is much harder. By exploiting the connection
with a model studied by Sawyer [93] and others [57, 61, 78, 83, 89], Bramson and
Griffeath [55] have shown that if p(x) =1/2d when ||x|| =1, then as t > ©

~{(10gt)/1rt, d=2,
! Cd/t, d>3

and ( p,l.f?llf‘,’ # () converges to an exponential distribution with mean 1.

The results above describe how one person’s opinion dies out and are designed to
complement the trivial convergence theorems in the recurrent case. In the transient
case we have a one-parameter family of stationary distributions which have compli-
cated dependencies and are given by a horrible formula, so there is also the problem
of describing the stationary distribution. One approach to this (which was motivated
by similar activity in statistical mechanics) is called renormalization. In this approach
one studies the asymptotic behavior of S,,(£), the number of points in £ [-n,n 14
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and other related weighted sums and then after an appropriate amount of technical
intercourse renormalizes to obtain a limiting random field.

Bramson and Griffeath [53] have done this for the thrce dimensional voter model
with the result that S,.(¢)/n 3/2 converges to a normal distribution anc the equilibrium
state under appropriate renormalization approaches the 0 me s fiee field. Although
the limits in these results are what we get from independent va-izties the presence of
the norming constant n>/? instead of n*'? indicates that the equilibrium states have
long range dependencies and gives an estimate of the strength.

For more information on these points see Griffeath [64, pp. 53-54], Bramson and
Griffeath [53] or Major [88] who has given another treatment of the voter model. A
number of infinite particle systems have been renormalized. The reader who is
interested in these results should start with Holley and Stroock [76] and then
progress to [77] and [78].

4. Additive processes

In this section we will consider a collection of models called additive processes
which can be constructed using graphical representations similar to the one used in
the last section. The motivation for considering this class is that all additive processes
have an associated dual process £ which is related to the original process & by the
duality equation

P NB=0)=P(EP~A=0). (1)

In the last section we saw how this relationship could be used to study the scationary
distributions and limiting behavior of the voter model. In this section we will describe
some other cases in which the duality equation (1) can be used to study the evolution.
We will not dwell too leng on these examples, since our main aim is to show that any
additive process with positive translation invariant flip rates has a unique stationary
distribution which is the limit as # - 00 starting from any initiai disiribuiion.

In the abstract, an additive process is a process for which it is possible to construct a
family of realizations £;', A = S on the same probability space in such a way that we
have

P gl =00 | (2)

Now when Harris introduced additive processes in [69] he showed that (2) implied &,
could be constructed in a special way (the graphlcal representation described below)
which made it easy to define a process £, satisfying (1). Rather than adopting this
viewpoint and attempting an exhaustive description of the set of additive processes,
we will introduce the collection, through a sequence of examples which can be

combined to obtain the most general additive spin flip system (see Section 2 of Harris
[69] for detaiis).
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All the examples we will consider (and in fact all additive processes) can be
constructed by using a percolation structure constructed from a set of independent
Poisson processes {N.,(t),t=0}, z€S, iel[={0,1,2,...} with EN,(r)=rt and
Y, r; <00. What we do at the Poisson arrival times T, =inf{t=0: N,;(t) = n} will
depend upon the particular example. In the last section we studied

Example 1. The voter model (here and below § = Z F ={0, 1)).
clx,m)=2 P(Y) (qixryprmnion
”

To write the definitions of the last section in the present notation let y, y,, ... be
an enumeration of Z¢ and at time T,,, draw an arrow from z +y; to z and label z
with a 8.

Example 2. The basic contact process.

1, ifnx)=1,
clx,n)= . )

krn, if n(x)=0and Y n(x+y)=k,

yeG

where G ={g,, ..., g.} is some finite set. At times T ., we puta § at z and at times
T,;.i=1 we draw an arrow from z +g; to z. If we define pzth and {,—',A as we did in
Section 3, then the effect of a & is to kill any particle at z and an arrow from z + g; to z
spreads the infection to z if it is present at z + g;, so we have defined a process with the
flip rates given above.

Example 3. Contact processes with more general birth rates. Suppose we modify the
flip rates of the contact process so that

( )_{l, if n(x)=1,
CEM e i nx)=0and ¥ nlx+y)=k,
yeG
where the A, are constants =0 with Ao = 0. When |G| = n, the new system is additive if
(and only 1f)

k
y (—1)1+'(l:))\,,_k+,20 for 1<sk=<n
r=0

(when n =2 this says A; <A, and 2A;=\;). To construct these examples we let
N=2"-1and Gy,..., Gy be the N nonempty subsets of G and for 1 <i <N draw
arrows at time T ., from each of the pointsin z + G; ={z + g: g€ Gi} to z. If we use
the previous definition of path, then this cluster of arrows has the effect of making
£(x)=1if £(y)=1forsome y € z + G.. If G is a two element set, then the G; we have
at our disposal are {g1}, {g2}, {g1, g2}. By symmetry {g:}, and {g.} must have the
same rate (say a) so we can construct any contact process with Ay =a+b, A>=
2a +b, where a, b =0, i.e. A <A;=<2A,. When |G|>2 similar reasoning and more
complicated calculations lead to the general criteria given above.
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in the last example we generalized the birth rates. As the reader can imagine we
can also generalize tae class of death rates by introducing gadgets which combine a §
at z with a collection of arrows from points in z + G to z. (The effect of this gadget is
to kill a particle at z if and only if there is one present at z and all the sitesin z + G are
empty.) Once we have done this we have all the ingredients for constructing just
about the most general additive process.

Our quest for the most general additive process is not an idle quasialgebraic
curiosity. Additive processes have special properties which make them easier to
study. The most important of these is the fact that the graphical representation of
additive processes given above allows us to associate with each additive process a
dual process, és which satisfies (1). This process is defined in exactly the same way as
the dual of the voter model (the discussion following (3) in Secticn 3 gives the general
definition).

Now that we have constructed a process £ so that £ and £ satisfy (1), the question is
““What can we do with £7” As I have already mentioned se veral times we can analyze
the voter model, but this is a special situation. In the voter model the number of
particles in the dual process does not increase and this special property was important
for our solution. The basic contact process (Example 2) illustrates another special
case: f has the same distribution as £. In this special case the analysis is nct so simple
and after six years of work by various people we finally know what |.#| is for all values
of A (see Griffeath’s survey). When we generalize the contact process to get Example
3 we lose the self duality and things become more complicated. It has been possible to
prove a few things about these processes but there are many basic questions which
remain unanswered. The reader should see Chapter 2 of Griffeath [64] for informa-
tion on this point and for some more examples which can be solved by duality.

Up to this point we have considered only systems in which ¢{(x, ) =0 when n =0
(there are no paths if there are no starting points). To allow for ‘creation from
nothing’ we have to infroduce a new collection of independent Poisson processes
{N_git), t =0}, z € S, with rate rz. At the time T, 5, =inf{t =0: N, 5(t) = n} we write
a B at z and view the point B as a possible starting point for paths. With this in mind
we let B, ={(z, T.g.): T.p, <t} and change the definition of the process to

& = {y: there is a path to (y, ) from some (x, 0) with x € A or from some
(Z, S) € %t}'

With this new definition of £;* the effect of a B at x is to make £(x) = 1. Witk the
introduction of 8 we can construct some contact processes with Ao > 0 (the condition
above is still necessary and sufficient) as well.as some other models.

Example 4. The voter model with defections.

cx,mM)=(@+bn(x)+Y p(Y) iy +x)7nixs
y

where a, a + b, p(y)=0 and 2, p(y) = 1. In this version the individuals change from
opinion 0> 1 at rate a and from 1 - Q at rate a + b even when they agree with all their
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{

neighbors. To construct this proces; using the graphical representation, let y; be an
enumeration of Z% letrg =a,ro=a +b,and 7, = p(y;) fori = 1. Attimes T, 5, drawa
B at z,attimes T,,, draw a § at z and at times T, ;, for i =1 follow the rules for the
ordinary voter model (Example 1).

When there are 8s in the graphical representation (1) is no longer correct since we
are ignoring the paths which start in %,. Let {25, = {there is a path from %, to B x {r}
in 2}. Since £ r B #@ on 25, and the argument for the case with no 8’s holds on
2%, we have

PP AB=0)=P¢ "B=0,05)=PéFnA=0,0%,).

If we let ?;3, be the birth set in # and v® =inf{s: there is a path from B X {0} to %, in
&}, then it follows from the definitions that

PP NA,0N5)=PEP A, y®>1)
so we have

P2 AB=0)=P{{PnA,y°>0). (1"

The duality relationship (1') is not as aesthetically pleasing as (1), but it is much
more useful, because it allows us to prove the result we mentioned earlier:

If ¢, is an additive process in which 8’s occur at a rate » >0, then
there is a unique stationary distribution 7r and for any A, B 3)

P AB=0)—m(1:: nnB=0)|<e™".

Proof. Let 72 =inf{t: £7 =@}. From (1') we have
P nB=0)=PE nA=0,7v">1)
=P(rP <1, y®>1P)+ PP nA=0,7">1, y">1).

When £2 # @ there is always at least one particle which is being showered with B’s at
rate r so

re

P(rP >t yB>n<sP(yP>trP>n=<e™

If welet m(n:m "B =0)= PP < yB), then it follows from the last equality above
that
P& nB=0)—m(n:nnB=0=
=-Pit<r®<yB)+ PP NnA=0,7>1 9" >1).

Since the terms on the right-hand side are of opposite sign and each is smaller i
absolute vaiue than P(r? >1, y® > 1), we have proved (3).
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As an immediate consequence of (3) we get that the voter model with defections
has a unique stationary distribution (in any dimension!) or more generally that this is
the case whenever we add spontaneous births to an additive process.

Given the last result the reader can perhaps understand our desire to find the class
of all additive processes and to generalize duality. Holley and Stroock [79] were the
first to do the latter by introducing ‘parity’ into the framework above (this idea
incidentally was due to Matloff [89]). A portion of this duality is described in
Griffeath [64] using the graphical representation described above and counting paths
mod 2 to define the process.

1 ={y: there are an odd number of paths up to (y, ¢) from (x, 0) with
x €A}

The duality theory for these ‘cancellative systems’ is much different from the additive
variety and is not very well developed. This is, I think, a fertile area for research
which will attract attention in the near future.

In closing this section I would like to emphasize a point I made in passing earlier:
duality is not tied to a graphical representation. It can >z expressed as a relztion
between expectations

E§of(§u éO) = Eéof(g(b gt)

which holds for one particular choice of f: (f(A, B) =14 -p-g) in the additive case.)
This viewpoint has been generalized recently and usec by various one and two
element subsets of {Holley Liggett and Spitzer} (see [97, 87, 73])).

5. The exponenu.al family

In this section we will consider a collection of infinite particle systems with S = Z 4
and f~={-1, 1} which generalize the stochastic Ising model (Example 3 of the
intre duction). In these systems the flip rates are described by giving a potential J
which is a real valued function defined on the finite subsets of Z¢ and has the
following properties:

(i) translation invariance: if xe Z° A<Z® and x+A={x+y: ye A}, then
J(A)=J(x +A);

(i) finite range: there is an L <00 su that if 0e A and J(A)#0, then Ac
{x:|lx|l< L} (the smallest such L in the range of J).

The flip rates are defined from the potential by

c(x, m)=exp(~ T J(A)n(A)), where n(A)= TT n(y).
A>dx yeEA
The flip rates in (1) may look mysterious so some interpretation is called for. When
these flip rates are used in statistical mechanics the exponent (including the minus
sign) represents the energy in the configuration which is due to the interaction of x
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with the rest of the system. The term in the sum with A ={x} represents the
interaction with an external magnetic field of strength |J({x})|. The terms with
A ={x, y} take into account the interactions between pairs of spins. The quantity
n(x)n(y) =1 if and only if n(x)=n(y) so if there are only two particle interactions
present (e.g. the Ising model) the energy is a measure of the relative alignment of
sites. If J({x, y}) >0 (the attractive case discussed in Section 7) the flip rate is smaller
when 7n(x) and n(y) are aligned. If J({x, y}) <O the flip rate is smaller when they are
opposite.

The flip rates in (1) though curious looking have some very special properties. The
most important of these is the fact that if we consider approximating processes with
flip rates

cn(x, M) =c(x, n)1yy<ns 2)

then the stationary distributions of this system are easy to write down (after enough
notation is iniroduced!).

Let.A, ==qa: ik <nlandlet AS = Z?— A,. In the process with flip rates ¢, the sites
x € Ay, do not flip, so for a fixed { € {—1, 1}/‘: the system reduces to a Markov chain
with staie space {—1, 1}, if for £« {—1. 1}, we let ) be the configuration obtained
by combining & and £,

N &(y), yeA,
() {{(y), yEAL, 3)
then I claim that
wac@®=exp( T J(A)n(A)) @
ANnA,=0

defines a stationary measure for the Markov chain with state space {—1, 1},
To check this claim let n* denote the configuration in which the site at x is flipped:

nly), y#x,

)
“al), y=x. ©)

n‘(y)={

Simple arithmetic shows that if x€ A,

cax, ")

_ _ wn,{(g} |

A3x Wht (cfx) ’
where £ has the obvious definition, so

Crl(X, M IWn (€F) = Culx, M) Wn(€). {7

The last equaticn implies that w,; is a stationary measure for the Markov chain
with state space {~1, 1}~ (and in fact a special type of stationary measure called a
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(here and in what follows £e{-1, 1}, fe{-1, 1}": and 7 is their combination
defined in (3)). Now a necessary and sufficient condition for » to be a stationary
measure is that

—_
D
N’

]
3
[»9
3
[¢))
-
Y]
<
[¢]
—y
'-1
0-6
N
N
=1
o
_—
3
-
=
¥}
-

‘ c\g)( » c(,x,-q))+ S W€ )ealx, ) =0.  (10)

xeA, xet

c'(x,m)=cl(x,n)b(x,n), where c(x, n) has the form given in (1) and
(11)

so we will adopt this level of generality for the rest of the paper and refer to this class
of flip rates as the exponential family.

Formula (10) shows that w,, are stationary measures. To obtain stationary
distributions we have to let

i,

£

&)/ Z., where Z, . =Y w, (£). (12)
The normalizing constant Z, , is cailed the partition function (for the system in A,,
with boundary condition ¢). We will return to it later. For the moment our purpose is
to construct a collection of stationary distributions for the infinite particle system, so
we will concentrate on the w, .

Let g, be the closed convex hull of {u,.: {€{-1, 1}%}, which are now considered
to be measures on {—1, 1}**. ¢, is the class of equilibrium distributions for the system
in A, if we allow random boundary conditions. It is a consequence of a theorem
which guarantees the existence of the processes under consideration (e.g. Liggett’s
theorem [86, p. 192]) that if nx >0, v, €9, for all k, and v, > v, then v is a
stationary distribution for the infinite particle system. The collection of all stationary
distributions which can be generated in this way are called the Gibbs states for the
infinite particle system and denoted ¥,

This terminology was invented before infinite particle systems. When the flip rates
have the form: g+ 25 in (1) this reduces to Dobrushin’s definition of Gibbs states for
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infinite systems in terms of their conditional probabilities. In Dobrushin’s approach
the measures u,, are viewed as specifying the conditional distribution of the
configuration in A given that the configuration in A° is { and the Gibbs states are
defined to be the probability measures » which satisfy

va(€) = j vac(dOpag(€) forall ée{-1, 1%, (13)

where for § < Z%, vg denotes the distribution » induces on {-1, 1)°.

The definition of Gibbs state given in (13) (called the DLR equations because of
the coniributions of Lanford and Ruelle) is equivalent to our previous definition. To
prove this we observe that (13) says that in A, v looks like w4, Where {(v) is a
random boundary condition with distribution v,-. Letting A T o0 we see that anything
which satisfies (13) is a Gibbs state with our previous definition. To prove the
converse we need some notation:

if ScZ? and ¢e{-1, 1}°, then we let
(14)
A:s={n: n(x)=£(x) for allx € S}.

(The configurations which agree with £ in §.) Let A;,c A, Z Yand M'=A,~-A,. A
little computation shows

are(Aea) =2 maye(Ay Ly (Aea,) (15)
Y

where (¢, v) denotes the configuration in {—1, 1}*1 obtained by combining ¢ and y
(see Fig. 3 to get oriented). Although (15) takes complicated notation to state

o

Fig. 3.
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formally it is easy to say in words: if we want to compute the probability under x4,
of seeing ¢ in A, we first compute the disifisution in I =A,—-A; and then take the
average of the probabilities under the w 4,y (This is a spatial Markov property.)
Letting A>1Z 4 in (15) shows that any Gibbs states has the form given in (13).

At this point we have shown that our previous definition of Gibbs state is
equivalent to (13). We have taken the time to do this because most people who study
Gibbs states (including all the physicists) take (13) as the definition and do not
consider the process 7. For a good introduction to the subject see Preston [39] or
Ruelle [41] or [43). After being introduced, the reader can find out the current state
of the art by looking at the Communications in Mathematical Physics.

6. One dimensional systems

In this section we will consider infinite particle systems with § = Z concentraiing
primarily on those with flip rates in the exponential family. In one dimension the
Gibbs states defined in Section 4 are easy to compute. Before introducing all the
notation needed to treat the general case, let’s consider the one dimensional Ising
model which has flip rates

c(x,n)=exp(=B(n(x)n(x +1)+n(x)n(x —1))). (1)

In this case examining (4) and (12) of Section 5 shows that if x <[—n, n], then under

M [-=.n): the coordinate vectors (n(—n),...,n(x~1)) and (n(x+1),...,n(n)) are

conditionally independent given n(x), so under wi—nnp {M(x),—n<x<n}isa

Markov chain. A little computation shows that the transition matrix of this chain is
-8,

(e e
(2 cosh B) (e“’ ) (2)
and that wu[_,.;, corresponds to conditioning this chain to have n(-n-1)=
{(—n—1)and n(n +1)=¢(n +1). Since the transition matrix in (2) has all positive
entries (3, 3) is unique stationary distribution and it follows from a standard Markov
chain convergence theorem that the one dimensional Ising model has only one Gibbs
state — the unique distribution on {-1, 1}* which makec the coordinates n(n),
—00 < n <00, a Markov chain with transition probability given in (2).

It is easy to generalize the argument above to systems defined by finite range
potentials. If the range is L and x €[—n, n], then under u(_, .}, the coordinate
vectors (n(-n),...,n(x—L-1)) and (n(x+L+1),...,n(n)) are conditivnally
independent given(n(x —L), ..., n(x+L)),sounder wi—pnp{mx—L),...,n(x+
L)): =n + L <x < n — L} is a Markov chain whose transition matrix has the propertv
that the (2L + 1)th power has all positive entries so again applying a standard Markov
chain result we see that there is only one Gibbs state.

Having shown that any finite range one dimensional system in the exponential
family has a unique Gibbs state it is natural (but somewhat optimistic) to ask if ¢ = 4.
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There is probably a trivial example with long range interactions with ¥ # ¢ but I
think it is reasonable to expect that ¥ =% when the flip rates are finite range and
translation invariant. Positive results on this question are almost nonexistent. Holley
and Stroock have proved ¥ = for finite range exponential systems in 1 and 2
dimensions. On p. 39 of [75], they prove (Theorem 1.7)

IfS=2Z%d=1or2 and the flip rates c(x, n)
have the form given in (11) of Section 5 with

0<inf b(x, n) <sup b(x, n) <0, (3)
xn NN

then ¥= 4.

No one knows if this is true in dimensions d = 3.

(3) allows us to conclude that for one dimensional exponential systems with finite
range potentials (and in particular Example 2(a) of the introduction) |#|= 1. Since
the fiip rates in (11) of Section 5 encompass a wide variety of examples it is natural to
wonder if we will have |.#| = 1 for all translation invariant flip rates with finite range.
Five seconds thought reveals this is false since the process may have more than one
absorbing state. If we assume in addition that c(x, n) >0 for all x, n we eliminate
these trivial examples and we have

(4) The positive rates conjecture. If S =2 and the flip rates c(x, n) are positive,
translation invariant, and have finite range, then |.#| = 1.

I think this conjecture is based on the belief that, although the flip rate: in the
exponential class have a special form w hich allows us to compute the p[_,..},, the
fact that the limit of the w[_, .}, is independent of the sequence of boundary
conditions is due to the fact the correlation between two sites in [—n, n] under
Hi-n.nle, decays exponentially as a function of their distance, and this in turn is due to
the positivity of the flip rates and the ‘geometry’ of Z. The proof of the uniqueness of
the Gibbs state for systems in the exponential family supports this belief since all we
needed there was that the Markov chains were irreducible. We should not however
get too carried away with the reasoning - the last sentence does not mention Z
explicitly and hence would lead us eventually to the false conclusion that in two
dimensional Ising model, which has positive flip rates, we have |#| = 1.

The positive rates conjecture represents just one of the ways the results for finite
range exponential systems can be generalized. The rest of this section will be devoted
to stating some results and an intriguing conjecture for exponential systems with
potentials which have infinite range.

The first results for potentials with infinite range were due to Dobrushin [4] and
Ruelle [40] who showed independently that if J({x, y})=K(y —x) and J(A}=0
when |A|# 2, then

© -1 ©
|#|=1, whenever ¥ ¥ K(x-y)= Y nK(n)<o. (5)
n=1

x=0 y=-00
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If one does not bother with the details it is easy to prove this result and a lot more.
Thouless [47] has given a convincing heuristic argument which he attributes to
Landau and Lifschitz [26]. In the next two paragraphs we give a moderately revised
version of his argument.

If we have a configuration for the Ising model in {1, 2, ..., N} which has average
magnetization u # 0, then we can construct a distribution with average magnetiza-
tion O by picking an integer L at random and flipping the spinsat 1,2, ..., L. If we
flip at L, the energy change is

L N
AE=2 Y ¥ K(m-n)n(m)n(n). (6)

n=1m=L+1

Since there are N possible choices of L the entropy change AS = 0(log n). For a short
range interaction (..e. the case considered by Dobrushin and Ruelle) the sum on the
right-hand side of (6) is bounded independent of L and N, so if N is sufficient large
AE —TAS is always negative and the ordered state cannot be the equilibrium state. If
we consider interactions K (n) that decrease monotonically as n goes to infinity, it is
clear that no interaction falling off faster than n™®, @ > 2, can lead to an ordered state,
because AE then increases slower than In N as N increases.

The case of an interaction falling off as n % is particularly interesting. In this case
the change in the expectation value of the energy is

AE =2u%0In N+0(1) (7)

if the spin-spin correlation function is equal to u > for large separation of the spins. If
the width of the distribution of number of spins up is N /2, as it is for a system with the
usual type of long range order, 4S = (2CT) "' In N and so if there is long range order
in this case the inequality 2426 = 1/2C must be satisfied. Writing i as a function of 6
this implies that if 4 >0,

w(8)=(4ce)™ "2, (8)

Since u(#) is increasing function of @ it follows that u must be discontinuous at
sup {6: u(6)=0}. -

While the argument above may be convincing, it is certainly not a rigorous proof
and, as [ can testify, is difficult to fill the necessary details to make it one (the entropy
computation was my stumbling block). Nonetheless there are rigorous results which
suggest that the conclusions above are true Dyson “8] has shown

If loglogn)™ ¥ mK(m)-0, then |$|=1 9)
m=1 '

and also shown [10]

There is a number a >0 so that if K (n)=an > log log n for
all n sufficiently large |.#|> 1. (10)
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These results are obtained by comparing the Ising system with a ‘Hierarchical Model’
which is easier to analyze. In [10] Dyson showed that the Hierarchical Models which
corresponds to K (n) = én > have a jump discontinuity at the critical value but no one
has succeeded in proving this for the Ising model although numerical results of
Anderson and Yuvall reported in Dyson’s paper seem to support this conclusion.

7. Attractive systems

In this section we will study a class of infinite systems with state space {~1, 1}’
which have a special monotonicity property. These processes were first studied by
Holley [70] who named them attractive. Later workers have confused the issue by
calling them monotone so it is tempting to clarify the issue by calling them Holley
processes. One look at the list of references however, reveals that this would be a
highly ambiguous designation so I'll stick with the term attractive.

Define a partial ordering < on {1, 1}° by

n<¢ ifandonlyif n(x)<{¢(x) forall xeS. (1)

(Here and in what follows we will leave it to the reader to determine the meaning of <
from the context). We say that a real valued function f defined on {-1, 1}° is
increasing if

n=<{ implies f(n)=<f() (2)

and decreasing if —f is increasing. A collection of flip rates c(x, ) is said to be
attractive if

(a) n - c(x, n) isincreasing on {n: n(x)=—1},

3)
(b)  m->c(x,n)is decreasing on {n: n(x)=1}.

In attractive models the rate of flipping from —1 to 1 is an increasing function of the
configuration and the rate of flipping back from 1 to —1 is a decreasing function so
there is a tendency for blocks of 1’s to form (and since the definition is symmetric the
same can be said for —1’s). In the last three sections we have encountered many
examples of attractive systems — the voter model and contact processes have this
property and, with a little patience, the reader can check that all the additive
processes have this property. (There is no reason to do this however, since this will be
obvious by the time we reach the next remark.)

The monotonicity property in (3) has a very useful consequence: if we are given
initial configurations ' <5, then we can construct a pair of processes 0% 1=0,
on the same probability space in such a way that nt<n? for all t=0 and for
i=1,2,7ml,¢>0, has ny =n' and is a Markov process with flip rates c. To do
this we write down the following flip rates for a process with state space
{(=1,-1), (=1, 1), (1, D}*:
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transition at x flip rate in (n ' 'n?

(1,)->-1,-1  cx, 1)

1,1)»(-1,1) cx,m")=clx,n%)

(-1, 1)>(-1,-1) clx,n?) @
—1,1)-(1,1) c(x,m")

-1,-1)=>(1,1)  clx,nY)
(-1, -1)->(-1,1)  clx,n)-clx ).

In words when n'(x)=n’(x) the processes flip together as much as they can and
when n'(x) # n°(x) they flip independently. This is called the basic coupling.

The reader should observe that each flip in (4) preserves the inequality n'(x) <
n°(x) and that since we have assumed c is attractive all the flip rates we have written
down are =0. If we assume (as we will throughout the rest of the paper) that ¢ has
finite range and is translation invariant, then it follows from a result of Liggett [85]
that there is a unique Markov process (7}, - ), ¢ =0, with these flip rates. The reader
can check by adding various rates in the table that the coordinates nl(x) and'nz(x)
individually flip at rates c(x,n') and c(x, n°) so we have achieved the desired
coupling.

Remark. In the additive case we do not need the construction above because the

graphical representation gives the desired coupling simultaneously for all initial
configurations.

Using the basic coupling we can immediately deduce several facts about the
limiting behavior of attractive systems:

Let 7; be an attractive process with ng =1. If f
is an increasing function on {—1, 1}°, then Ef(n;) is
a decreasing function of . (5)

Proof. Let s<t, let n' =1 and let ?12 have distributica n,_,. Since we have nl = nz
a.s. it follows that we can construct 7., n2, u =0, so that ne = nf (=7;) and hence
f(n3)=f(n?). Taking expectations gives Eft n7) = Ef(n;) the desired result.

(5) implies that the distributiop s a decreasing function of ¢ in the partial
ordering defined by
w < v if and only if f flus j f dv for all increasing functions f. (6)

Using this observation it is easy to show that as t > c0, ;" converges weakly to a limit.
(5) implies that if g i¢ a finite linear combination of increasing functions, then

lim Eg(n;) xists.

{00
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Since every function which depends upon only finitely many coordinates is in this
class, it follows that

as t>00, ; converges weakly to a limit u". (7)

It is a standard fact that (7) implies u* is a stationary distribution. (Recall from the
introduction that the associated semigroup is Feller.) It is called the upper invariant
measure because it is clear from the basic coupling that if » € ., then v<u " (in the
sense of (6)). All the reasoning above can be repeated for a system n,, t =0 with
no = —1, with the result that as ¢ » 00, n, converges to a lower invariant measure u ~
which has the property that if » € %, then 4~ <» <y ™. From the last inequality we
see there is a dichotomy for attractive systems: if 4~ # " the stationary distribution
is not unique, if u ~=pu " = u, then u is the only stationary distribution and it follows
from the basic coupling that starting from any initial distribution n; = u as t » .

Although the dichotomy above is easy to establish, it provides useful information.
If we apply this result to the Ising model, we see that starting from n* =1 and
n~ =-1 the process converges to limits x* and w~ which satisfy " =u". In this
situation it is easy to show that u"=pu~ if and only if ™ {n:nx)=1}=
w {n: n(x)=1}for all x. Since the Ising model is symmetric under the interchange of
1 and —1 we have

w{nn@) == {n:nx)=-1}=1-p {n:qx)=1}
so uw*=pu " if and only if ™ {n: n(x)=1}=3, ie.

[ ntdurm=o.

Similar conclusions can of coursc be obtained for other systems with state space
{1, 1}°. By a simple change of notation the results above can be extended to systems
with state space {0, 1}°. If they are applied to the contact process, we get the following
useful result; as ¢ ->00, ¢Z (the contact process with £5 = Z) converges weakly to a
limit £Z and the contact process has |#|> 1 if and only if £Z is not 8, the point mass
on the configuration n =0.

The basic coupling can (sometimes) be used to compare 2 attractive processes. By
writing out a new table of flip rates with ¢;(x, 0 ‘Y replacing c(x, 17') in (4) we see that if
c¢1 and c; are flip rates which satisfy

@ cax,n)=caAx ) if n<¢ and n(x)=¢(x)=1,
b))  calx,n)<cax ¢) if n<{ and n(x)={(x)=-1

(8)

and if n' < n?, then we can construct a pair of processes n' <77, =0, on the same
probability space in such a way that n! has ini. 11 configuration n' and flip rates c; and
n! <n? forall t =0,

Applying the last result to the contact processes we see that if we let £ * be a contact
process with parameter A and £5 = Z¢ and if we have & = 8o, then £8 = 8, for all
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6 < A. The last observation implies that if we let A = sup{A: £} = 8o}, then &; = 8
for A <A, and does not = 8, for A > A,. This argument of course tells us nothing
¢bout A, or about the behavior of the system at A = A.,. These are both difficult
problems.

While the result in (8) is useful for contact processes it dces not apply to the Ising
model

c(x,m) =exp(—ﬁ Y nx)n(x +u)).

v flull=1

If ¢, and ¢, are the flip rates for parameters £, < 8,, then (8) does not hold: if n(x) =1
and ¥, -1 71(x +u) <0, c1(x, n) <ca(x, ) so (a) does not hold.

In order to prove the existence of a critical value for the Ising model we have to use
other means. The method in this case is a powerful correlation inequality which was
discovered by Griffiths [18] and which is (due to the subsequent generalization of
Kelley and Sherman [24]) called the GKS inequality. To state this result we need
some definitions: Let A be a finite set. If x € A and £e{-1, 1}*, let

e, O=exp(~ T KAf(A)), where £(A) =TI &(y) ©)

AxeAcA yeA

The c(x, £) are flip rates for a Markov chain with state space {—1, 1}*. This chain has a
unique staticnary distribution . If f is a function on {~1, 1}", let (f) denote { f du.
With this notation the GKS inequality (which is really two inequalities) may be stated
as

é(A))

oKg

If A,BcA, then (6(A)E(B)) —(E(AIXE(B)) = 0. (10)

In words, £(A) and £(B) are positively correlated and (£(A)) is increased by
increasing any of the K.

To apply the GKS inequality to flip rates in the exponential family we let A be a
subset of Z9, ¢ e{~1, 1}"" be a boundary condition and define

KA‘_‘BZ1CJ(AUB){(B): where {(B)= ] {(y), (@) =1. (11)

yeB

With this definition of the K,4's it is easy to check that the stationary distribution for
the flip rates in (10) is what we called w ., in Section 5. If we call this u 5.4,, now (to
record the dependence on the potential), it follows from the GKS inequality that if
0<J(S)<J'(S) for all S = Z“, then we have

[ ey dusni <[ &ardurns (12)

for all A< A.
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Remark 1. The reader should note that the partial ordering of distribution defined in
(12) is much different than the one defined in (6) (which was used for comparing
attractive processes).

Remark 2. An inequality closely related to one part of the GKS inequality has been
proved by Harris [68]. His results imply that in an attractive system in which |[F| =2
and only one site flips at a time the upper invariant measure has

jfgdu+ajfdu+j.gdu+ (13)

for all increasing f, g. This inequality says u " has positive correlations and can be
compared to the second inequality in (10) even though it is in substance much
different. To my knowledge no one has proved an analogue of the first part of the
GKS inequality (the monotonicity of n(A) as a function of K) for a more general
class of spin systems, even though, I think it is a common opinion that such a result
would be very useful

Remark 3. Inequality (13)is called the FKG inequality which it is appiied to a system
in the exponential family. For a direct proof of this inequality see Fortuin, Ginibre
and Kasteleyn [12], Ginibre [15] or Holley [71] (the last is my favorite).

Remark 4. The FKG and GKS are just the first two of an infinite sequence of similar
inequalities which curiously all have three letter designations. Needless io say not all
these inequalities are useful but the next one in the sequence, the GHS inequality
(see Griffiths, Hurst and Sherman [20] or for an easier proof Lebowitz [29]) is very
useful. Preston [38] has used this to show |4| = 1 when the potential satisfies J(A) # 0
ifiAl=1,7(A)=0if|A| =2 and J(A) = 0if |A| = 3 (an attractive pair potential with a
nonzero magnetic field). The analogue of this result for the partition function was
first prcved by Lee and Yang [31] using purely analytical methods, for a procf of the
fact about Gibbs states see Ruelle [42] and Lebowitz and Martin Lof [30].

8. The Ising model

In this section we will study the d-dimensional Ising model: § =Z 4 F={-1,1}
and

clx,n)= exp(-—B nzl} 1 n{(x)n(x +u)).
From results in the last three sections we know that
(1) #=1ifandonlyif u* = u ", which occurs if and only if (n(0)), = —(n(0)) =0
(2) (n(0)). is an increasing function of B so i we let B =



138 R. Durrett ' Infinite particle systems

sup{8: B (B: (n(0)))» =0}, then

if B<B: |F|=1,
if B>B |F|>1.

(3) in one dimension B, = .

The results above describe |#| for the one dimensional Ising model so we now turn
to the two dimensional Ising model. The first step is {0 show |#|>1 when B is
sufficiently large. The main idea of the argument was given by Peierls [36], and
rigorous versions developed independently by Dobrushin [3] and Griffiths [16]. We
will prove this using the approach in Griffiths [19].

The first step in the proof is to introduce a geometric description of the spin
configuration. Consider Z? as a graph with edges connecting all x, y with ||x — y||=1.
If A,=[-n,n)?, £€e{-1,1}"" and ¢ e{-1, 1}“: has { =1, then we create contour
lines by drawing a unit segment perpendicular to center of each edge e which
connects two sites x, y with opposite spins.

A glance at Fig. 4 shows that the collectio. of lines we generate is always a finite
union of (non-self-intersecting) polygons and is hence called a multipolygon. Since
the boundary condition is fixed to be {=1, it is easy to see that there is a 1-1
correspondence between configurations in {—1, 1}*» and multipolygons with vertices
in the shifted lattice (3, 3) +Z* and which lie in the box A¥ =[-n -2, n +11%

+ + + + + + + + + + +
+ + + - + + + - - + +
+ - - + + + + + - + +
+ + - + + - - + + + +
+ + + - - + + + + - +
+ + - + - + + - + + +
+ + + - + - + + + - +
+ - + - + - + + - + +
+ - + + - + - + + + +
+ + + + + + - - + - +
+ + + + + + + + + + +

Fig. 4. Contours for a typical configuration in u 4, ;.

Although this is just a change of notat:on it is a useful one. if we let £ € {—1, 1}*~, let
K (¢) the associated multipolygon, and Izt |K (£)| be the number of edges it contains,
then the exponernit in the definition of w 4, , (£) in (4) of Section 5 is equal to

—2B(no. of times n(A)=1)+8(no. of A with J(A)#0)=
==2B|K(&)|+B(2(2n +1)(2n +2)), (%)
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where in the second equality we have used Fig. 5 to compute the value of the
constant.

1 1 1l
1 ) !
1] ] } 1
original graph:
R
. . . 2n + 1 rows of Z.:2
1 l ] ] 1 edges
] |
! ! !
1 1 1
I dual graph:
2n+2 rows of 2n+1
— edges

Fig. 5. A, and A},

The first step in showing that |#} > 1 when g is sufficiently large is to get a bound on
the probability a (non-self-intersecting) polygon L with length |L| is a subset of K (¢)

pa(LeK(g)<e /(1 +e720H), (6)

Proof. From (4) of Section S and (5) above it follows that

paa(L<K(E)= X WA,..I(&)/Z;.WA,..I(f)

LK (6L

-28|K -2B|K (&)
=y el (f)l/ze BIK @&l
LKL 3

To estimate the last quantity we will show that with each configuration ¢ with
K(¢)> L we can associate a configuration ¢* with K(£*)=K(&)—L. We have
supposed the polygon L is non-self-intersecting so it divides the plane into two
regions — one unbounded (the outside) and one bounded (the inside, denoted L").
Let

—¢(y), yeL®,

€)= {f()’), otherwise.
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It is easy to check that £* has the desired property and that different £’s give rise to
different £*’s. Combining this with the equalities above shows .

—28IK (&)
Z e BIK (&)

EK(@>L
paa(LeK(E)< T e 2PIR@] _g2AI)

£EK(E)oL

“17 = e 2 (1 4 e 2010
(]

proving the desired result.

(6) allows us to estimate the probability a given polygon will occur. Inside a
polygon of length [ lying on the shifted lattice (3, 3) + Z° there are at most (3/)° sites in
Z“. Any —1 must be inside some polygon so if we let

M, (&) =|{x: £(x)=-1}},
then
\ L|?
M, (&)<Y ‘Té‘lu,cx(s»,

L
where the sum is taken over all polygons lying in A}, Taking expectations and using
Fubini’s theorem we get

jM,,<£mA,..,(d§>= 167 S 1L b aa (LK ()

<167'T|LPe M =167" ¥ a ()P e ", @
T =1

where a, (/) is the number of polygons of length / contained in A,.

It is easy to get a rough estimate for the a, (/). A poiygon may be constructed by
picking an initial segment, which can be done in 2(2n +1)(2n +2)<3(2n + 1)? ways,
and then successively adding adjacent segments. Since we cannot repeat any edge at
stages 2, ..., [ there are at most 3 choices and it follows that

a,(N<32n+1)%3""1/1. (8)

Here we have used the fact that this procedure generates every polygon of length //
times to divide our estimate by /. Combining the last two inequalities above and
observing that ¢, (/) =0 if | is odd

I M (O n,1(dE)<167'Qn+1)* ¥ 2m elor3-201m
m=1
or letting p = exp(2(log 3-2p8))

i ‘ @ _ i
WIM"(‘f)”An-lidf)$8 lmz=1 mp” =8 1(p/(l_p)z)
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the right-hand side is <3 when p/{1 —p)* <4, i.e. p<(9- \/ﬁ)/s. Combining the last
observation with the definition of p we see that if B is sufficiently large

1

T j M, (&)pa,. (dE)<0.499

for all n and consequently | 7(0) du " (n)=0.002 (a little work is required to prove
this rigorously).

In the last argument 0.499 could be replaced by any number <0.5 so we have
§ n(0)du™(n)>0 and hence |#|>1 whenever

—J17
2log3-4pB <log(9 17),

i.e.

-J17
B>%log3—-§;log(9 3 17).

Remark 1. By fiddling with the computations above (e.g. noticing a,,(2) =0, a,(4) =
(2n +1)* instead of (9/2) (2n +1)%,...) the value of the constant above can be
improved but without a substitute for the estimate (8) we cannot do better than
B > (log 3)/2 (and we cannot even do this well unless someone can show that the
finiteness of the sum in (7) implies |#|>1).

Remark 2. Even if we lived in the best of all possible worlds and used the best
possible estimate for a, (/) the argument above is not sharp. It is known (see Smythe
and Wierman [95], and Kesten [84]) that as n > o

n! loga,(l)»>k=2.639---

where « is the connectivity constant of the two dimensional lattice so by the
argument above we could never do better than B > (log «)/2 = 0.485.

The arguments above show that if 8 is sufficiently large, |#|>1 or using the
notation of (2) above that B.<oo. Identifying B, is quite another matter. The
solution of this problem developed slowly in a sequence of papers starting in 1925
when the Ising model (or more precisely its Gibbs states) was introduced and ending
in 1972 when Bennetin, Gallavotti, Jono-Lasinio, and Stella put the finishing
touches on the solution.

The first step in identifying the critical value for the two dimensional Ising model
was taken in 1941 when Kramars and Wannier observed there was a special
relationship between the 2d Ising model: vith parameters 8 and B* where 8* is the
solution of exp(—28*) =tanh(B) = (e®—e?)/(e® +e7®). To describe this relation-
ship we have to introduce the physicist’s notion of phase transition. In (12) of Section
5 we defined the partition function. In the case of the two dimensional Ising model
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this definition says

7 . =Y w (£ where w Jﬁ\:gvn(? R;n(r\-n(v\\ (9)
“in, A e \S/ Rl e \D>/ ‘r\“r f\ s '\JI/ \“7
£ X,y
and the sum is taken over nairs with lr—vil=1and {x. vinA #0
i v 112 30 QDA UV pGia s YYasia v Jii A GRa%a vy ) i 77K
If we wrire the nartition function as 7. .(2) to record the denendence on R, then it
if we write the partitien ftunction as Z,, ;(p ) to record the dependence on p, then
is known that for any sequence of boundary conditions £, (see Ruelle [41, Section
240
oV 1
.14 -1 : 10
lim |A,|"" log Z, ,(B) exists (10)
n-=a0

and the value of the limit ¢ (B) is independent of the sequence of boundary conditions
chosen. For a physicist the function ¢(8) gives a complete description of the infinite
system. f(B) = —B¢(B) gives the free energy per site while U(B) = f'(B) gives the
internal energy per site. The parameter B8 which gives the strength of the
interaction = 1/kT, where k is Boltzman’s constant so we can think of f and U as
functions of 7. If we differentiate U with respect to 7, we get the specific heat. This
quantity measures the system’s susceptibility to change and if this is 00 we have a
highly unstable situation which suggests the presence of a phase transition. This
consideration, which arose in the two dimensional Ising model, has been generalized
and become the physicists definition of phase transition: the failure of f(B8) to be
infinitely differentiabie.

The partition function was first studied by two sciies expansions - one valid for
small B (large T'), and the other for large 8 (small T,.
L. High temperature expansion : For each edge b which connects two sites x and y we
let

- 4 sn wr g

i, ifK(n)>b,
ﬂ(b)‘ﬂ(X)TI(V)--! K
i, otherwise.

With this notation it is immediate that

Zro(B)= zexn(e 5y n(b)\ =3 I1 exp(Bii(b)),
bel,

bel" T

where I, = set of edges contained in (—n —1, n+1)*. Now if u =1 or —1, we have

»

u

e® =3((e® +e™®) + u(e® —e™®)) = cosh B(1 + u(tanh B)),

SO we can write

Za,;(B)=(cosh )Y [I (1+7(b)tanhp)
£ hery,
=(cosh )Y T (tanh 3\'”‘( 1 n(b)\ (11)
§ Bcrn bEB

Since tanh B - 0 as B - 0 this expansion is good for small 8.



R. Durrett /[ Infinite particle systems 143

II. Low temperature expansion. Using the notation from I we can write

Zpr:(B) =Y Hr exp(B1 (b))

&b

___eBIF,,IZ 1—1 e—zezealrntze—zsu.s)’ (12)
3

bel, 3
n(b)=-1

where L(&)=1{b: 4(b)=—-1}.

If we consider the high temperature expansion with £, =0 (so called open
boundary conditions, corresponding to an isolated system), then there are 2 types of
terms in the sum in (11):

(i) Some x € A, occurs an odd number of times. In this case pairing ¢ with £*
shows

L Il 2(6)=0.

¢ beB

(ii) All x € A, occur an even numter of times in B. In case [[,.5 1(6) = 1 for all ¢
so if we let K,, be the set of such B, we have

Z 4,0(B)=(cosh B)'™ ¥ (tanh p)"*" (13)

Bek,
Kramers and Wannier’s observation was that we could get a similar expression
from the lower temperature expansion evaluated at B* if we replaced A, by

AF=(3,%)+2Z% A[-n, nT and consider an Ising model on this lattice with boun-
dary condition £, =1. In this case (12) becomes

Z4:.1(B*) =€*"™Y (tanh ).
£

A glance at Fig. 6 shows that if £e{-1, 1}""': and we associate with each b € L(¢) thc

® + + +

o—rfoto -

%9

?
oo
o

®
Y

e - |-

+ @ + +

Fig. 6. A typical configuration £€{-1, 134,
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arc b* e I', which intersects it, then L*(&) ={b*: b e *L (&)} e K, and furthermore each
L e K, is associated with exactly one £e{-1, 1}*+. This observation allows us to
re-write the last expression as

Zyea (85 =€ Y (tanh B)7, (14)
Be K,
so we have
ZaoB)  Zaxa(BF)
(coshB)‘r"‘z e Int (15)

If we assume that the free energy has only one singularity as a function of 3, then
(17) implies that this must occur at a point where B = B*. Setting 8 = B* leads to the
equation

CB '—e~ﬂ -23

—= =€
eB+eB

which reduces to sinh(28) = 1.

The argument above suggests (but of course does not prove) that the phase
transition point for the Ising model should be 8o = 3 arcsinh(1). This fact was proved
several years later by Onsager [34] who showed by a very ingenious calculation that

1 (" v
f(B)=log2+>— I de, I dé log(cosh’ 28 —sinh’ B(cos 6, +cos 62)).

T Jo 0
(16}
Differentiating gives

U(B)=coth 23(1+————————~(Si"h2:f =u ]: kL ).

0 cosh’ 23 —sinh 28(cos 6, + cos 65)

(17)

The integral in (17) diverges when cosh’ 28 —2 sinh 28 = 0. This disaster does not
make U =oo, however. cosh’2B -sinh’28=1 so cosh’28-2sinh2B=0 is
equivalent to sinh 2f = 1 and we havs (sinh? 28 — 1) = 0. At this point we have seen
that the integral is o and the multiplier is 0. A little calculation shows that in the
above 0 =0 bu. taking one more derivative reveals the singularity

dU/dT ~C log|B —Bo| as B—Bo (18)

After the free energy was calculated the next problemn was to compute the
sponianeous magnetization, i.e. the extent to which the spins are aligned when
B >p.. We have teen deliberately vague in introducing the term spontaneous
magnetization since it has been given several (ultimately equivaient) definitions. The
original definition was

_of(B, h)

m(B) Boh |y

(19)
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where f(B, h) is the free energy for the system in the exponential family with
J(@x})=—h, J({x, y}) =B when |x —y||=1, and J(A) =0 otherwise. Although the
definition in (19) may look mysterious it is the right one from the viewpoint of infiiiite
particle systems. Lebowitz [28] has shown that m(8) = (n(0)). so m(B) gives the net
magnetic field in u. and the value of m(8) being >0 or =0 tells us whether |#]|> 1
or =1.

Although (19) appears to give an explicit formula for m(8) it is useless since no one
has been able to compute f(B, h) for h #0. Without a formula for f(B, h) the
determination of m(8) was a slow process. The first step was taken by Onsager [35]
who claimed that

m(B)=(1—(sinh 23)~4)1/8 (20)

but never published a proof of this result. The first rigorous result was due to Yang
[49] who showed that if mo(B) is the right-hand side of (20), then

mo(B) = lim lim 1im () fn (8. h/m)~ o (B, ) @1)
where f,., is the free energy for the Ising model in {1,2,...,m}x{1,2,...,n}
with periodic boundary conditions: J(x —y)=g8 if [(x;—y;) mod m|+]|(x2—y2)
mod m|=1.

The first connection with correlation functions was made by Montroll, Potts and
Ward [33] who showed that if u, is the Gibbs state which is the limit of the
equilibrium states in [—#n, n]* with periodic boundary conditions, then

mo(B)= lim (n(x)n(y)s>

(x—y)—>00

Having made the connection between mo(B8) and (n(x)n(y)), the last step is to
relate (n(x)n(y)), to {(n(x)n(y)).. This was done by Benettin, Galiavotti, Jona-
Lasinio and Stella [2] who used duality to show thatif A< Z 4 has an even number of
elements, there are constants y4(B) (depending also on ) so that

(n(A)>o,B=§ ya(B)n(B))+.p*
(n(A)>+.a¢§ Ya(B)Xn(B))o,g*
(see (2.3) and (2.4) in [2]). Since a B > B maps to a B* < B, it follows that for all

B € (0, ),
(n(ANos={n(A)+r

for all A = Z¢ which have an even number of elements. The GKS inequulitiis show
that

MMy @)Y, <(Mx)nly)
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so we have
(n()n(y)p, ={(nx)n(y)-+.
It only remains to assemble the pieces. It is known that w” is ergodic (see Holley
(701, so
2

(m(0)% = m((m,.rl 2 "m) >

xeA,

=lim |4, L ()@

xyeAn
= lim |4,/ x'yz%(n(x)n(y))p
= ‘x}iyr!r_lm0 (n(x)n(y)), =mo(B)?
and we have
(n(0)). = mo(B) = (1 - (sinh 28)™)"*%. (22

The last result shows that |#| = 1 if 8 << B, =3 arcsinh(1) and |#| > 1 if B > Bo, so we
have identified the critical value. The next problem then is to study # when |#|> 1. 4
has two obvious extreme points u~ and " which are related by interchanging 1 and
—1 so it is natural to conjecture that £, ={u ", u*}. The first step in proving this was
taken in [32] by Messager and Miracle Sole who used duality ideas and some results
of Ruelle to show that any translation invariant Gibbs state is a convex combination
of u_ and w . This was the best known result until 1979 when Aizenmann [1] proved
the resuit without the assumption of translation invariance.

The results above give 1 complete description of the invariar:t measures for the two
dimensional Ising model so now we turn our attention to dimensions d=3.
Unfortunately there is not much to say. It follows from the GKS inequality that the
criticai value is a decreasing function of the dimension so the three dimensional
critical value <f,. With a little cleverness this result can be improved dramatically.
By introducing the boundary conditions {,(x)=sgn(x;— 3) and using the GKS
inequality van Beijeren [48] has shown that the three dimensional Ising model has
nontranslation invariant Gibbs states for 8 > B,.

The last result is obviously just the beginning of the study of the three dimensional
Ising model but unfortunately is almost the end of the known results. We know that

(a) if B is sufficiently small |.#| = 1 (this is a consequence of the uniqueness result in
Section 2);

(b) if B is sufficiently large every translation invariant stationary but is a convex
combination of " and u”.

However, there are still many open questions

(1) Find B2 or at least show that 82, < BZ. (The latter is not as easy as it sounds,

although it is likely that someone knows how to do this.)
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B every translation invariant stationary distribution is a
+

convex combination
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The only papers listed below are the ones which were referred to above so the list does not come close to
exhausting the literature. For more references on the Ising model see Gallavotti [13], or Ruelle [42, 43]
and for more on other infinite particle systems see Liggett [28) or Griffeath [64)].
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