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In ‘i970, Spitzer wrote a paper called “Interaction of Markov processes” in which he intro- 
duced several classes of interacting particle systems. These processes and other related models, 
collectively referred to as infinite particle systems, have been the object of much research in the last 
ten years. In this paper we will survey some of the results which have been obtained and son?.= of the 
open problems, concentrating on six overlapping classes of processes: the voter model, additive 
processes, the exponential family, one dimensional systems, attractive systems, and the Ising 
model. 
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1. Introducticn 

Since this survey is based on Qe 1ectJre I gave in Evanston, I would like to begin 
my paper as I should have beguc mv lalk - by describing in an informal fashion some 
of the processes we will consldtir and some of the questions we would like to answer. 
You should notice that I said “would like to answer” in the last sentence - there are 
many basic questions which have not been answered. This is, for me, one of the 
exciting aspects of infinite particle systems. There are many conjectures which are 
obviously true but which are very difficult to prove. 

I will state some of these conjectures before long, but before I can do this I need to 
introduce some notation and terminology: 

Let S be a countable set. S, which will usually be Zd = {(nl, . . . , nd): ni are 
integers}, is a set of sites (locations in space) where the events of interest occur. 

Let F be a two element set (or if the reader wants some finite set). F, which will 
always be (0, 1) or {-l, l} in this paper, is the set of states in which we can find the 
various sites (occupied or not, infected or healthy, spin up or down). 

* This survey paper is based on a I hour lecture given at the Ninth Conference on Stochastic Processes and 
their Applications, Northwestern University, August 6-! 0, 1979. The author would like to thank the 
organizers (E. Cinlar et al.) for the invitation to speak and the National Science Foundation (grant MCS 
77-02121) for partial support during the preparation of this paper. 
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Let*=FS= the se!. of all functions from S to F. If q E x, then q(x) gives the state 

at X, so q describe the: configuration of the system. 
Let A = set of all subsets of S. If a E F, the mapping q + {x : q(x) = a} gives a 

l-lcorrespondence of A and x. In some examples A is a more convenient state space 
than x. 

In the abstract ‘811 infinite particle system is a strong Markov process with state 
space x or A. To prove interesting results we will have to assume somewhat more 
than this and at a bare minimum we will always assume that the process is described 
by giving a function I.. . -* A x x + [0, 00) which determined the evolution through the 

equation : 

P(v~+~(x) f ~~[x) for all x E A 1 Q = q) = 

= C c(B,7j) S+o(6) as S+O. 
> 

(1) 
B=A 

In words c(A, q) the rate at which we flip the values at all the sites in A when the 
configuration is 7. In most models that have been studied c(A, q) = 0 unless IAI, the 
cardinality of A, is 1 or 2, and in nearly all these cases the process is one of the 
following two types: 

(a) Spin flip systems. c(A, q) = 0 unless IAl = 1. In these models only one site flips 
at a time so we write c<(x), q) as c(x, q). 

(b) Particle motion systems. F = (0, 1) and c(A, q) = 0 unless A = {x, y} and q(x) = 
1, q(y) = 0 or IAl := 1. In these models, ones mark the locations of particles. In the 
first case a particle. jumps from x to y. In the second a particle appears or disappears. 

Taking (1) as our way of defining qt there is immediately the question of whether 
the 1 :.ansition rates specify a unique Markov process. As the reader might expect the 
ansv er is “sometimes yes and sometimes no”. Later in the praper we will state 
comlitions on the c(A, 7) which guarantee that the flip rates specify a unique Markov 
proil:ss but for the moment our purpose is to discuss some examples so we will ask 
the :eader to believe that the examples we will describe below have unambiguous 
defii iiitions. 

We start our consideration of examples with a trivial one: 

Exs.lmple 1. Independent flips. S = any set, F = (0, l}, 

c(x, rl)= 
a. if 77(x)=0, 

b, if q(x)= 1. 

Since the value of the flip rate at x does not depend upon the values of the q(y) for 
y # X, the coordinate processes {&), t 2 0) x E § are independent two state Markov 
chains which l%p from 0 to 1 at rate a from 1 to 0 at rate b, The asymptotic behavior of 
this system as t + 00 is trivial to determine: qr converges weakly (precise definition 
given below) to the probability measure on (0, 1)’ which makes the coordinates 
independent and have (q(x) = 1) = ala + b (we call this distribution the product 
measure with density a/a -t b and denote it vaia+& 
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Even though the last result is trivial it already indicates some of the difficulties in 
the subject. If we let +Q and 7: be two realizations of this process which start from 
configurations which have qr(x) it v:(x) for infinitely many X, then the distributions 
of vr and q: are mutually singular for all times and so the theory of Markov chains on 
a general state space cannot be used even in this trivial example. 

Example 1 was trivial because the sites did not interact and hence the fact that S 
was infinite was irrelevant. Things become considerably more interesting when the 
sites interact even a little bit: 

Example 2. One sided nearest neighbor systems. S = Z’, F = (0, l}, 

C(X, 7) =f(v(x), 97(x + 1PO for all x, 77. 

Even though these systems are simple it is not yet known whether the processes in 
this class always have a unique stationary distribution. The answer is known to be yes 
in three cases: 

(a) f(~(x), V(X + 1)) = g(rl(x + 1)) (or g(rl(x + yl), . . . Y rl(x + y,,)), where all yi f 
0), then vi/z, product measure with density $ is the unique stationary distribution (for 
a proof of this see Section 6). 

(b) If f(o, 1) af(O, 0) and f( 1,O) af( 1, l), then the system is an additive process 
(see Section 4) and the duality theory associated with these processes allows us to 
show the stationary distribution is unique. The stationary distribution for this process 
cannot be described in 25 words or less but duality gives a (,not very practical) 
procedure for calculating its finite dimensional distributions. 

(c) f(ql, VJ~)= 1 +ql+bq~+cq1q2. where lal+lbl+lcl< 1. Any nonnegative 
function of ql and r/2 is a constant multiple of a function of this) type. When a, 6, c 
have special properties the process has a dual in a sense more general than Section 4. 
Holley and Stroock [79] have shown that the stationary distribution is umique if one 
of the following conditions are satisfied: (i) abc < 0, (ii) a > 0, b, c < 0, or (iii) b > 0, 
a, c c 0. This shows the stationary distribution is unique in at least $ of the cases. 

On the basis of the last two examples and by analogy with what happens when S is 
finite, the reader might think that if c(x, 7) > 0 for all X, v, then the process is 
‘irreducible’ and will always have a unique stationary distribution. The next example 
shows that this is not true. 

Example 3. The Ising model. S = Zd, F = {- 1, l}, 

dx,d=exp -P ( C vWrl(x+4 PO. 
u.llull= 1 ) 

In the Ising model the sites are thought of as iron atoms whose individual magnetic 
north pole may be pointed up (1) or down (-1). Since q(x)q(x + u) = 1 if and only if 
q(x) = 7(x + u), the sum in the exponent measures the extent to which rl(x) is aligned 
with its neighbors. If the alignment is bad the flip rate is large and conversely. 
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The Ising model is not hard to analyze in one dimension. A simple calculation 
(done in Sections 5 and 6) shows that if I_C~ is the distribution on (0, l}z which makes 
the coordinates 77 (n ) - 00 c n c 00 a Markov chain with transition matrix 

(e’ + e-p)-1 (ef13 J? 
then pp is a stationary distribution. Holley and Stroock [75] have shown there are no 
other stationary distributions so in one dimension the stationary distribution is 
unique for all /3. 

Things get much more interesting in dimensions d 2 2 (Section 8). In these cases 
there can be more than one stationary distribution. There ia a critical value & so that 
if p < &, the stationary distribution is unique and if /3 > Pd, it is not. When d = 2 it is 
known that & = 2-l arcsinh(1) = 0.44 and if /3 >/32, then the set of stationary 
distributions 4; is a convex set with two extreme points $ and p- which have 
1 f(q) &C(T) = 1 f(-q) & +(q). The last sentence gives a complete description of 
the size of 9 in dimension 2. In contrast very little is known when d = 3: it is easy to 
shod p3 s & and with some help from Dobrushin [6,7] or van Bijeren [48] that if 
/3 > &, la has an infinite number of extreme points, but we cannot compute the value 
of & (or to my knowledge even show rigorously that & < &) and we are far from 
determining the structure of 9 for /3 >&. There are however precise conjectures 
about what happens. Based on numerical results it seems that & = $2. As for 9, 
today I think it is reasonable to conjecture that l&l, the number of extreme points of 
.a, is given by 

i 

1 P E (-0% P311 

14 = 2 P E (P3, P21, 

-= P E (P2,(a 

but on other days 1 have thought that I&i = 00 for all p3 <p. I will leave it to you to 
decide which side )rou want to bet on. 

The Ising model (or to be precise its stationary distributions, the Gibbs states) 
arose in statistical mechanics in 1925 and has been much studied by mathematical 
physicists. Physics however has not been the only source of models. The last two 
examples I will mention have socio-political and biological interpretations. 

xample . Vo:er model. S = Zd, F=(O, I), 

+, d = c Y(Y 11 (Tl(x+y)fq(x)) 
YES 

where 

P(YPO ml C p(y)=l. 
yes 
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In the voter model the sites can be considered to be the homes of individuals who 
live in a (large) idealized city. The states 1 and 0 represent being for and being against 
a particular issue or proposition. The individual at x assigns weight p(y) to the 
opinion of the person at x + y and changes his opinion at a rate which is equal to the 
sum of the weights for the opposite opinion. 

In this system q = 0 and q = 1 are absorbing states so it is natural to ask if there are 
any other stationary distributions? The answer (due to Holley and Liggett [72]) is no 
if the random walk generated by p’(x) - - i@(x) +p(-x)) is recurrent and yes if it is 
transient. In the transient case they showed that 9,, the extreme points of 9 is a one 
parameter family and in both cases they obtained convergence theorems which allow 
us to determine the limiting distribution for a large class of initial distribution. (The 
reader will find a precise statement of these results in Section 3.) 

The last example we want to mention is: 

Example 5, Contact processes. S = Zd, F = (0, l}, 

1, if n(x)=l, 
c(x, 77) = kA, if q(x)=0 and C q(x+y)=k, 

YCW 

where D is a finite subset of Zd. 
In a contact process, the sites should be thought of as plants arranged in regular 

rows or cells in the human body. The states 0 and 1 correspond to the site being 
‘healthy’ or ‘infected’. In these terms the flip rates say that infected sites recover at 
rate 1 while healthy individuals get infected at a rate proportional to the number of 
sites in x + D which are infected. 

Visualizing the contact process as the spread of an infection there are a number of 
natural questions to ask: 

(a) For what parameter values is the process supercritical, i.e. starting from one 
particle at 0 (i.e. 7&) = Ito,( is there positive probability that qt+ 0 1: l)r all t? 

(b) If the infection has positive probability of persisting for al; CI. e then at what 
rate does the number of particles grow? DfJes the infected region h<s a an asymptotic 

shape? 
(c) q = 0 is an absorbing state. Under what conditions is these a nontrivial 

stationary distribution? 
(d) How are questions (a) and (c) related? 

The list of questions could go on and on but I won’t let it, since I’m not going to talk 
about contact processes-there just happens to be a survey paper on contact 
processes by David Griffeath in this issue (see pp. 151-185). 

The list of examples above is just meant to whet your appetite. It does not exhaust 
the processes I[ will consider in this paper much less the list of processes which have 
been studied so far. In this paper I have concentrated on spin flip systems an 
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not discussed, except briefly in Section 4, any of the particle motion systems. These 
processes are discussed extensively in Liggett [86] and Griffeath [64], sources which I 
would like to enthusiastically encourage the reader to consult for information on this 
and other topics. 

Another obvious omission from the surb;y is any consideration of work in 
progress, I have tried to remedy this defect by listing in the bibliography the most 
recent papers and where they are to appear. If the reader tracks down these papers, 
he will see what was happening in infinite particle systems now and, hopefully, wiil 
enlarge the class of knov,dn results. 

2. Definitions and preliminaries 

In the introduction the reader got a preview of the processes to be considered in 
Sections 3-8. As is the curse of most aspects of mathematics, before we can have a 
serious discussion of the subject it is necessary to introduce a fair amount of notation 
and definitions. This section is dedicated to this task. Hopefully the reader will 
persevere. As David Williams might say, to visit some of the most beautiful Mayan 
ruins in Mexico, one must hike for several hours through the jungle. 

The first thing to deal with is the state space x = FS or, equivalently, A the set of all 
subsets of S. Since F is a two element set, F is compact (in the obvious topology) and 
hence x is compact in the product topology, i.e. the topology of coordinate-wise 
convergence. To get a mental picture of x consider (w log) the case F = {0,2}. 
S={l,2,...} an d b o serve that n + CT= 1 3-“7 (n) is a continuous map which sends x 
to the usual Cantor set. 

Once we have a topology on x we can define the Bore1 sets X to be the u-algebra 
they generate and P(X) to be the set of probability measures on X. To define a 
topology Qn S(X) we say that probability measures p, converge weakly to a limit p 
if 1 f&., -*If dp, for all f E C(x), the continuous functions on x. It is well known that 
P(X) is compact in this topology, a fact which will be useful below. 

Our next concern is the flip rates c(A, 7) which define the evolution. The flip rates 
were defined above as functions from n xx + {O, ~0) but we will consider only spin 
flip systems on Zd so we will reduce ourselves to that level of generality now and 
write the flip rates as c(x, n) instead of c({x}, n). The first step in constructing qt from 
c is to define the infinitesimal generator 

where r,lx E x is the configuration with the spin at x flipped 

#q(x), if y =x, 

‘x(y)‘~ =7(y), otherwise 

and, to make sure that the sum in the definition of Lf(q) converges, we assume 
.f~ c”o(x) the functions which only depend upon finitely many coordinates. 
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Having defined L on a subset of C(x) which is dense (using the sup norm on C(X)) 
the next step is to apply the Hille-Yosida theorem to show that L (or, to be precise, its 
closure) is the generator of a semigroup St, t 2 0 on C(x) which defines a unique 
Markov process through the formula &f(q) = E(&) 1~0 = 77). Needless to say this 
cannot be done without some assumptions on c. Liggett [85] has shown (see Liggett 
[86] for a more recent treatment) that if we assume c satisfies 

(i) translc~ion inuariance: if y E Zd and 8,~ has B,q(x) = q (x + y), then c( x + 

y, @,q) = c(x) V) and 
(ii) Lipschitz continuity: if we let llgljW = sup,)g(q)l and llfli = C,llf($) -f(&,, 

then /c(O, 9 >I) < 00, then 1.. generates a unique Markov semigroup St and we have 
d 
--@f b7) = L&f b7) = s,Lf (VI, (2) 

’ IIS,II t S e’“+‘jl f II 9 (3) 

where ~~=llc(O, l >II and p =inf,(c(O, q)fc(O, qx)I. 
This result requires some explanations: 

Remark 1. The assumption that ~(0, 0) is continuous is insufficient to obtain the 
desired conclusion. There are strictly positive continuous attractive translation 
invariant flip rates f:Jr which the conclusion is false, see Gray [62]. 

Remark 2. Assumptions (i) and (ii) hold whenever c(x, 7) has finite range, that is, 
c(.Y, 77) = g(q(x +x1), . . . , ~(x + y,)), where {x1, . . . , x,} is some finite subset of Zd. 

Remark 3. It is only fair to mention that there are other approaches to constructing 
finite range and more general infinite particle systems which can be found in Harris 
[65], and Holley and Stroock [74]. The first is a direct construction of qr 0 s t s to 

using random islands, the second is a martingale approach. 

Liggett’s result guarantees the existence of all the infinite particle systems we will 
consider so we turn our attention now to the terminology required to discuss the two 
basic problems of infinite particle systems 

(i) determining 4, the class of stationary distributions, and 
(ii) computing the limiting distribution starting from any initiai distribution. 

If p E P(X), let $‘ be a version of the process with initial distribution p and let #, 
be the distribution of 7:. In order for p E 9; it is necessary and sufficient that for 

f E Co(x), 

(4) 

(see Liggett [86’] for details). If one writes out the right-hand side one sees that the 
finite dimensional distributions of p satisfy an infinite system of linear equations. 
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(Exercise: do this for the basic co*ltact process.) ‘These equations give some informa- 
tion about p but usually not enough ko determine it so we have to resort to other 

tricks to determine 9. 
The reader will see in Sections 3-8 thst these tricks vary considerably from 

example to example. The situation is not total chaos, however there are some 
common themes (coupling, duality, monotonicity) and even several general results. 
The most basic is that $ is a non-empty convex se:t. 9 is clearly convex. To show 9 f 0 
let g, = (l/n) j: FS, dt, pick a convergent subsequence N,,~, and observe that if ~1 is 
the weak limit, then @St = cr. for all t [computation left to the reader). The second 
general result I want to mention is a consequence of (3). If (Y <p (i.e. ~(0, TJ) = c or 
almost constant), then (x - /3 < 0 so I&f]] + 0. By the previous result 4 # 0. If b t- 9, 
then &f is constant and since ]]SJ]]. l 0 we have ]]SJ-&&& + 0 showing that 
4: = (CL} and JL is the limit starting from any initial distribution. Other sufficient 
conditions for ISI = 1 and for I$]> 1 can be found in Sections 4 and 8. 

3. The voter model 

In this section we will study the voter model: 

CC& 7) = c P(Yu,,~x+yw~~x~b 
Y 

where 

p(y)>0 and Cp(y)= 1. 

The first step is to give a special construction of the process: 
- Let (hr, (t): t 2 0}, z E Zd be independent Poisson processes with rate 1. 
- Let T,,, = inf{t 3 0: N,(t) = gl’j be the time of the nth event in N,. 
- Let {Yt,n: n 3 l}, t E Zd be independent i.i.d. sequences with the property that 

WY,,” = y) =p(y) for all y, z, n. 
In making these definitions we have in mind that at time T&, the voter at z decides 

for the nth time to change his mind, he picks a neighbor z + Y,,,, at random and 
adopts the opinion of that neigbbor (which may be t le same as his own). Since the 
voter only changes opinion when he picks a y with rl (z + y ) f 7 (z) it is easy to see that 
we get a process having the flip rates given above. 

To use the recipe given above to compute the state of the process at time t is not 
completely trivial because there are infinitely many flips in any positive amount of 
time. To carry out the construction we will use the graphical representation invented 
by Harris [69] and developed by Griffeath [64]. Draw the family of line segments 
{z}X[O, t], z ~2~. Mark the” points (t, a,,,), z EZ~, II 2 1, with S’s and draw an 
arrow from (7 + Y,,,, ‘%,,,) to (2, T’,,) (see Fig. 1 for a picture). The S indicates that 
the voter at z has decided to change his mind and the arrow indicates the neighbor he 
chooses to imitate. 
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To construct the process from this ‘percolation structure’ we imagine fluid entering 
the bottom at the points, where TO(X) = 1 and flowing up the structure - the S’s being 
dams and the arrows being pipes which allow the fluid to Row in the indicated 
direction. With this interpretation the {x : qr(x) = 1) is the set of wet sites at height t. 
To make this definition mathematical we say that there is a path from (x, 0) to (y, t) if 
there is a sequence of times 0 Csl< s2 . 9 l es, c t and spatial locations x0 = 

x, x1, x2, e.. , xn = y so that 
(i) for i = 1,2, . . . , n there is an arrow from xi-1 to xi at time si and 

(ii) the vertical segments {Xi} X (Si, Si+l), i = 0, 1, . . . , n (SO = 0, sn+l = t) do not 
contain any 8’s. 
(On Fig. 1 we have indicated some sample paths.) 

time t ’ 1 1 1 1 

I 
6 I 

----a 

I 

1 *8 

I 

I _--- - 

I 
I 

-1 
I 

I I 
1 I 

0 1 0 1 1 

Fig. 1. One realizatiori of the graphical representation. 

When there is a path from (x, 0) to (y, t) it follows that the individual at time t has 
the same opinion as individual x at time 0. Since every individual at time t has the 
same opinion as some individual at time 0, it follows that if A is the set of individuals 
at time 0 who have opinion 1, then the set of individuals at time t which have that 
opinion is given by 

6:’ = {y : for some x E A there is a path from (x, 0) to (y, t>}. 

The last definition gives the “graphical representation’ of the voter model. One of the 
nice aspects of this construction is that it defines all the Sf on the same probability 
space so that we have 

monotonicity: if A c B, then 6;” c 6: for all t. (1) 

additivity: for any A, B, and t, 6:‘“” = (p u [y. (2) 
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These two properties are very useful and we will consider them later. For computing 
the asymptotic behavior of the voter model the most important fact about the 
graphical representation is that it allows us to construct a dual process gp which has 
the property that for any A, B 

P(5.p 43#@)=P($%Af8). 

One process which satisfies (3) is 

SF = {x: for some y E B there is a path from (x, 0) to (y, t)‘,, 

for then 

(3) 

{;P t?B #0}= 
for some x E A, y E B there is 

a path from (x, 0) to (y, t) I 
= (5: n A # 0). 

The sample paths of 6: have huge jumps (consider a contact process) and 6: is not 
Markov so we will replace 6: by a tamer process i: which has the same one 
dimensional distributions (and hence satisfies (3)). 

To construct i: t 2 0 it suffices to give the distribution of if, 0 c s 6 t for all t. To do 
this we define a dual percolation structure & by reversing the arrows in the original 
structure g and changing time by the mapping s^ = t-s (see Fig. 2). Since the 
distribution of a Poisson process is unchanged by time reversal it is clear that 

Fig. 2. The dual percolation structure of the example in Fig. 

time 6 

time t” 

(i) the finite dimensional distributions we have defined are consistent, 

(ii) 6: g [F for any t and 
(iii) the dual process could be constructed from a single percolation structure @ 

with gadgets which are obtained from the original ones by reversing the arrows. 
In order for (3) to be useful we need to know how ir evolves (and if we want to get 

results, the evolution has to be simple). When & is the voter model the dual 
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percolation structure has ‘S-arrows9 from x to x + y at rate p(y). By considering the 
four possible cases one sees that the effect of S-arrow is given by the following table: 

before after 

S(x) 6(x + y) T’(x) 5’(x + y) 

6’(x) 4“(X 4-y) 0 0 0 0 

If we think of the l’s as particles and O’s as empty sites, then & may be described as a 
coalescing random walk. A S-arrow from x to x + y causes a particle at x to jump to 
x + y and if x + y is occupied the two particles coalesce to 1 e 

When the dual process starts from B = (0) its behavior is trivial to compute. For 
any t > O,tT (our abbreviation for iy’) has only one element and its positian Xt is a 
random walk which takes steps with distribution p(y) at rate 1. Combining this 
observation with the duality equation (3) shows 

(4) 

The last formula allows us to compute the one-dimensional distributions of 6: and 
implies in particular that if the initial distribution is vr, product measure with density 
p, then P(0 E 5,) = p, for all t. To determine the limiting behavior of & in this case we 
compute the two dimensional distributions. Let &F(y) = 1, if y E 5: and 0 otherwise. 
Now 

and from the graphical representation of & we have 6: u & = l”*“’ so 

The particles which make up e& and 8 perform independent random walks until 
they hit so if Xt and Xi are independent random walks with distribution p and 
X0 = 0, X& = x, then 

P(llf)'x'[ =2) = P(X, -Xl #O for all OSsSt). 

xS = X, -Xi is itself a random walk which takes steps with distribution p’(x) = 
&p(x)+p(-x)) at rate 2. l’f XS is recurrent, then 

P(&O)#&x))+O as t+a. (5) 

So the system approaches total consensus: that is, if A is a any initial configuration 
ax; & a finite set 

(&O)&(x) rorall xEB)+l. (6) 

If x is transient P(j:' # 6:) does not converge to 0 so differences of opinion may 
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persist. If 5: is a voter model with initial distribution vp, then 

&GYO) #5‘;(x)) = 2p(l -P)P(iP f: s^:> 

which converges to a nonzero limit as d -9 00. With a little more work we can show that 
the finite dimensional distributions converge to those of a limit P,, which is a 
stationary distribution for the voter model; 

P(eYnZ3=0)=1 lP($%B=P))dv,(A) 

= 
I 

P(ia n A = 9)) dv,(A) = E(( 1 - p)liT!) 

Since IfB 1 can only decrease, it follows that if B is finite, then as t f oo Ii: 1 decreases to 

a limit I$21 and 

a([: n B = 0) -) E(( 1 - p)li2’) (7) 

proving the asserted convergence of finite dimensional distributions. 
At this point we have constructed a one parameter family {pP: 0 s p s l> of 

stationary distributions so it is natural to ask if 9 is the closure (in the weak topology) 
of the convex hull of the pP (9 certainly must contain this set of measures). Holley 
and Llggett [72, ppm 659-6601 have shown that the anser to this question is yes. The 
idea behind their proof is to show that if p E 9 and Bk,,* is a sequence of k element 
sets with inf(l]x - ~11: X, y E Bk,n, x f y}+ 30, then 

lim ~(77:~ nBk,n=O)=pk (8) II+=- 

and the numbers pk satisfy 

m 

=t > 
m (-l)rpk+, 30 for all k, m 2 0. 

r=o r 
(9) 

Looking at Thecrem 2 in [99, Vol. II, p. 2231 we see that these inequalities imply that 
there is a probability measure 3/ on [0, l] so that 

I 

1 

Pk = (1 -dkr(dp). 
0 

Since lim,,, fiu9 { v: 77 n Bk,* = 0) = (1 - p)” the last equality suggests that 

1 pp(S)Y(dP) f or all measurable subsets S (and proves that if p is some 
combination of the pep it must be this one). By investigating tk - unction 

h(F)=&: qnF=0) 

(10) 

P(S) = 
convex 

which is harmonic for the process i: (i.e. h(B) = Eh([p)) Holley and Liggett prove 
this and thus conclude that all g E 9 can be written as 
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It is easy to show using (10) that such a decomposition is unique so we have shown 
that 9 is a convex set with extreme points {pp: 0 up s I}. 

Having determined the set of stationary distributions the next step is to investigate 
the convergence: of &’ (which denotes the process with initial distribution v). On this 
subject Holley and Liggett have the following remarkable result [72, Theorem 5.16, 
p. 6601: 

(12) Theorem. Let p,(i, j) be the transition density of the randow walk X. 6; -?4 pp QS 
t + OQ if and only if 

(4 lim 1 pl(i, _i)u{q : q(j) = Ol= 1-P 
t-+00 j 

and 

(b) lim C p,(i, jMi, k)v{q: q(j) = 0, q(k) = 0) = (1 -p)*. 
t+‘x) j.k 

If u is translation invariant and y(v: ~(0) = 1) = p, then (a) holds. If in addition the 
coordinates v(x) form an ergodic stationary sequence under V, then (b) holds, so 
5; *pp as t-,00. 

The results above describe the stationary distributions for the voter model and the 
limiting behavior of the finite dimensional distributions. In the recurrent case the 
limit is total consensus so it is natural to inquire about the rate at which this is 
approached. In one dimension when p(1) = ~(-1) - - $ this is an easy problem. When 
&) # 8 it is always an interval [a, b,] and the end points perform independent simple 
random walks until 6, < a, at which time 6: becomes 0. From this it follows easily that 
if pt = P(ey # 8), then pr - l/G and 

the Rayleigh distribution (see Durrett [56] for the relvant conditional limit 
theorems). 

In dimensions d a2 the situation is mu& harder. Bk exploiting the connection 
with a model studied by Sawyer [93] and others [57,61,78, 83,891, Bramson and 

Griffeath [55] have shown that if p(x) = 1/2d when llx/ = 1, then as t + 00 

(log t)/nt, d = 2, 
Pt - 

Gl t, da3 

and <pt16%:’ $8) converges to an exponential distribution with mean 1. 
The results above describe how one person’s opinion dies out and are designed to 

complement the trivial convergence theorems in the recurrent case. In the transient 
case we have a o:lme-parameter family of stationary distributions which have compli- 
cated dependencies and are given by a horrible formula, so there is also the problem 
of describing the stationary distribution. 0ne approach to this (which was motivated 
by similar activity in statistical mechanics) is called renormalization. In this approach 
one studies the asymptotic behavior of S,(e), the number of points in 5 n [-n, n]“, 
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and other related weighted sums and then after an appropriate amount of technical 
intercourse renormalizes to obtain a limiting random field. 

Rramson and Griffeath [53] have done this for the three dimensiJna1 voter model 

with the result that S, (Q)/n5’* converges to a normal distribution anQ the equilibrium 

state under appropriate renormalization approaches the 0 m;ir;s fa ee field. Although 
the limits in these results are what we get from independent va.-3sQes the presence of 
the norming constant n 5’2 instead of yt 3’2 indicates that the equilibrium states have 

long range dependencies and gives an estimate of the strength. 
For more information on these points see Griffeath [64, pp. 53-543, Bramson and 

Griffeath [53] or Major [88] who has given another treatment of the voter model. A 
number of infinite particle systems have been renormalized. The reader who is 
interested in these results should start with Holley and Stroock [76] and then 
progress to [77] and [78]. 

4. Additive processes 

In this section we will consider a collection of models called additive processes 
which can be constructed using graphical representations similar to the one used in 
the last section. The motivation for considering this class is that all additive processes 
have an associated dual process $ which is related to the original process & by the 
duality equation 

P([F n B = 0) = P(ir n A = 0). (1) 

In the last section we saw how this relationship could be used to study the stationary 
distributions and limiting behavior of the voter model. In this section we will describe 
some other cases in which the duality equation (1) can be used to study the evolution. 
We will not. dwell too long on these examples, since our main aim is to show that any 
additive ~1 oLti Jo - - =%& with rocitive translation invariant flip rates has a unique stationary 
distribution which is the limit as t + 00 starting from any initial distributicin. 

In the abstract, an additive process is a process for which it is possible to construct a 
family of realizations [:‘, A c S on the same probability space in such a way that we 
have 

Now when Harris introduced additive processes in [69] he showed that (2) implied & 
could be constructed in a special way (the graphical representation described below) 
which made it easy to define a process & satisfying (1). Rather than adopting this 
viewpoint and attempting an exhaustive description of the set of additive processes, 
we will, introduce the collection, through a sequence of examples which can be 
combined to obtain the most general additive spin ipsystem(seeSectiorc2ofHarris 

[69] for details). 
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All the examples we will consider (and in fact all additive processes) can be 
constructed by using a percolation structure constructed from a set of independent 
Poisson processes {Nz,i(t), t 20}, z ES, i E I={O, 1,2,. . .} with Nz,i( t) = t;t and 
Ci ri C 00. What we do at the Poisson arrival times T,,i,, = inf{t 2 0: NJt) = n) will 
depend upon the particular example. In the last section we studied 

Example 1. The voter model (here and below S = Zd, F = (0, 1)). 

4x9 4 = c P(Y)1 (~l(x+y)fTJ(x))* 

To write the definitions of the last section in the present notation let yr, y2,. . . be 
an enumeration of Zd and at time Tz,i,n draw an arrow from z + yi to z and label z 
with a S. 

Example 2. The basic contact process. 

C(& 77) = 
1, if q(x) = 1, 

kh, if q(x)=0 and 

where G = {gr, . . . , gn} is some finite set. At times T,,o,, we put a S at z and at times 
Tz,i,n i 3 1 we draw an arrow from z + gi to z. If we define path and 6:’ as we did in 

Section 3, then the effect of a S is to kill any particle at z and an arrow from z + gi to z 
spreads the infection to z if it is present at z + gi, so we have defYned a process with the 
flip rates given above. 

Example 3. Contact processes with more general birth rates. Suppose we modify the 
flip rates of the contact process so that 

c(x, rl) = 
1, if q(x)=l, 

A&, if v(x)=Oand C q(x+y)=k, 

where the hk are constants 20 with ho = 0. When IG\ = n, the new system is additive if 

(and only rf) 

(when n =2 this says hISA and 2Al aA2). To construct these examples we !et 

N = 2n - 1 and Gr,. . . , GN be the N nonempty subsets of G and for 1~ i s N draw 

arrows at time T,,i,, from each of the points in z + Gi = {z + g: g E Gi} to Z. If we use 
the previous definition of path, then this cluster of arrows has the etfect of making 
t(x) = 1 if e(y) = 1 for some y E z + Gi. If G is a two element set, then the Gi we have 
at our disposal are {gr}, {g2}, {gr, g2}. By symmetry {gl}, and {g2} must have the 
same rate (say a) so we can construct any contact process with A I= a + b, A? = 

2a + 6, where a, b Z= 0, i.e. A 1 s A2 s 2A 1. When ICI > 2 similar reasoning and more 
complicated calculations lead to the general criteria given above. 
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In the last example we generalized the birth rates. As the reader can imagine we 
can also generalize ttle class of death rates by introducing gadgets which combine a ti 
at z with a collection of arrows from points in z + G to z. (The effect of this gadget is 
to kill a particle at t if and only if there is one present at z and all the sites in z + G are 
empty.) Once we have done this we have all the ingredients for constructing just 
about the most general additive process. 

Our quest for the most general additive process is not an idle quasialgebraic 
curiosity. Additive processes have special properties which make them easier to 
study. The most important of these is the fact that the graphical representation of 
additive processes given above allows us to associate with each additive process a 
dual process, & which satisfies (1). This process is defined in exactly the same way as 
the dual of the voter model (the discussion following (3) in Section 3 gives the general 
definition). 

Now that we have constructed a process i so that 5 and j satisfy (l), the question is 
“What can we do with g?” As I have already mentioned sc Vera1 times we can analyze 
the voter model, but this is a special situation. In the voter model the number of 
particles in the dual process does not in’crease and this special property was important 
for our solution. The basic contact process (Example 2) illustrates another special 
case: { has the same distribution as [. In this special case the analysis is not so simple 
and after six years of work by various people we finally know what 191 is for all values 
of h (see Griffeath’s survey). When we generalize the contact process to get Example 
3 we lose the self duality and things become more complicated. It has been possible to 
prove a few things about these processes but there are many basic questions which 
remain unanswered. The reader should see Chapter 2 of Griffeath [64] for inforsna- 
tion on this point and for some more examples which can be solved by duality. 

Up to this point we have considered only systems in which c{x, q) = 0 when 7 = 0 
(there are no paths if there are no starting points). To allow for ‘creation from 
nothing’ we have to introduce a new collection of independent Poisson processes 
{N, p if), l> O), t E S, with rate pp. At the time Tr,B,,, = inf{t 2 0: NJt) = n} we write 
a p’alt z and view the point @ as a possible starting point for paths. With this in mind 

we let % = ((2, K,P,,~ ): Tz,P.n s t} and change the definition of the process to 

S? = {y : there is a path to (yl t) from some (x, 0) with x E A or from some 

(2, s) E 9%). 

With this new definition of 4: the effect of a p at x is to make t(x) = 1. With the 
introduction of fl we can construct some contact processes with ho > 0 (the condition 
above is still necessary and sufficient) as wellas some other models. 

The voter model with defections. 

where a, a +b, p(y)>0 and C,p(y) = 1. In this version the in ividuals change from 

opinion 0 + 1 at rate a and from 1 + 0 at rate a + b even when they agree with all their 
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neighbors. To construct this process using the graphical representation, let yi be an 
enumeration of Zd, let r, = Q, ro = a + b, and ai = p( yi) for i 2 1. At times Tz,s,n draw a 
F at 2, at times T,,O,, draw a S at t a’nd at times Tz,i,n for i 2 1 follow the rules for the 
ordinary voter model (Example 1). 

When there are /3’s in the graphical representation (1) is no longer correct since we 
are ignoring the paths which start in 8,, Let &t = {there is a path from 99, to B x (t} 
in 9}. Since &? f I B # 0 on a,, and the argument for the case with no p’s holds on 
a’,,, we have 

If we let & be the birth set in @ and yB = inf{s: there is a path from B x (0) to .@, in 
@}, then it follows from the definitions that 

P(C; n A, n’,,,) = P(if3 n A, Y B ’ t) 

so we have 

(1’) 

The duality relationship (1’) is not as aesthetically pleasing as (l), but it is much 
more useful, because it allows us to prove the result we mentioned earlier: 

If & is an additive process in which p’s occur at a rate r > 0, then 
there is a unique stationary distribution 7r and for any A, B (3) 

Proof. Let rB = inf{t: iy = fl}. From (1’) we have 

P(~~nB=IZ)=P(~f?nA=8,yB>f) ’ 

= P(TB 6 t, yB >7”)+P(&kA =a, TB)f, yB)t). 

When {F # 0 there is always at least one particle which is being showered with P’s at 

rate r so 

P(rB > t, yB > t‘) s P(yB > tl P > t) t=, e-Y 

Ifweletv(q:qnB=@=P( rB < Y’), then it follows1 from the last equality above 

that 

P(&B=Ib)--n(q: qnB=P))= 

(t<7B<yB)+ (ey n A, = 0, 7B > t, yB > t). 

Since the terms on the right-hand side are of opposite sign an each is smaller ii; 
absolute value than (rB > t, y* > t), we have proved (3). 
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As an immediate consequence of (3) we get that the voter model with defections 
has a unique stationary distribution (in any dimenGon!) or more generally that this is 
the case whenever we add spontaneous births to an additive process. 

Given the last result the reader can perhaps understand our desire to find the class 
of all additive processes and to generalize duality. Holley and Stroock [79] were the 
first to do the latter by introducing ‘parity’ into the framework above (this idea 
incidentally was due to Matloff 1891). A portion of this duality is described in 
Grifleath [6$] using the graphical representation described above and counting paths 
mod 2 to define the process. 

~1: = {y: there are an odd number of paths up to (y, t) from (x, 0) with 
HA}. 

The duality theory for these ‘cancellative systems’ is much different from the additive 
variety and is not very well developed. This is, I think, a fertile area for research 
which will attract attention in the near future. 

In closing this section I would like to emphasize a point I made in passing earlier: 
duality is not tied to a graphical representation. It can :Y expressed as a re?iC.tiorl 
between expectations 

which holds for one particular choice off: (f(A, B) = 1 CA 3s=0) in the additive case.) 
This viewpoint has been generalized recently and usecr by various one and two 
element subsets of {Holley Liggett and Spitzer} (see [97, 87, 731). 

5. Thfe exponemtal family 

In this section we will consider a collection of infinite particle systems with S = Zd 

and F = {- 1, 11 which generalize the stochastic Ising model (Example 3 of the 
intrc?Jction). In these systems the flip rates are described by giving a potential J 
which is a real valued functiotm defined on the finite subsets of Zd and has the 
following properties: 

(ij translation invariance: if x E Zd, AcZd and x+A=(x+y: YEA}, then 
J(A)=J(x +A); 

(ii) finite range: there is an L < 00 so that if 0 E A and J(A) + 0, then A c 

{x: llxll s L} (the smallest such E in the range of J). 
The flip rates are defined from the potential by 

dx, q) - exp (- c WV&U), where V(A)= n V(Y). 
Asx YEA 

The flip rates in (1) may look mysterious so some interpretation is ca 
these flip rates are used in statistical mechanics the exponent (including the minus 
sign) represents the energy in the configuration which is due to the interaction of x 
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with the rest of the system. The term in the sum with A = {x} represents the 
interaction with an external magnetic field of strength IJ({x})]. The terms with 
A = {x, y} take into account the interactions between pairs of spins. The quantity 
7(+(y) = 1 if and only if T(X) = q(y) so if there are only two particle interactions 
present (e.g. the Ising model) the energy is a measure of the relative alignment of 
sites. If J({x, y}) > 0 (the attractive case discussed in Section 7) the flip rate is smaller 
when q(x) and q(y) are aligned. If J({x, y}) < 0 the flip rate is smaller when they are 
opposite. 

The flip rates in (1) though curiraus looking have some very special properties. The 
most important of these is the fact that if we consider approximating pjrocesses with 
flip rates 

Cn(.& rl) = dx, rl)l{llxllsn}, (2) 

then the stationary distributions of this system are easy to write down (after enough 
notation is introduced!). 

Tr; A 
LGr LA, ;= *;n ; I+ I[ G pr j ar,d let 3; = Zd -A,*. In the process with flip rates cn the sites 

x E A’, do not flip, so for a fixed f E {-19 1)‘“: the system reduces to a Markov chain 
with staie sp~e {-“I > l)“r. iC for c 6 f - I . l}‘,, we let ~1 be the co,ntigurstian obtained 

by combining 5 and C, 

v()) 
f 

t(Y)9 Y-L 

= 5(Y), i YEA',, 

then I claim that 

(3) 

(4) 

defines a stationary measure for the Markov chain with state space (-1, l}“? 
To check this claim let $ denote the configuration in which the site at x is flipped: 

rl(Y), Y fx, vx(y)=Lq(x), y=x. 

Simple arithmetic shows that if x E A, 

(5) 

G(x, rlX) 
I 

Gh, 7) 
= exp( 2 1 J(A)q(A)) = :T;i\, 

AS n, 
4) 

where 5” has the obvious definition, so 

The last equation implies that wn,g is a stationary measure for the arkov chain 

with state space (-1, l}“n (and in fact a special type of stationary measure called a 
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reversible measure). To prove this we define the ‘Q matrix’ foi the chain on {- 1, I}“#, 

I 
Gh, d, if 5’ = t”, x E A,, 

Q;.,~ = - C cd-w), if 5'=& (8) XEA, 

Q, otherwise 

(here and in what follows 5 E (-1, l)n,, l E {-1,l)“: and q is their combination 
defined in (3)). Wow a necessary and sufficient condition for v to be a stationary 
measure is that 

C VWQCS = 0 for all SE {-l,l}‘ln 
I; 

and we have from (8) and (7) that 

(9) 

Remark. The last computation shows that w,,& is a stationary measure for the system 
in A,* with boundary condition 4’. By looking at formulas (6)-(10) we see that we have 
the same conclusion if we modify the flip rates to have the form 

c’k 77) = &A 77Ma $9 where c(x, q) has the form given in (1) and 

e, 7) = b(x, 77% w, 9 for all x E v, 
(11) 

so we wjlli adopt this level of generality for the rest of the paper and refer to this class 
of flip rates as the exponential family. 

Formula (10) shows that w,,g are stationary measures. To obtain stationary 
distributions we have to let 

The normalizing constant Zn,g is called the partition function (for the system in A, 
with boundary condition 5). We will return to it later. For the moment our purpose is 
to construct a collection of stationary distributions for the infinite particle system, SO 

we will concentrate on the pa.0 
Let ‘;B, be the closed convex hull of {P,,~: 5 E {-1, l)“:), which are now considered 

to be measures on {-1,l)‘“. C!& is the class of equilibrium distributions for the system 
in An if we allow random boundary conditions. It is a consequence of a theorem 
which guarantees the existence of the processes under consideration (e.g. Liggett’s 
theorem [86, p. 1921) that if nk -) 00, vk E %“, for all k, and vk --, v, then v is a 
stationary distribution for the infinite particle system. The collection of all stationary 
distributions which can be generated in this way are called the Gibbs states for the 
infinite particle system and denoted $3. 

This terminology was invented efore infinite particle systems. When the flip rates 
have the fl>tTrn &_k ,:;; in (1) this reduces to Dobrushin’s definition of Gibbs states for 
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inffinite systems in terms of their conditional probabilities. In Dobrwshin’s approach 
the measures pA,c are viewed as specifying the conditional distribution of the 
configuration in ,;1 given that the configuration in /i’ is 5 and the Gibbs states are 
defined to be the probability measures v which satisfy 

v/1(5) = I ~nr(d5)~n.&) for all 6 E {- 1, O”, (13) 

where for S c Zd, vs denotes the distribution v induces on {- 1, 1)'. 

The definition of Gibbs state given in (13) (called the DLR equations because of 
the contributions of L:anford and Ruelle) is equivalent to our previous definition. To 
prove this we observe that (13) says that in A, Y looks like I&A,~(~), where C(V) is a 
random boundary condition with distribution VA=. L.etting A T 00 we see that anything 

jvhich satisfies (13) is a Gibbs state with our previous definition. To prove the 
converse we need some notation: 

if SCZd and ,$E{--I, l}‘, thenwelet 
(14) 

A5;s = {q: q<(x) = e(x) for allx E S}. 

(The configurations which agree with 5 in S.) Let A 1 c A2 c Zd and r = A2 - A 1. A 
little computation shows 

where (5, y) denotes the configuration in (-1, 1)“; obtained by combining 5 and y 
(see Fig. 3 to get oriented). Although (15) takes complicated notation to state 

Fig. 3. 
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formally it is easy to say in words: if we want to compute the probability under pAzVc: 
of seeing 6 in A 1 we first compute the di%iiiution in -p = A2 -A 1 and then take the 
average of the probabilities under the JL A,(t;v). (This is a spatial Markov property.) 
Letting A2 1 Zd in (15) shows that any Gibbs states has the form given in (13). 

At this point we have shown that our previous definition of Gibbs state is 
equivalent to (13). We have taken the time to do this because most people who study 
Gibbs states (including all the physicists) take (13) as the definition and do not 
consider the process qti For a good introduction to the sub,ject see Preston [39] or 
Ruelle [41] or [43]. After being introduced, the reader can find out the current state 
of the art by looking at the Communications in Mathematical Physics. 

6. One dimensional systems 

In this section we will consider infinite particle systems with S = 2 concentrating 
primarily on those with flip rates in the exponential family. In one dimension the 
Gibbs states defined in Section 4 are easy to compute. Before introducing all the 
notation needed to treat the general case, let’s consider the one dimensional Ising 
model which has flip rates 

4x, q) =exP(-P(77(x)f7(x + l)+ rl(xh(x - 1))). (1) 

En this case examining (4) and (12) of Section 5 shows that if x L; C--n, n], then under 

p c- q,n 1.z the coordinate vectors (7(-n), . . . , ~(x - 1)) and (~(x + l), . . . , q(n)) are 
conditionally independent given r)(x), so under p[-n,nl,rz {q(x), -n s x s n} is a 
Markov chain. A little computation shows that the transition matrix of this chain is 

(2 cash /3> -‘(e<@ eJ (2) 

and that PL[-,~,~I,~ corresponds to conditioning this chain to have q(-n -l)= 

5(-n - 1) and q(n + 1) = [(n + 1). Since the transition matrix in (2) has all positive 
entries ($, 3) is unique stationary distribution and it follows from a standard Markov 
chain convergence theorem that the one dimensional Ising model has only one Gibbs 
state - the unique distribution on (-1, l}z which makes the coordinates q(n ), 
--oo < n c 00, a Markov chain with transition probability given in (2). 

It is easy to generalize the argument above to systems defined by finite range 
potentials. If the range is L and x E C-n, n], then under ~[-n,,~l,g the coordinate 
vectors (7j (- n), . . , , q(x -L - 1)) and (7(x + L + l), . . . , q(n)) are conditionally 
independent given (77(x -L), . . . ,97(x + L)), so under I_cI-n,nl,g,{(q(x -L), . . . , q(x + 
L)): -n + L sx s n -L} is a Markov chain whose transition matrix has the propertv 
that the (2L + 1)th power has all positive entries so again applying 2 standard Markov 
chain result we see that there is only one Gibbs state. 

Having shown that any finite range one dimensional system in the exponential 
family has a unique Gibbs state it is natural (but somewhat optimistic) to ask if $? = 4;. 
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There is probably a trivial example with long range interactions with fe # 9 but I 
think it is reasonable to expect that Y= 9 when the flip rates are finite range and 
translation invariant. Positive results on this question are almost nonexistent. Holley 
and Stroock have proved %= 4; for finite range exponential systems in 1 and 2 
dimensions. On p. 39 of [75], they prove (Theorem 1.7) 

If S =Zd, d = 1 or 2 and the flip rates c(x, 77) 
have the form given in (11) of Section 5 with 

0’i.n; b(x, +sup b(x, q)<oo, 
9 XJI 

then 9 = J? 

(3) 

No one knows if this is true in dimensions d 2 3. 
(3) allows us to conclude that for one dimensional exponential systems with finite 

range potentials (and in particular Example 2(a) of the introduction) I$( = 1. Since 
the flip rates in (11) of Section 5 encompass a wide variety of examples1 it is natural to 
wonder if we will have I$]= 1 for all translation invariant flip rates with finite range. 
Five seconds thought reveals this is false since the process may have more than one 
absorbing state. If we assume in addition that c(x, 77) > 0 for all X, q we eliminate 
these trivial examples and we have 

(4) The positive rates conjecture. If S = 2 and the flip rates c(x, 77) are positive, 
translation invariant, and have finite range, then I$l= 1. 

I think this conjecture is based on the belief that, although the Rip rate.; in the 
exponential class have a special form w hich allows us to compute the g[_,,, I,s, the 
fact that the limit of the ~[-~,~l,~~ is independent of the sequence of boundary 
conditions is due to the fact the correlation between two sites in [-n, n] under 

I&n*~l.C” decays exponentially as a function of their distance, and this in turn is due to 
the positivity of the flip rates and the ‘geometry’ of 2. The proof of the uniqueness of 
the Gibbs state for systems in the exponential family supports this belief since all we 
needed there was that the Markov chains were irreducible. We should not however 
get too carried away with the reasoning - the last sentence does not mention 2 
explicitly and hence would lead us eventually to the false conclusion that in two 
dimensional Ising model,, which has positive flip rates, we have I$]= 1. 

The positive rates conjecture represents just one of the ways the results for finite 
range exponential systems can be generalized. The rest of this section will be devoted 
to stating some results and an intriguing conjecture for exponential systems with 
potentials which have infinite range. 

The first results for potentials with infinite range were due to Dobrushin [4] and 
Ruelle [40] who showed independently that if J({x, y}) = K(y -x) and J(A) = 0 
when IAl z 2, then 

/$I= 1, whenever f 2 &,X--Y) = f nK(n)<m. 
x=0 y=-00 II = 1 

(5) 
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If one dDes not bother with the details it is easy to prove this result and a lot more. 
Thouless [47] has given a convincing heuristic argument which he attributes to 
Landau and kifschitz [26]. In the next two paragraphs we give a moderately revised 

version of his argument. 
If we have a contiguration for the Ising model in_(l,2, , . . , N} which has average 

magnetization g # 0, then we can construct a distribution with average magnetiza- 
tion 0 by picking an integer L at random and flipping the spins at 1,2, . . . , L. If we 
flip at L, the energy change is 

AE =2 5 f K(m- n)q(m)&z). (6) 
PI=1 m=L+l 

Since there are N possible choices of L the entropy change AS = O(log n). For a short 
range interaction (.e. the case considered by Dobrushin and Ruelle) the sum on the 
right-hand side of (6) is bounded independent of L and N, so if N is sufficient large 
AE - TAS is always negative and the ordered state cannot be the equilibrium state. If 
we consider interactions K(n) that decrease monotonically as y1 goes to infinity, it is 
clear that no interaction falling off faster than n -a, cy > 2, can lead to an ordered state, 
because AE then increases slower than In N as N increases. 

‘The case of an interaction falling off as BrC2 is particularly interesting. In this case 
the change in the expectation value of the energy is 

AE = 2p20 In N+O(l) (7) 

if the spin-spin correlation function is equal to p 2 for large separation of the spins. If 
the width of the distribution of number of spins up is N 1’2, as it is for a system with the 
usual type of long range order, AS = (2CT)-’ In N and so if there is long range order 
in this case the inequality Z!p 28 2 1/2c must be satisfied. Writing p as a function of 8 
this implies that if p > 0, 

p(e) a (4ce)-1/2. (8) 

Since p(e) is increasing function of 8 it follows that g must ,be discontinuous at 
SUP (8: lo = 0). 

While: the argument above may be convincing, it is certainly not a rigorous proof 
and, as 1: can testify, is difficult to fill the necessary details to make it one (the entropy 
computation was my stumbling block). Nonetheless there are rigorous results which 
suggd that the conclusions above are true Dyson PS] has shown 

If (log log n )-I i mK(m)+O, then 191” 1 (9) 
m= 1 I 

shown [lo] and also I 

There is a number a > 0 so that if K(n) 2 aK2 log log n for 
all n sufficiently large /$I> 1. (10) 
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These results are obtained by comparing the Ising system with a ‘Hierarchical Model’ 
which is easier to analyze. In [ 101 Dyson showed that the Hierarchical Models which 
corresponds to K(n) = tK2 have a jump discontinuity at the critical value but no one 
has succeeded in proving this for the Ising model although numerical results of 
Aitderson and Yuvall reported in Dyson’s paper seem to support this conclusion. 

ttractive systems 

In this section we will study a class of infinite systems with state space (-1, 1)’ 
which have a special monotonicity property. These processes were first studied by 
Holley [70] who named them attractive, Later workers have confused the issue by 
calling them monotone so it is tempting to clarify the issue by calling them Holley 
processes. One look at the list of references however, reveals that this would be a 
highly ambiguous designation so I’ll stick with the term attractive. 

Define a partial ordering < on {-l, l}’ by 

77 G 5 if and only if q(x) s l(x) for all x E S. (1) 

(Here and in what follows we will leave it to the reader to determine the meaning of G 
from the context). We say that a real valued function f defined on (-1, l}” is 
increasing if 

and decrea.sing if -f is increasing. A collection of flip rates c(x, 17) is said to be 
attractive if 

(a) 

(b) 

v + c(x, 77) is increasing on {q: q(x) = -l}, 

q + c(x, q) is decreasing on {q: v(x) = 1). 
(3) 

In attractive models the rate of flipping from - 1 to 1 is an increasing function of the 

configuration and the rate of flipping back from 1 to -1 is a decreasing function so 
there is a tendency for blocks of l’s to form (and since the definition is symmetric the 
same can be said for -1’s). In the last three sections we have encountered many 
examples of attractive systems - the voter model and contact processes have this 

property and, with a little patience, the reader can check that all the additive 
processes have this property. (There is no reason to do this however, since this will be 
obvious by the time we reach the next remark.) 

The monotonicity property in (3) has a very useful consequence: if we are given 
initial configurations q ’ s q2, then we can construct a pair of processes ~11, & t 2 0, 
on the same probability space in such a way that qf G Q: for all t a 0 and for 
i=l,2,$, t>O, has & = vi and is a Markov process with flip rates C. To do 
this we write down the following flib rates for a process with state space 

O-1, -l), (-1, l), (1,lV: 
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transition at x 
(1,1)+(-l, -1) 

(1,1)+(-l, 1) 

(--I, 1)+(--l, -1) 

;-l,l)+U, 1) 

(-1, -1) -+ (1,l) 
(-1, -1)+(-l, a) 

Durrett / Infinite particle systems 

flip rate in (q’, 7~~) 

c(x, V2) 
c(x, 93 -c(x, r1*) 

c(x, r1*) 
c(x, V’) 

c(x, 773 
c(x, r12)-c(x, $). 

(4) 

. 

In words when &x) = q*(x) the processes flip together as much as they can and 
when Y&X) # q*(x) they flip independently. This is called the basic coupling. 

The reader should observe that each flip in (4) preserves the inequality &x) s 
I* and that since we have assumed c is attractive all the flip rates we have written 
down are 20, If we assume (as we will throughout the rest of the paper) that c has 
finite range and is translation invariant, then it follows from a result of Liggett [85] 
that there is a unique Markov process (q:, &, t 2 0, with these flip rates. The reader 
can cfreck by adding various rates in the table that the coordinates $(x) and-q*(x) 
individually flip at rates c(x, q I) and c(x, q*) so we have achieved the desired 
coupling. 

Remark. In the additive case we do not need the construction above because the 
graphical representation gives the desired coupling simultaneously for all initial 
configurations. 

Using the basic coupling we can immediately deduce several facts about the 
limiting behavior of attractive systems: 

Let v: be an attractive process with & = 1. If f 
is an increasing function on (-1, a)“, then Ef(qr ) is 
a decreasing function of t. 6) 

Proof. Let s < t, let r)’ = 1 and let q* have distributicn v ;‘-,. Since we have ?I ’ a v2 

a.s. it follows that we can construct q!,, q:, u 20, SO that 7: 2 7: (2 7:) and hence 
f(q 4 ) sf(qf). Taking expectations gives Efi q T ) 2 Ef( v T) the desired result. 

(5) implies that the distribution 5 a decreasing function of t in the partial 
ordering defined by 

,u~vifandnnlyifIfd~~I f dv for all increasing functions fi (6) 

Using this observation it is easy to show that as t + 00,~ T converges weakly to a limit. 
(5) implies that if g is a finite linear combination of increasing,functions, then 
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Since every function which depends upon only finitely many coordinates is in this 
class, it follows that 

as t --) 00, 77: converges weakly to a limit $. (7) 

It is a standard fact that (7) implies $ is a stationary distribution. (Recall from the 
introduction that the associated semigroup is Feller.) It is called the upper invariant 
measure because it is clear from the basic coupling that if v E 9, then ZJ s CL+ (in the 
sense of (6)). All the reasoning above can be repeated for a system 771, t 2 0 with 

rlo = - 1, with the result that as t + 00, q t converges to a lower invariant measure p - 
which has the property that if v E 9, then rU_ G u s $. From the last inequality we 
see there is a dichotomy for attractive systems: if p- # cc+ the stationary distribution 
is not unique, if h - = g + = p, then p is the only stationary distribution and it follows 
from the basic coupling that starting from any initial distribution qrf + p as t + a. 

Although the dichotomy above is easy to establish, it provides useful information. 
If we apply this result to the Ising model, we see that starting fro&m $ = 1 and 

rl - = - 1 the process converges to limits pi+ and p- which satisfy EL+ 3 p -. In this 
situation it is easy to show that cc+ = p- if and only if ${q : v(x) = 1) = 
g -{q : TJ (x) = 1) for all X. Since the Ising model is symmetric under the interchange of 
1 and -1 we have 

t_L-‘(q: 7j(x)=l}=&&+{~: rj(x)=-l}=l-/L+{~: ?j(x)=l} 

so g+ = p- if and only if ~+(~ : q(x) = 1) = 4, i.e. 

I q(x) du+(q) = 0. 

Similar conclusions can of course: be obtained for other systems with state space 
{-1,l)‘. By a simple change of notation the results above can be extended to systems 
with state space (0, 1)‘. If they are applied to the contact process, we get the following 
useful result: as t + a,(; (the contact process with 5: = 2) converges weakly to a 
limit 6: and the contact process has I9l> 3. if and only if 62 is not &, the point mass 
on the configuration Q = 0. 

The basic coupling can (sometimes) be used to compare 2 attractive processes. By 
writing out a new table of flip rates with c~(R’, q ‘) replacing c(x, 17’) in (4) we see that if 
cl and c2 are flip rates which satisfy 

(a) c~(x,+v~(x,~) if qsc and q(x)=[(x)=l, 
(8) 

(b) cI(x, q) < c~(x, 5) if v G 5 and T(X) = l(x) = -1 

andif 71’s v2, then we can construct a pair of processes q’ < q2, t 3 0, on the same 
probability space in such a way that 77: has ini,’ configuration 7’ and flip rates c8 and 

rlr 1 S qf for all t 2 0. 
Applying the last result to the contact processes we see that if we let 6: be a contact 

process with parameter A and & = Zd and if we have 6;’ * So, then 6: + 60 for all 
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61~ A. The last observation implies that if we let A,, = sup{h : 6; + So}, then S: + So 
for A <A,, and does not * So for A > Acr. This argument of course tells us nothing 

s bout A,, or about the behavior of the system at A = Acr. These are both difficult 
problems. 

While the result in (8) is useful for contact processes it does not apply to the Ising 
model 

c(x,$=exp -p c ( rl(x)q(x+u) * 
v,[lull= 1 > 

If cl and c2 are the flip rates for parameters & < &, then (8) does not hold: if q(x) = 1 
and CU,,,U,l=l 7(x + u) < 0, C&X, 77) < c~(x, v) so (a) does not hold. 

In order to prove the existence of a critical value for the Ising model we have to use 
other means. The method in this case is a powerful correlation inequality which was 
discovered by Griffiths [18] and which is (due to the subsequent generalization of 
Kelley and Sherman [24]) called the @KS inequality. To state this result we need 
some definitions: Let A be a finite set. If x E A and 5 E (-1, l}“, let 

C ~&U), where S(A) = I-I S(y) 
A.x~Ac,i YEA 

(9) 

The c (x, 6) are flip rates for a Markov chain with state space {- 1,l)“. This chain has a 
unique stationary distribution p. If f is a function on {- 1, l}“, let (f) denote 5 f dp. 
With this notation the GKS inequality (which is really two inequalities) may be stated 
as 

If A, B c (1, then 
a@(A )> 

aKB 
= (S(A)6(B)) - (5(A))@(B)) 2 0. 

In words, &A) and t(B) are positively correlated and (((A)) is increased by 
increasing any of the && 

To apply the GKS inequality to flip rates in the exponential family we let A be a 
subset of Zd, 4’ E {- 1, l},” be a boundary condition and define 

K/q= 1 J(A u B)S(B), where 5(B) = II S(Y), t(0) = 1. (11) 
Bf==AC YEB 

With this definition of the &‘s it is easy to check that the stationary distribution for 
the flip rates in (10) is what we called p, i 5 in Section 5. If we call this p J,,d,r now (to , 

record the dependence on the potential), it follows from the GKS inequality that if 
0 s J(S) s J’(S) for all S c Zd, then we have 

(12) 

for al1 A c A. 
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emark 1. The reader should note that the partial ordering of distribution defined in 
(12) is much different than the one defined in (6) (which was used for comparing 
attractive processes). 

emark 2. An inequality closely related to one part of the GKS inequality has been 
proved by Harris [68]. His results imply that in an attractive system in which IFI = 2 
and only one site flips at a time the upper invariant measure has 

(13) 

for all increasing f, g. This inequality says pf has positive correlations and can be 
compared to the second inequality in (10) even though it is in substance much 
different. To my knowledge no one has proved an analogue of the first part of the 
GKS inequality (the monotonicity of q(A) as a function of &) for a more general 
class of spin systems, even though, I think it is a common opinion that such a result 
would be very useful 

Remark 3. Inequality (13) is called the FKG inequality which it is applied to a system 
in the exponential family. For a direct proof of this inequality see Fortuin, Ginibre 
and KasWeyn [ 121, Ginibre [ 15 j or Halley [7 I] (the last is my favorite). 

Remark 3. The FKG and GKS are just the first two of an infinite sequence of similar 
inequalities which curiously all have three letter designations. Needless to say not all 
these inequalities are useful but the next one in the sequence, the GHS inequality 
(see GrifIiths, Hurst and Sherman [20] or for an easier proof Lebowitz [29]) is very 
useful. Preston [38] has used this to show I%l= 1 when the potential satisfiesJ(A) Z 0 
if IAl = 1, J(A) 2 0 if IAl = 2 andJ(A) = 0 if iA/ 3 3 (an attractive pair potential with a 
nonzero magnetic field). The analogue of this result for the partition function was 
first proved by Lee and Yang [3 l] using purely analytical methods, for a proof of the 
fact about Gibbs states see Ruelle [42] and Lebowitz and Martin Liif [30]. 

8. The Ising model 

In this section we will study the d-dimensional Ising model: S = Z”, F = {- 1, 1) 
and 

c(x,v)=exp -P C ( rl(xh(x+u) l 

u,llull= 1 > 

From results in the last three sections we know that 
(1) 4=1ifandonlyif~‘=p-, which occurs if and only if (n(O))+ = -(~~~~) = 0. 

(2) (v(O))+ is an increasing function of P so if we kt 
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sup{p: @ (p: (do)))+ = 01, then 

if p <& 14 = 1, 
if p>pCr \$I>l. 

(3) in one dimension per = 00. 
The results abolve describe 14’1 for the one dimensional Ising model so we now turn 

to the two dimensional Ising model. The first step is to show 191~ 1 when p is 
sufficiently large. This main idea of the argument was given by Peierls [36], and 
rigorous versions developed independently by Dobrur;hin [3] and Griffiths [ 161. We 
will prove this using the approach in Griffiths [19]. 

The first step in the proof is to introduce a geometric description of the spin 
configuration. Consider 2* as a graph with edges connecting all X, y with Ilx - y II= 1. 
If A, =[-n, n]*, &E{-1, l}An and CE{-l,l}“: has 5~1, then we create contour 
lines by drawing a unit segment perpendicular to center of each edge e which 
connects two sites x, y with opposite spins. 

A glance at Fig. 4 shows that the collectio,: of lines we generate is always a finite 
union of (non-self-intersecting) polygons and is hence called a multipolygon. Since 
the boundary condition is fixed to be 5~ 1, it is easy to see that there is a l-l 
correspsndence between configurations in {- 1, l}“m and multipolygons with vertices 
in the shifted lattice ($, $) +2* and which lie in the box A E = [-n -$, n +&‘. 

+ - 

Ll 
+ + - + I+!-I-t- +I-!+ + 

+ + + + 

L + f + +-I+ 1 _Y---[+ m+ 

+ + 

El + 

+ f + + -I- + + + + + + 

Fig. 4. Contours for a typical configuration in P,,~,~. 

Although this is just a change of notatron it is a useful one. if we let 5 E (-1, l}“tl, let 
K(t) the associated multipolygon, and let IK(~)/ be the number of edges it contains, 
then the exponent in the definition of u,~,., (6) in (4) of Section 5 is equal to 

-2p(no. of times q(A) = 1) + @(no. of A with .I@) # 0) = 

= -2/3lK(5)l+p(2(2n + 1)(2n +2)), (5) 
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where in the second equality we have used Fig. 5 to compute the value of the 

constant. 

11 I I 1 . -*-• -*-* 

I / 1 
i i i 

I 
-. *me. _ 

L 

original graph: 

2n + 1 rows of 2~: 2 

edges 

dual graph: 

2nt2 rows of 2n+l 

edges 

Fig. 5. A, and AT. 

The first step in showing that I$ > 1 when ,/3 is sufficiently large is to get a bound on 
the probability a (non-self-intersecting) polygon L with length IL1 is a subset of K(e) 

g An,1 (L c K(&) S e-2P’L’/( 1 + e-2p’L’). 

Proof. From (4) of Section 5 and (5) above it follows that 

(6) 

P A”,1 (L = Jx)) = c w4”.1 WC w4,.1(5) 
W(Z)= L 5 

= c e -2D1KWt e-2L11K(E,1 

I 
c . 

&KWDL t 

To estimate the last quantity we will show that with each configuration 5 with 
K(t) =I L we can associate a configuration &* with K(e*) = K(@)- L. We have 
supposed the polygon .L 
regions - one unbounded 
Let 

is non-self-intersecting so it divides the plane into two 
(the outside) and one bounded (the inside, denoted Lo). 

otherwise. 
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It is easy to check that [* has the desired property and that different e’s give rise to 
different e*‘s. Combining this with the equalities above shows . 

c e -mIK(ol 

proving the desired result. 

(6) allows us to estimate the probability a given polygon will occur. Inside a 
polygon of length I lying on the shifted lattice ($, $) i- Zd there are at most (&2 sites in 
Zd. Any -1 must be inside some polygon so if we let 

then 

where the sum is taken over all polygons lying in A $ Taking expectations and using 
Fubini’s theorem we get 

s 16-l 1 l,~l’ ew2’lLl = lfjvl f a,(l)Z2 eq2@‘, 
L I=1 

(7) 

where a,(l) is the number of polygons of length I contained in A,. 
It is easy to get a rough estimate for the a,(Z). A polygon may be constructed by 

picking an initial segment, which can be done in 2(2n + 1)(2ut + 2) G 3(2n + 1)2 ways, 
and then successively adding adjacent segments. Since we cannot repeat any edge at 
stages! 2, . . . , 2 there are at most 3 choices and it follows that 

a,(l) s 3(2r1+ 1)23’-‘/1. cw 
Here we have used the fact that this procedure 
times to divide our estimate by 1. Combining 
observing that (1, (I) = 0 if I is odd 

generates every polygon of length I I 

the last two inequalities above and 

or letting p = exp(2(log 3 -2P)) 

2m e (log 3-2p):lm 

I 

(2n + l)* J 
IK(Sh,,,dSF8-' ?l mp" =~-'(PIW-P)~) 

m= 1 
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the right-hand side is < $ when p/(1 - p)* < 4, i.e. p < (9 - df)/8. Combining the last 
observation with the definition of p we see that if p is sufficiently large 

1 

(2n + l)* I 
M, (&n,.l W) s O-499 

for all n and consequently Iv(O) d$(q) 2 0.002 (a little work is required to prove 
this rigorously). 

In the last argument 0.499 could be replaced by any number ~0.5 so we have 
Iv(O) d@‘(q) > 0 and hence 1$1> 1 whenever 

2log3-4pc1og -8 
(” 7 

, 

i.e. 

Remark I. By fiddling with the computations above (e.g. noticing a,, (2) = 0, a, (4) = 
(2n + l)* instead of (912) (2n + l)*, . . .) the value of the constant above can be 
improved but without a substitute for the estimate (8) we cannot do better than 
p > (log 3)/2 (and we cannot even do this well unless someone can show that the 
finiteness of the sum in (7) implies I$l> 1). 

Remark 2. Even if we lived in the best of all possible worlds and used the best 
possible estimate for a,(l) the argument above is not sharp. It is known (see Smythe 
and Wierman [95], and Kesten [84]) that as n +a 

ri-l log a,(Z) + K = 2.639 . l l 

where K is the connectivity constant of the two dimensional lattice so by the 
argument above we could never do better than p > (log ~)/2 = 0.485. 

The arguments above show that if /? is sufficiently large, l&g] > 1 or using the 
notation of (2) above that &C 00. Identifying pCr is quite another matter. The 
solution of this problem developed slowly in a sequence of papers starting in 1925 
when the Ising model (or more precisely its Gibbs states) was introduced and ending 
in 1972 when Bennetin, Gallavotti, Jono-Lasinio, and Stella put the finishing 
touches on the solution. 

The first step in identifying the critical value for the two dimensional Ising model 
was taken in 1941 when Kramszrs and Wannier observed tlhere was a special 
relationship between the 2d Ising modeh *vith parameters 6 and @* where B* is th 
solution of exp(-2/3*) = tanh(P) = (ea- e-‘)/(e’ +e-‘). To describe t 

shtp we have to introduce the physicist’s notion of phase transition. In (1 
5 we defined the partition function. In the case of the two dimensional Ising model 
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this definition says 

(9) 

and1 the sum is taken over pairs with 11x - yIl= 1 and {x, y} n A, f 0. 
If wle wrij:e the partition function as Z&P) to record the dependence on p, then it 

is known that for sny sequence of boundary conditions ln (see Ruelle [41, Section 

2.41) 

lim IAJ’ log Z,r(P) exists 
n+oo 

ancl the value of the limit &!3) is independent of the sequence of boundary conditions 
chosen. For a physicist the function q(p) gives a compIete description of the infinite 
system. Ip(j3) = -&(/3) gives the free energy per site while U(p) = f’(P) gives the 
internal energy per site. The parameter p which gives the strength of the 
interaction = l/kT, where k is Boltzman’s constsnt so we can think of f and U as 
functions of T. If we differentiate U with respect to T, we get the specific heat. This 
quantity measures the system’s susceptibility to change and if this is 00 we have a 
highly unstable situation which suggests the presence of a phase transition. This 
consideration, which arose in the two dimensional Isinp model, has been generalized 
and become the physicists definition of phase transitlon: the failure of f(P) to be 
infinitely differentiable. 

The partition function was first studied by two st:~ ies expansions - one valid for 
small @ (large T), and the other for large p (small T). 

I. High temperature expansion : For each edge b which connects two sites x and y we 
let 

With this notation it is immediate that 

z~c(P)=~ex~(B c G(b)) =C n exp(Pij(b)), 
z bcl-,, 6 bern 

where r,, = set of edges contained in (-n - 1, n + 1)‘. Now if u = 1 or -1, we have 

es u =$((eP+e+)+u(eP -e-‘))=coshP(l+u(tanhP)), . 

so we can write 

= (cash p)lr”’ C C I 
5 e=rn 

(11) 

Since tanh p 9 0 as p + 0 this expansion is good for small p. 
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II. Low temperature expansion. Using the notation from I we can write 

143 

ZLS(P) =C n exp(P;ii(b)) 
6 bEr,z 

= eslr,l c n e-2@ = ePlr,l c ,-2PL(E), 
(E bcr, 5 

$6)=-l 

(12) 

where L(e) = (6: q(b) = -1). 

If we consider the high temperature expansion with f;l= 0 (so calle& open 
boundary conditions, corresponding to an isolated system), then there are 2 types of 
terms in the sum in (11): 

(i) Some x E A,, occurs an odd number of times. In this case pairing ,$ with e” 
shows 

c n ;i(b)=O* 
5 bEB 

(ii) All x E LI, occur an even number of times in B. In case flbcS ij(b) = 1 for ail 5 
so if we iet K, be the set of such B, we have 

Zn,,o (p) = (cash p)‘fn’ C (tanh /3)lB’. (13) 
BcEK,, 

Kramers and Wannier’s observation was that we could get a similar expression 
from the lower temperature expansion evaluated at p* if we replaced A, by 
A: = (($, $)+P)n[ -n, n]’ and consider an Ising model on this lattice with boun- 
dary condition &, = 1. In this case (12) becomes 

&;,I( p*) = es*‘rz’z (tanh p)‘L’*“. 
5 

A glance at Fig. 6 shows that if 6 E {-l,l}“E and we associate with each b E L(6) the 

+ 

+ 

-0 + 

f 

f 

Fig. 6. A typical configuration SE {- 1, I}““. 
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arc: h* E rH which intersects it, then L*(s) = {b*: b E L (5)) E K,, and furthermore each 
L 6: K,, is associated with exactly one [ E {- 1, 1)“:. This observation allows US to 

rewrite the last expression as 

IBI ,&z., (@*) = e”*‘rZ’ x (tanh /3) , (14) 
Bt K, 

so we have 

l[f we assume that the free energy has only one singularity as a function of 6, then 
(17) implies that this must occur at a point where p = p”. Setting p = p* leads to the 
equation 

ep -eep 
=e --a3 

ep +e+ 
which reduces to sinh(2P) = 1. 

The argument above suggests (but of course does not prove) that the phase 
transition point for the Ising model should be PO - - i arcsinh( 1). This fact was proved 
several years later by Onsager [34] who showed by a very ingenious calculation that 

f(P)=log2+$+.W 1” de2 log(cosh2 2p -sinh2 P(cos 81 +cos 0~))~ 
0 0 

W 

Differentiating gives 

de1 de2 _- 
cd2 2p - sinh 2p (cos 8r + cos e2> * 

(17) 

The integral in (17) diverges when cosh2 2p - 2 sinh 2p = 0. This disaster does not 
make U = 00, howc.:ver. cosh2 26 - sinh2 2p = 1 so cosh2 2p - 2 sinh 2p = 0 is 
equivalent to sinh 2fii = 1 and we have (sinh2 2p - 1) = 0. At this point we have seen 
that the integral is 0:) and the multiislier is 0. A little calculation shows that in the 
above 0 l 00 = 0 bu. taking one more derivative reveals the singularity 

au/aT-ClOglppo( as p+po w 

After the free energy was calculated the next problern was to compute the 
sponianeous magnetization, i.e. the extent to which the spins are aligned when 
6 > &. We have tIeen deliberately vague in introducing the term spontaneous 
magnetization since it has been given several (ultimately equivalent) dlzfinitions. The 
original definition was 

af (Pv h 
m(P)= pah 

> I h=O+' 
(19) 
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where f(& h) is the free energy for the system in the exponential family with 

J(b)) = 4, J({x, y}) = p when 11x - )/II = 1, and J(A) = 0 otherwise. Although the 
definition in (19j may look mysterious it is the right one from the viewpoint of infinite 
particle systems. Lebowitz [28] has shown that m(p) = (q(O))+ so m(p) gives the net 
magnetic field in p+ and the value of m(p) being ~0 or =0 tells us whether 14;1> 1 
or =l. 

Although (19) appears to give an explicit formula for m(p) it is useless since no one 
has been able to compute f(/3, h) for .tl # 0. Without a formula for f(P, h) the 
determination of m(P) was a slow process. The first step was taken by &sager [35] 
who claimed that 

m (p) = (1 - (sinh 2/3)-4)“8 (20) 

but never published a proof of this result. The first rigorous result was due to Yang 
[49] who showed that if ma(P) is the right-hand side of (20), then 

ma(P) = lim lim lim 
h10 n+m m+ot) 0 

; (fm,n (P, h/n) -fm,u (P, 0)): 121) 

where fm,,* is the free energy for the Ising model in {1,2, . . . , m} x { 1,2, . . . , n) 

with periodic boundary conditions: J(x - y) = p if 1(x1 - yl) mod ml + I(.uz - ~2) 

modm]=l. 
The first connection with correlation functions was made by Montroll, Potts and 

Ward [33] who showed that if pp is the Gibbs state which is the limit of the 
equilibrium states in [-u!, n]” with periodic boundary conditions, then 

Having made the connection between ma(P) and (q(x)q (y )), the last step is to 
relate (q (x)~ (y )), to (7 (x)77 (y ))+. This was done by Benettin, Galiavotti, Jona- 
Lasinio and Stella [2] who used duality to show that if A 6 Zd has an even number of 
elements, there are constants yA(B) (depending also on p) so that 

(&I))+,P f c YA(~)(dBh6* 
B 

(see (2.3 and (2.4) in [2]). Since a p >Pcr maps to a p* < & it follows that for all 
P E (0, oo), 

bi-(A)~o*l3 = WW+,r 

for all A c Zd which have an even number of elements. The GKS inequtilit 
that 
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so we have 

(q(x)rl(y D, = b?(Xh(Y ))+* 

It only remains to assemble tht pieces. It is known that $ is ergodic (see Holley 

I701 1, so 

Cn (0)>2, = pn( (IAll-’ xL 
n 

rlix))2) 
+ 

= lim IA”l-’ c h(x)rl(yN+ 
n+a &YEA, 

= lim IAnI-’ C (~(xh(~))p 
n-X &YEA, 

= lirn b7(x)rl(yNp = mW2 
IX--Y’-0 

and we have 

h (ON+ = m&) = (1 - (sinh 2p)-4)“c. (22) 

The last result shows that I$l= 1 if p s PO - - $ arcsinh( 1) and 191~ 1 if p > PO, so WC 
have identified the critical value. The next problem then is to study 9 when 191~ 1 l 4 

has two obvious extreme points ,FC- and $ which are related by interchanging 1 and 
-1 so it is natural to conjecture that 9, = {CL-, $}. The first step in proving this was 
taken in [32] by Messager and Miracle Sole who used duality ideas and some results 
of Ruelle to show that any translation invariant Gibbs state is a convex combination 
of p_ and p+. This was the best known result until 1979 when Aizenmann [l] proved 
the result without the assumption of translation invariance. 

The results above give ;‘r complete description of the invariant measures for the two 
dimensional Ising model so now we turn our attention to dimensions d 33. 
Unfortunately there is not much to say. It follows from the GKS inequality that the 
criticah value is a decreasing function of the dimension so the three dimensional 
critical value s&. With a little cleverness this result can be improved dramatically. 
By introducing the boundary conditions {n(x) = sgn(x3 -4) and using the GKS 
inequality van Beijeren [48] has shown that the three dimensional Ising model has 
nontranslation invariant Gibbs states for /3 > PO. 

The last result is obviously just the beginning of the study of the three dimensional 
Ising model but unfortunately is almost the end of the known results. We know that 

(a) if p is sufficiently small I$l= 1 (this is a consequence of the uniqueness result in 
Section 2); 

(b) if p is sufficiently large every translation invariant stationary but is a convex 
combination of p + and ,u-. 
IIowever, there are still many open questions 

(1) Find /3zr or at least show that & < &. (The latter is not as easy as it sounds, 
although it is likely that someone now? how to do this.) 
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(2’; Show that for any p every translation invariant stationary distribution is a 
clnvcx combination of p + and g -. 

(3) Let y3 - - sup{/? : all elements of 9 are translation invariant}. Is y3 P pzr ? Or to 
be even bolder is y3 = &? 

I would like to take this opportunity to thank Tom Liggett who introduced me to 
the subject and with whom I have had many stimulating conversations during the last 
four years. 
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