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Abstract. We consider a nearest neighbor walk on a regular tree, with transition probabilities
proportional to weights or conductances of the edges. Initially all edges have weight 1, and
the weight of an edge is increased to c > 1 when the edge is traversed for the first time.
After such a change the weight of an edge stays at c forever. We show that such a walk is
transient for all values of c ≥ 1, and that the walk moves off to infinity at a linear rate. We
also prove an invariance principle for the height of the walk.

1. Introduction

Let G be an infinite connected graph with vertex set V and edge set E . Consider a
Markov chain {Xn,w(e, n), e ∈ E}n≥0 which starts with X0 = v0 ∈ G, w(e, 0) =
1 for all e ∈ E . We think of the w(e, n) as weights (or conductances) and the
transitions for X will be to a nearest neighbor, with probabilities proportional to
the weights of the incident edges. Formally,

P {Xn+1 = u|Xn = v,w(·, n)} = w({v, u}, n)∑
v′∼v w({v, v′}, n) , (1.1)

where v′ ∼ vmeans that v′ is adjacent to v in G, and {v, v′} denotes the (unoriented)
edge between v and v′. After Xn has changed to Xn+1 the weights are updated.
Such systems were introduced by Coppersmith and Diaconis (1987) and are called
reinforced random walks. For G a regular tree they were first studied by Pemantle
(1988). His paper studied linear reinforcement. That is, Pemantle took w(e, n) =
1 + k(c − 1) after the edge e had been traversed k times by the random walk, for
some fixed c > 1. Here we shall study a problem raised by Davis (1990), in which
the weights are updated by the following rule:

w(e, n+ 1) =
{
c if {Xn,Xn+1} = e

w(e, n) otherwise.
(1.2)

Thus, the weight of the edge e is raised to c at the first jump across e, but then stays
at the value c thereafter. This system is called a once-reinforced random walk.
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The question is whether {Xn} (which by itself is non-Markovian) is recurrent or
transient. We only consider the case when G is a regular b-ary tree. On such a tree
one expects the once-reinforced random walk {Xn} to be transient, since for any
fixed choice ofw(·, n), which does not vary with n and is bounded away from 0 and
∞, the random walk with transition probabilities (1.1) is transient (this is easiest
seen by interpreting the tree as an electrical network and bounding its resistance;
see Lyons and Peres (1997), Ch. 2, or Doyle and Snell (1984), Ch. 6). Similarly one
may conjecture that {Xn} is transient on Z

d for d ≥ 3 and recurrent for d = 1, 2.
On the b-ary tree it is trivial to see that {Xn} is indeed transient if c < b, for
then the distance from Xn to a fixed vertex v0 always has a positive drift. In this
note we prove transience of the once-reinforced random walk on a regular tree for
any choice of c. This contrasts with the results of Pemantle (1988) in the linearly
reinforced case; he found transience for c < c0 and recurrence for c > c0 for some
critical c0.

Theorem 1. If G is a rooted b-ary tree with b ≥ 2 (that is, a tree in which all
vertices have degree b + 1 and some vertex v0 has been singled out as the root)
and c > 1, then the process {Xn} is transient.

Remark 1. A slight extension of our proof shows that one still has transience on
the rooted b-ary tree when each edge is reinforced up to k0 times for some fixed
k0 < ∞, that is, if one takes w(e, n) = 1 + (c− 1)min(k, k0) when the edge e has
been traversed k times.

It will be a simple consequence of some of the lemmas used to prove Theorem
1, that X. drifts off to infinity at a positive speed S. More specifically, let h(v) be
the graph distance of the vertex v from the root of the tree. h(v) is also called the
height of v. Then we also prove the following theorem.

Theorem 2. Under the conditions of Theorem 1 there exists a constant S =
S(b, c) > 0 such that

lim
n→∞

1

n
h(Xn) = S a.s.. (1.3)

Remark 2. It is easy to show (see Section 3) that

S ≤ b

b + c
. (1.4)

This shows that S → 0 as c → ∞. However, we have no simple lower bound for
S which is always strictly positive.

Our last theorem shows that h(Xnt ) satisfies an invariance principle.

Theorem 3. Let {B(t)}t≥0 be a standard Brownian motion and for noninteger
values of nt , let h(Xnt ) be the linear interpolation between h(X�nt�) and h(X�nt� +
1). Under the conditions of Theorem 1 there exists a constant σ = σ(b, c) > 0
such that
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{ 1√
n

[h(Xnt )− nS(b, c)]
}

0≤t≤1
�⇒ {σB(t)}0≤t≤1. (1.5)

Outline of proof of Theorem 1. Since the proof of Theorem 1 is surprisingly long
we give here a brief outline. Assume that h(Xn) = h at a certain time n. To show
that {Xn} is transient we estimate the probability that h(X.) will reach the level
h+ 1 before X. returns to the root of the tree. We will prove a lower bound on this
probability, uniformly in the history up till time n, which is such that the product
of these bounds over h = 1, 2, . . . is strictly positive. First we observe that for
the X-process to return to the root from a position v with h(v) = h, it has to go
back through the unique self-avoiding path from the root to v. Let this path be
r = (v0, v1, . . . , vh) with v0 the root and vh = v. By considering the imbedded
random walk on r we first find a crude lower bound for the probability of the height
to increase by 1 to h+1 beforeX goes back to the root. By multiplying these crude
estimates one easily obtains a crude lower bound of order h−c/b for the probability
of reaching height h from the root, before returning to the root.

The main step is to improve this crude bound by noting that whileX. goes back
through r , each time it visits vj , it may move into the subtree of descendants of vj
not containing vj+1. In this subtree it can then reach height h+1 without returning
to the root. Of course we do not know the probability to reach height h+ 1 in this
side tree, but we have gained that there are typically many visits to the vj before
reaching the root, and therefore many occasions to move up into a side tree and not
to return to the root before reaching level h+ 1.

Nevertheless we need some lower bound for the probability to move up in the
side tree to height h + 1 before returning to v0. Such a bound is derived by first
showing that in the many visits to vj a good piece of the subtree of descendants of
vj is visited. In fact, we show that in m visits to vj , typically all descendants of vj
in the next m1/4 generations are visited. Moreover, the average number of visits to
vj by the imbedded random walk on r as it moves from v to v0 is of order h. This
means that all edges within distance h1/4 of vj in the subtree of its descendants
(other than vj+1) are reinforced. In this piece, where all edges are reinforced, X.
behaves like simple random walk. By the known behavior of simple random walk
on a tree this means that once X. moves into the subtree of descendants of vj , it
tends to move away at least distance h1/4 from vj and to spend a lot of time there
before it returns to vj . During this time it has many chances (in fact typically at
least exp[Kh1/4] many chances, for some constantK > 0) to move distance h+ 1
away from vj . For each of these occasions to move away distance h we use the
previously derived crude lower bound of order h−c/b that this will actually happen.
With exp[Kh1/4] many chances we end up with an excellent lower bound that the
X-process will move from height h to height h+ 1 before returning to the root.

2. Proof of Theorem 1

Throughout we use T to denote a rooted b-ary tree. The root of the tree is denoted
by v0. The distance from a vertex v to the root is also called the height of v and is
denoted by h(v). A vertex v′ is called a descendant of v if the unique self-avoiding
path in T from the root to v′ passes through v. v is regarded as a descendant of
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itself. If v′ is a descendant of v which is adjacent to v, then v′ is called a child of v.
In this case we also call v the parent of v′. The subtree of T whose vertex set is the
collection of descendants of v is denoted by T (v) (so that T = T (v0). We further
define the σ -field

Fn = σ(Xk,w(e, k), e ∈ E, 0 ≤ k ≤ n).

We use Ki for various strictly positive, finite constants.
The proof is broken up into a sequence of lemmas. To start we need a very simple

zero-one law which makes the terms “recurrent” and “transient” unambiguous. Note
that the proof of even this simple lemma already relies on T being a tree.

Let A0 be the condition

A0 = {X0 = v0, w(e, 0) = 1, e ∈ E}.
We remind the reader that if we do not indicate otherwise, then we start our process
with this initial condition.

Lemma 1. (i) If
P {Xn never returns to v0|A0} > 0, (2.1)

then for all v ∈ V and all k,

P {Xn visits v only f initely of ten|Fk} = 1. (2.2)

(ii) If
P {Xn never returns to v0|A0} = 0, (2.3)

then for all v ∈ V and all k,

P {Xn visits v inf initely of ten|Fk} = 1. (2.4)

Proof . (i) Define
α := P {Xn never returns to v0|A0}. (2.5)

Further let

Am(v) = {Xm = v but Xn �= v for all 0 ≤ n < m}.
On this event the random walk visits v, and hence also T (v), for the first time at
time m. Consequently if we started in A0, then all edges in T (v) still have weight
1 at time m. Therefore, on the event Am(v), for any child v̂ of v, the subtree T (v̂)
looks exactly like the subtree T (v1) for any child v1 of v0 on the event A0. Thus,
on Am(v),

P {Xn �= v0 for all n ≥ m|Fm}
≥ P {Xn ∈ T (v) \ {v} for all n > m|Fm}
≥ P {Xm+1 is some child v̂ of v and Xn ∈ T (v̂) for n ≥ m+ 1|Fm}
≥ b

b + c
α. (2.6)
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It is easy to see that almost surely there exist infinitely many m and vertices vm
such that Am(vm) occurs. Thus if (2.1) holds, then

lim sup
m→∞

P {Xn �= v0 for n ≥ m|Fm} ≥ b

b + c
α > 0 a.s.. (2.7)

It is a well known consequence of the martingale convergence theorem (compare
Breiman (1968), Problem 5.6.9) that this implies that

P {Xn = v0 for only finitely many n|A0} = 1. (2.8)

Now one easily sees that for any vertex v there exists some N , and a constant
K0 > 0 such that for all n

P {Xn+N = v0|A0,Fn} ≥ K0 a.e. on {Xn = v}.
Thus, again by Breiman (1968), Problem 5.6.9, (2.8) remains valid if v0 is replaced
by any v. Hence, (2.2) follows from (2.1).

To prove (ii) we first show that (2.3) implies

P {Xn visits v0 infinitely often|A0} = 1. (2.9)

To this end we consider the events A of the form

A = {X0 = v0, w(e, 0) = we}, we ∈ {1, c}, e ∈ E, (2.10)

with the further requirement that

the subgraph T r = T r(A) spanned by the collection of (reinforced)

edges, {e : we = c}, is connected and contains v0. (2.11)

Note that this last condition is equivalent to the condition that T r is a tree containing
v0. If we start onA0, then at each time n anA of the form (2.10), (2.11) must occur.
To prove (2.9) it suffices to show that P {Xn never returns to v0|A} = 0, for all A
of the form (2.10) and satisfying (2.11). Assume to the contrary that there exists
some A∗ of the form (2.10) and satisfying (2.11) and with the property

P {Xn never returns to v0|A∗} > 0. (2.12)

If Xn �= v0 for n ≥ 1, then Xn must stay in some subtree T (v1) for n ≥ 1, where
v1 is one of the children of v0. Thus (2.12) implies

P {Xn ∈ T (v1), n ≥ 1|A∗} > 0 (2.13)

for some child v1 of v0. Let w∗(e) be the weights in the definition of A∗. The last
probability can be changed only by a bounded factor if we change the weights of
the edges outside T (v1) ∪ {v0, v1}; in fact such a change can have an effect only
on the probability thatX moves into T (v1) at the first step. We may further assume
that w∗({v0, v1}) = c, because X has to move from v0 to v1 in the first step for the
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event in (2.13) to occur, and hence the weight of {v0, v1} has to be c after the first
step anyway. (2.13) therefore remains valid if we replace w∗ by

w∗∗(e) =
{
w∗(e) if e ∈ T (v1)

c if e = {v0, v1}
1 for all other e.

Let B1(m) = {Xm = v1, Xi �= v0, 1 ≤ i ≤ m}, and B2(m) = {w(e,m) = w∗∗
e }. It

is easy to see that

P {B1(m) ∩ B2(m)|A0} > 0, (2.14)

for some finitem. In words, it is possible forX to traverse {v0, v1} plus all the edges
of T (v1) which are reinforced in A∗ and no other edge before returning to vertex
v1. Now (2.14) and (2.12) show that

P {B1(m) ∩ B2(m) and X never returns to v0|A0}
≥ P {B1(m) ∩ B2(m)|A0}P {Xn ∈ T (v1)|A∗} > 0,

which contradicts (2.3). Thus (2.3) implies (2.9).
As in the lines following (2.8) one now sees that (2.9) remains valid if v0 is

replaced by an arbitrary v. In turn, this implies (2.4). �

Of course the walk {Xn} is called recurrent if (2.3), and hence (2.4), holds.
Otherwise it is called transient. In the transient case α > 0, by definition. For
the remainder of this section we assume that {Xn} is recurrent and will derive a
contradiction from this.

We next derive a very crude estimate for the probability that {h(Xn)} reaches
the value h + 1 from a vertex v of height h, before it goes down by an amount
1 ≤ k ≤ h.

Lemma 2. Define

τ(n, j) = inf{t > n : h(Xt ) = j}, (2.15)

and for any vertex v of T with h(v) = h,

β(k, v) = sup
n

ess sup
ω
P {τ(n, h(v)− k) < τ(n, h(v)+ 1)|Fn},

where the ess sup is over all sample points ω with Xn(ω) = v. Then

β(k, v) ≤ c

c + bk
, h(v) = h ≥ 1, 1 ≤ k ≤ h. (2.16)

Moreover, for some constant K1 = K1(c/b) > 0, and all vertices v

P {Xn+1 is a child of Xn and τ(n, h(v)+ q) < τ(n, h(v))|Fn} ≥ K1q
−c/b

a.s. on the event{Xn = v}, q ≥ 1. (2.17)
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Proof . Let h ≥ 1 and let Xn = v with h(v) = h and 0 ≤ k ≤ h. Let r =
(v0, v1, . . . , vh = v) be the unique self-avoiding path in T from the root to v.
We now consider the imbedded random walk on r . That is, we only look at the
successive positions of {Xj } which lie in r and which differ from the last preceding
position in r . Since Xn = v, and the random walk started at X0 = v0, Xj must
have traversed all the edges {vi, vi+1}, 0 ≤ i ≤ n − 1, by time n. Therefore, at
time n all these edges have been reinforced already and have weight c. Thus, when
the imbedded random walk is at vj for some 0 < j < h at some time ≥ n, then
the next position is vj−1 or vj+1, each possibility having probability 1/2. Thus on
the interior of r , the imbedded random walk is just symmetric simple random walk.
Note that by our assumption of recurrence the imbedded random walk will take
with probability 1 infinitely many steps. Now for τ(n, h(v)− k) < τ(n, h(v)+ 1)
to occur, it must be that at every time t when the walk returns to v = Xn, it moves
to vh−1 at the next step . The conditional probability of a step from v = vh to
vh−1, given Ft , is at most c/(b+ c). When the walk is at vh−1 it has a conditional
probability of reaching vh − k before vh of (1 − 1/k) (because it behaves like
symmetric simple random walk till it hits vh−k or vh). Thus decomposing the event
τ(n, h−k) < τ(n, h+1)with respect to the number of times the walk moves from
v to vh−1 before τ(n, h− k), we obtain

P {τ(n, h−k) < τ(n, h+1)|Fn} ≤
∞∑
j=1

[ c

b + c

]j (
1− 1

k

)j−1 1

k
= c

c + bk
. (2.18)

This, of course, implies (2.16).
For (2.17) note that if Xn+1 is a child of Xn = v, then τ(n, h(v)) is just the

time of the first return after time n to v. The bound (2.17) now follows from the
fact that almost everywhere on {Xn = v},

P {Xn+1 is a child of v and h(X.) reaches h(v)+ q before X. reaches v0|Fn}
≥ P {Xn+1 equals a child v̂ of v|Fn}

×
q−1∏
j=1

ess inf P {h(X.) reaches h(v)+j+1 before X. reaches v|Fn,Xn+1 = v̂

and h(X.) has reached h(v)+ + before τ(n, h(v)) for 1 ≤ + ≤ j}

≥ b

b + c

q−1∏
j=1

[1 − sup
v:h(v)=n+j

β(j, v)] ≥ b

b + c

q−1∏
j=1

bj

c + bj

= b

b + c
exp

[
−
q−1∑
j=1

( c
bj

+O(j−2)
)]

(since 1 − x = exp[log(1 − x)] = exp[−x +O(x2)])

≥ K1q
−c/b. (2.19)

�
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The estimates in the last proof only relied on the imbedded random walk on
the path r , and ignored “excursions” into the rest of the tree. We shall use these
excursions to improve the bound (2.17). To deal with such excursions we denote the
children of v0 in some arbitrary order as v0,1, v0,2, . . . , v0,b+1. Fix some z and write
z ≤ t1 < t2 < . . . for the successive times t ≥ z for whichXt = v0, Xt+1 = v0,b+1
and let sp = inf{s ≥ tp : Xs = v0}. Then we regard [tp, sp] as the time interval of
the p-th excursion after time z into T (v0,b+1). We next define the maximal height
reached during the first L of these excursions, that is

H(z, L) = max{h(X+) : tp ≤ + ≤ sp for some 1 ≤ p ≤ L}.
We also define

γ (L, q) = inf
z

ess inf
ω
P {H(z, L) ≥ q|Fz}, (2.20)

For the next lemma we again assume thatXn = v for a v with h(v) = h and that
r = (v0, . . . , vh = v) is the unique self-avoiding path from v0 to v. For 1 ≤ j < h

we denote the children of vj as vj,1 = vj+1, vj,2, . . . , vj,b. We further introduce

L = L(n, j, k) = number of t ∈ (n, τ (n, 0)) for which Xt = vj ,Xt+1 = vj,k.

(2.21)

Lemma 3.

β(h, v)

≤sup
n

ess sup
ω
E
{
I [τ(n, 0)<τ(n, h+1)]

h−1∏
j=1

b∏
k=2

[1−γ (L(n, j, k), h−j+1)]|Fn
}
.

(2.22)

The expectation here is over the conditional distribution of the imbedded random
walk on r and the random variables L(n, j, k).

Proof . This lemma is almost obvious after one deciphers the notation. We now have
to consider “excursions” into the various subtrees T (vj,k). Let t1(j, k) < t2(j, k) <
. . . < tL(j, k) be the successive times in (n, τ (n, 0)) for which Xt = vj ,Xt+1 =
vj,k and let sp(j, k) = inf{m > tp(j, k) : Xm = vj }. Thus [tp(j, k), sp(j, k)] is
the time interval of the p-th excursion into T (vj,k). The maximal heights above j
reached during these excursions are the quantities

Ĥ (n, j, k, L(n, j, k))

:= max{h(Xm)− j : tp(j, k) ≤ m ≤ sp(j, k) for some 1 ≤ p ≤ L(n, j, k)}.
If the walk reaches height j + (h − j + 1) = h + 1 during any of the intervals
[tp(j, k), sp(j, k)], then h(X.) reaches the value h+ 1 during [n, τ(n, 0)), and this
excludes the occurrence of τ(n, 0) < τ(n, h+ 1). Thus,

β(h, v)

≤sup
ω
E
{
I [τ(n, 0)<τ(n, h+1)]

h−1∏
j=1

b∏
k=2

I [Ĥ (n, j, k, L(n, j, k))<h−j+1]|Fn
}
.
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To complete the proof we observe that the imbedded random walk and theL(n, j, k)
only determine the numbers of excursions into the variousT (vj,k), but the behaviors
of X. during these excursions and the weights in the subtrees T (vj,k) are indepen-
dent of the imbedded random walk on r and theL(n, j, k). We now condition on Fn
and the imbedded random walk, I [τ(n, 0) < τ(n, h+1)] and theL(n, j, k). These
data also determine the weights in the T (vj,k) at time n. These weights remain
unchanged till the time of the first excursion into T (vj,k). Moreover, the excursions
into one such subtree T (vj,k) do not influence the weights in the other subtrees
T (vj ′,k′) with (j ′, k′) �= (j, k). Consequently, the conditional expectation of

h−1∏
j=1

b∏
k=2

I [Ĥ (n, j, k, L(n, j, k)) < h− j + 1],

given Fn, the imbedded random walk on r , and the L(n, j, k), is at most

h−1∏
j=1

b∏
k=2

[1 − γ (L(n, j, k), h− j + 1)].

The bound (2.22) follows. �

What is needed to complete the proof of Theorem 1 is a good lower bound
for γ (L, q). We already have one lower bound, which is a simple consequence of
(2.17). Indeed, almost everywhere on {Xm = v0,b+1}
P {H(m,L) ≥ q|Fm} = 1 − P {h(X+) < q for all tp ≤ + ≤ sp, 1 ≤ p ≤ L|Fm}

≥ 1 − [ sup
n

ess sup
ω:Xn(ω)=v0,b+1

P {τ(n, q) > τ(n, 0)|Fn}
]L

≥ 1 − [1 −K1q
−c/b]L,

so that
γ (L, q) ≥ 1 − [1 −K1q

−c/b]L. (2.23)

For large c this bound is not strong enough and we now set about improving (2.23).

Lemma 4. Let v be an arbitrary vertex of T and u a descendant of v such that

h(u)− h(v) = k.

Let σ0 be an {Fn}-stopping time such that

Xσ0 = v a.s., (2.24)

and let
σj = inf{n > σj−1 : Xn = v}, j ≥ 1. (2.25)

Then for some constants 0 < K2 = K2(b, c) < 1 andK3 = K3(b, c) > 0, and for

k2 ≥ K2 and m ≥
⌈2k2

K2

⌉
(2.26)
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it holds that

P {X. visits u during [σ0, σm]|Fσ0} ≥ 1 − exp
[

− 2K3m

k2

]
. (2.27)

Proof . Let s = (u0 = v, u1, u2, . . . , uk = u) be the unique self-avoiding path in
T from v to u. In fact, this path necessarily lies in T (v). Assume that for some i
and some 0 ≤ + < k,

X. has visited u0, u1, . . . , u+ during [σ0, σi]. (2.28)

We claim that there exists some constant 0 < K2 = K2(b, c) < 1, such that on
this event one has

P {X. visits u++1 during (σi, σi+1]|Fσi } ≥ K2

++ 1
. (2.29)

This follows immediately by considering the imbedded random walk on s. As in
the proof of Lemma 2 this imbedded random walk is just a symmetric simple
random walk, as long as it is on s \ {u0, u+}. By our choice of the σj we may take
Xσi = v = u0. The probability on the left of (2.29) is therefore at least

P {Xσi+1 = u1|Fσi } · P {imbedded random walk reaches u+
before returning to u0|imbedded random walk starts at u1}

× inf
m
P {Xm+1 = u++1|Fm,Xm = u+} ≥ 1

1 + bc

1

+

1

1 + bc
.

This implies the claimed (2.29) with K2 = [1 + bc]−2 when 1 ≤ + ≤ k − 1, and
the case + = 0 is trivial.

By iterating the bound (2.29) we get that on the event (2.28),

P {X. visits u++1 during (σi, σi+q ]|Fσi } ≥ 1 −
[
1 − K2

++ 1

]q
. (2.30)

We apply this in the following form. First we define

i+ = inf{m : X. reaches u+ during [σ0, σm]}.
Then (2.30) implies that almost everywhere on (2.28)

P {i++1 − i+ > q|Fσi+ } ≤
[
1 − K2

++ 1

]q
,

and consequently,

E{i++1 − i+|Fσi+ } ≤ ++ 1

K2
.

But then also

E{ik − i0|Fσ0} ≤
k−1∑
+=0

++ 1

K2
≤ k2

K2
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and

P {X. does not visit uk = u during (σ0, σ�2k2/K2�]|Fσ0}

≤ P
{
ik − i0 ≥ 2k2

K2

∣∣Fσ0

} ≤ 1

2
. (2.31)

Finally we consider in succession the time intervals (σj�2k2/K2�, σ(j+1)�2k2/K2�].
In each of these intervals there is a conditional probability of at least 1/2 for X. to
visit u, so that the left hand side of (2.27) is at least

1 − 2
{
−
⌊
m/�2k2/K2�

⌋}
,

and (2.27) follows. �

The next lemma improves the preceding one. It shows that X. can reach de-
scendants of v at much greater height than indicated by (2.27). We introduce the
following events:

A = A(m, v) = {X. visits all descendants u of v with

h(u)− h(v) ≤ m1/4 during [σ0, σm]},
and

B = B(m, v) = {X. visits some descendant u of v with

h(u)−h(v)≥m2 during [σ0, σ2m]}.
Lemma 5. There exists some constant K4 = K4(b, c) < ∞ such that with v and
σi as in Lemma 4, it holds for m ≥ K4,

P {A(m, v)|Fσ0} ≥ 1 − exp[−K3m
1/2]. (2.32)

Moreover, for m ≥ K4,

P {B(m, v)|Fσ0} ≥ 1 − 2 exp[−K3m
1/2]. (2.33)

Proof . There are at most

bm
1/4+1

descendants u of v with h(u) − h(v) ≤ m1/4. Apply (2.27) with k replaced by
�m1/4� to each of these descendants u to obtain (2.32).

To derive (2.33) we assume that A(m, v) occurred, and we find a lower bound
for the conditional probability of B(m, v), given Fσm , on the event A. To this end
we first note that (2.17) and the strong Markov property give for any vertex v̂ and
any {Fn}-stopping time ρ for which Xρ = v̂,

P {Xρ+1 is a child of Xρ = v̂ and h(X.) reaches h(̂v)+m2

before returning to v̂|Fρ} ≥ K1m
−2c/b. (2.34)

Now consider one of the timesσi with i ≥ m. Recall thatXσi = v by our assumption
on theσi . Suppose next thatXσi+1 is a child ofXσi = v and assume thatX. continues
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to move in T (v) \ {v} till some stopping time ρ1 at which it reaches a vertex v1
with h(v1) = h(v) + �m1/4�. Conditionally on this event there is a probability of
at least K1m

−2c/b that X. will move to a child of v1 at the next step and then will
continue to move in Tv1 \ {v1} until it reaches height h(v1)+m2 ≥ h(v)+m2. In
this case X. actually reaches a vertex of height h(v)+m2 before time σi+1 (recall
that this is the time of the first return to v after σi). If Xρ1+1 is not a child of v1,
or X. returns to v1 before it reaches height h(v1)+m2 in Tv1 , then we try again to
reach height h(v)+m2 from some vertex v2 of height h(v2) = h(v)+�m1/4�, etc.
We continue this till X. returns to v at time σi+1.

We now give a more formal description of the procedure in the preceding
paragraph, which also lets us estimate the probability that h(X.) reaches h(v)+m2

before σm+1 by this procedure. We define

ρ1 = inf{n > σi : h(Xn) = h(v)+ �m1/4�},
ρj+1 = inf{n > ρj : h(Xn) = h(v)+ �m1/4�}.

We further define
vj = Xρj

and

ν =
{

0 if ρ1 ≥ σi+1
max{j : ρj < σi+1} if ρ1 < σi+1.

We also use the notation
a ∧ b = min(a, b).

Then, by (2.34), as explained in the preceding paragraph, on the event {ρj < σi+1},

P {h(X.) does not reach h(v)+m2 during [ρj , ρj+1∧σi+1)|Fρj } ≤ 1−K1m
−2c/b.

Now assume that A(m, v) occurs and let i ≥ m. Then, since {ν ≥ j} = {ρj <
σi+1}, we have for any M ≥ 1

P {h(X.) does not reach h(v)+m2 during [σi, σi+1]|Fσi }
≤ P {ν < M|Fσi }

+E
{
I [ν ≥ M]I

[
h(X.) does not reach h(v)+m2 during [σi, ρM)

]
×P {h(X.) does not reach h(v)+m2 during [ρM, σi+1)|FρM }

∣∣∣Fσi}
≤ P {ν < M|Fσi } + [1 −K1m

−2c/b]E
{
I [ν ≥ M − 1]

×P {h(X.) does not reach h(v)+m2 during [σi, ρM−1 ∧ σi+1)|FρM−1}
∣∣∣Fσi}

≤ P {ν < M|Fσi } + [1 −K1m
−2c/b]2E

{
I [ν ≥ M − 2]

×P {h(X.) does not reach h(v)+m2 during [σi, ρM−2 ∧ σi+1)|FρM−2}
∣∣∣Fσi}

· · · ≤ P {ν < M|Fσi } + [1 −K1m
−2c/b]M−1. (2.35)
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To complete the proof we bound

P {ν < M|Fσi } = P {ρM ≥ σi+1|Fσi } (2.36)

and choose M appropriately. To obtain such a bound we note that on the event
A(m, v) all vertices on the self-avoiding path from v0 to v and all vertices u in
T (v) with h(u) ≤ h(v) + m1/4 have been visited by time σm. Thus, at time σi ≥
σm, all edges incident to a u ∈ T (v) with h(u) ≤ h(v) + m1/4 − 1 have been
reinforced. Consequently, on A(v,m) ∩ {Xσi+1 is a child of Xσi }, X. behaves like
simple random walk on T during [σi + 1, ρ1 ∧ σi+1]. If we write {X̂n} for simple
random walk on T , then this shows that on A(v,m)

P {ρ1 ≥ σi+1|Fσi }
= P {Xσi+1 is the parent of v|Fσi } + P {Xσi+1 is a child of Xσi |Fσi }

×P {X̂. returns to v0 before h(X̂.) reaches m1/4|X̂0 is a child of v0}
= c

(b + 1)c

+ bc

(b + 1)c
P {X̂. returns to v0 before h(X̂.) reaches m1/4|X̂0 is a child of v0}

≤ 1

b + 1
+ b

b + 1
P {X̂. ever returns to v0|X̂0 = v0}

= 1

b + 1
+ b

b + 1

1

b
= 2

b + 1
.

In the one but last equality we used that h(X̂.) is a nearest neighbor random walk
on {0, 1, 2, . . .} with

P {h(X̂n+1) = h(X̂n)+ 1|X̂0, . . . , X̂n}
= 1 − P {h(X̂n+1) = h(X̂n)− 1|X̂0, . . . , X̂n} = b

b + 1

and Feller (1968), formula XIV.2.4 or XIII.4.5. For similar reasons, one has for
j ≥ 1 on A(m, v) ∩ {ρj < σi+1}

P {ρj+1 ≥ σi+1|Fρj } ≤ P {X̂. ever reaches v0|h(X̂0) = �m1/4�} ≤ b−�m1/4�.

It follows that

P {ν < M|Fσi } ≤ 2

b + 1
+ b − 1

b + 1
(M − 2)b−�m1/4�.

We now take
M = b

1
2 �m1/4�

so that

P {ν < M|Fσi } ≤ 5/2

b + 1
(2.37)
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form ≥ some constantK5 = K5(b). When we substitute the last estimate in (2.35)
we see that forK4 = K4(b, c) large enough and i ≥ m ≥ K4, on the eventA(v,m),
it holds that

P {h(X.) does not reach h(v)+m2 during [σi, σi+1]|Fσi }
≤ b + 1/2

b + 1
+ [1 −K1m

−2c/b]M−1 ≤ b + 3/4

b + 1
.

Of course this gives for m ≥ K4, on the event A(v,m), that

P {h(X.) does not reach h(v)+m2 during [σm, σ2m]|Fσm} ≤
[b + 3/4

b + 1

]m
.

(2.38)
Finally, the left hand side of (2.33) is at least

P {A(v,m)|Fσ0}
[

1 −
[b + 3/4

b + 1

]m]
,

which together with (2.32) proves (2.33) (possibly after a suitable increase
of K4). �

We are finally ready for the required lower bound of γ (L, q).

Lemma 6. For some constants Ki = Ki(b, c) < ∞ and L ≥ K6,

γ (L, �L/2�2) ≥ 1 − exp[−K7L
1/2]. (2.39)

In addition, for all vertices v with h = h(v) ≥ 1,

β(h(v), v) ≤ K8 exp[−K9h
1/4]. (2.40)

Proof . We apply (2.33) with m = �L/2�, v = v0,b+1 and σ0 = tp + 1, where tp
and sp are as in the lines preceding (2.20). Then sp+L ≥ tp+L + 1 ≥ σL ≥ σ2m,
with σj as in (2.25). This gives

P {H(z, L) ≥ �L/2�2|Fz}
≥ P {X. visits some descendant u of v0,b+1 with

h(u)− h(v0,b+1) = h(u)− 1 ≥ m2 during [σ0, σ2m]|Fσ0}
≥1 − 2 exp[−K3m

1/2]≥1−exp[−K7L
1/2].

This is the required (2.39).
To obtain (2.40) we substitute (2.39) into (2.22). This, together with obvious

monotonicity of γ , shows that

β(h(v), v) ≤sup
n

ess sup
ω
P {L(n, j, k)≤4h1/2 for all 1≤j≤h− 1, 2≤k≤b|Fn}

+[1 − γ (4h1/2, h)]

≤sup
n

ess sup
ω
P {L(n, j, k)≤4h1/2 for all 1≤j≤h− 1, 2≤k≤b|Fn}

+ exp[−K7h
1/4].
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Next let

L̂(n, j) = number of t ∈ (n, τ (n, 0)) for which Xt = vj .

If Xn = v, h(v) = h and L̂(n, j) ≤ 8(b + 2c)h1/2 for all 1 ≤ j ≤ h− 1, then the
imbedded random walk on the path r described just before Lemma 3 moves from
v = vh to v0 with no more than

∑h−1
j=1 L̂(n, j) ≤ 8(b+ 2c)h3/2 visits to [1, h− 1].

The probability for this event is bounded by the probability that a symmetric simple
random walk {Sn} starting at 0 reaches h in no more than 8(b+ 2c)h3/2 steps from
vertices in [1, h − 1]. We next deduce from standard random walk estimates that
this probability is at most exp[−K10h

1/2] for a suitable constant K10 and h ≥
some h0. In fact, let 0 < n1 < n2 < . . . < nλ be all the indices n for which
Sn = 0 before Sn first reaches h, at time τ say. Then Sτ − Snλ = h− 0 = h, while
τ − nλ − 1 cannot exceed the total time spent in [1, h− 1] before τ . Thus we must
have τ − nλ ≤ 8(b + 2c)h3/2 + 1. Consequently,

P
{ h−1∑
j=1

L̂(n, j) ≤ 8(b + 2c)h3/2
}

≤ P {λ > h2}

+
h2∑
i=1

P {S. reaches h before time ni + 8(b + 2c)h3/2 + 1|S0, . . . , Sni , ni < τ }

≤ [1 − 1

h

]h2 + 4h2 max
n≤8(b+2c)h3/2+1

P {Sn ≥ h/4} ≤ exp[−K10h
1/2]

for large h (see Billingsley (1986), Theorem 22.5).
Finally, if L̂(n, j) ≥ 8(b + 2c)h1/2, but all L(n, j, k) ≤ 4h1/2, 2 ≤ k ≤ b,

then in the first 8(b + 2c)h1/2 visits after time n to vj , the walk X. moves fewer
than 4(b− 1)h1/2 times to one of the children vj,2, . . . , vj,b in the next step. Since
at any visit by X. to vj the probability for X. to move to one of these children in
the next step is at least (b − 1)/(b − 1 + 2c) ≥ (b − 1)/(b + 2c),

P {L̂(n, j) ≥ 8(b + 2c)h1/2 but L(n, j, k) ≤ 4h1/2, 2 ≤ k ≤ b|Fn}
≤ exp[−K11h

1/2], 1 ≤ j ≤ h− 1,

(by standard exponential bounds for the binomial distribution; see Billingsley
(1986), pp. 148, 149). From these estimates we obtain that

β(h(v), v) ≤ exp[−K7h
1/4] + exp[−K10h

1/2] + h exp[−K11h
1/2]

for h ≥ some h1. By adjusting K8 this implies (2.40). �

Proof of Theorem 1. It now only takes a few lines to complete the proof of this
theorem. Indeed, let X0 = 0, τ (0) = 0 and

τ(j + 1) = inf{n > τ(j) : h(Xn) = j + 1}. (2.41)
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These are the hitting times of the various heights. τ(j) is the same as the τ(0, j)
of Lemma 2. Analogously to the proof of (2.17),

P {h(X.) reaches h before X. returns to v0|X0 = v0}

≥
h−1∏
j=0

[ess inf P {τ(τ (j), j+1)<τ(τ(j), 0)|τ(j)<first return time by X. to v0}]

≥
∞∏
j=0

[1 − sup
h(v)=j

β(j, v)] > 0, (2.42)

by virtue of (2.40). Since this holds uniformly in h, {Xn} cannot be recurrent.

3. Proof of Theorem 2

We call t ≥ 1 a cut − t ime if h(Xn) < h(Xt ) < h(Xm) for all 0 ≤ n < t and for
all m > t . It is easy to see from the fact that {Xn} is transient that almost surely
there exist infinitely many cut-times (see (2.6) and its proof). It is also well known
that if the process starts with all weights

w(e, 0) = 1, (3.1)

then the cut-times are regeneration points. Specifically, if 0 < T1 < T2 < . . . are
the successive cut-times, then the “excursions” Ei := {h(Xm) − h(XTi ) : Ti ≤
m ≤ Ti+1}, i ≥ 1, are i.i.d. In particular, the vectors

(Ti+1 − Ti , h(XTi+1) −
h(XTi )

)
, i ≥ 1, are i.i.d. In fact, these cut-times are splitting times for the Markov

chain {Xn,w(e, n)}n≥0 and the regenerative property can be obtained from Theo-
rem 1 in Jacobsen (1974). Jacobsen ascribes this theorem to D. Williams; see also
Kesten (1977) and Lyons, Pemantle and Peres (1996), Section 3, for regeneration
points in circumstances very similar to the present one. It follows from the strong
law of large numbers that

lim
i→∞

1

i
Ti = lim

i→∞
1

i

i−1∑
j=1

[Tj+1 − Tj ] = E{T2 − T1} ≤ ∞ a.s., (3.2)

and

lim
i→∞

1

i
h(XTi ) = E{h(XT2)− h(XT1)} ≤ ∞ a.s. (3.3)

In the next two lemmas we shall show that the expectations in the right hand
sides of (3.2) and (3.3) are finite. Since T2 − T1 and h(XT2)− h(XT1) are both at
least 1, these expectations are also strictly positive. If Ti ≤ n < Ti+1, then by the
definition of the cut-times Ti we also have

h(XTi ) ≤ h(Xn) < h(XTi+1).
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Therefore,

lim sup
n→∞

1

n
h(Xn) ≤ lim

i→∞
1

Ti h(XTi+1)

= lim
i→∞

1

i + 1
h(XTi+1)

[
lim
i→∞

1

i
Ti
]−1

= E{h(XT2)− h(XT1)}
E{T2 − T1} < ∞ a.s..

Together with a similar estimate for the liminf this will establish that

0 < lim
n

1

n
h(Xn) = E{h(XT2)− h(XT1)}

E{T2 − T1} < ∞ a.s.,

and thus complete the proof of Theorem 2 with

S = E{h(XT2)− h(XT1)}
E{T2 − T1} . (3.4)

We note that for Theorem 2 we only need to know that h(XT2) − h(XT1) and
T2 −T1 have a first moment. For Theorem 3 we also need second moments and for
this reason we prove in Lemmas 7 and 8 that these two quantities have all moments.
There exist much simpler proofs to establish the existence of the first moments only.

Lemma 7. Under the conditions of Theorem 1, h(XT2)−h(XT1) has all moments
finite.

Proof . It will be useful to introduce cut-levels, as spatial analogues of the cut-times.
Let τ(j) be as in (2.41). We call + a cut-level if τ(+) is a cut-time, or equivalently if

h(Xn) > h(Xτ(+)) = + for all n > τ(+). (3.5)

(The inequalities

h(Xn) < h(Xτ(+)) = + for all n < τ(+)

are true by definition of τ(+).)
We shall bound h(XT2) − h(XT1) by a sum of a random number of “almost”

i.i.d. random variables. Essentially the same decomposition can be found in Piau
(1998). Another closely related argument (corresponding to the situation without
reinforcement) appears in Lemma 5.1 of Dembo, Peres and Zeitouni (1996). To
define the appropriate random variables note that if T1 = t1 and h(XT1) = h1, then
h(Xn) > h1 for all n > t1 and t1 is the first hitting time by h(X.) of the level h1.
In this case, the smallest possible value for the next cut-level, h(XT2), is h1 + 1.
Moreover, h1 + 1 is indeed the next cut-level if and only if h(Xt ) > h1 + 1 for all
t > t1 +1. If this is not the case, then none of the levels reached between time t1 +1
and the next return by h(Xt ) to the level h1 + 1 can be a cut-level. This suggests
that the following random variables will be useful:

ŝ1 = inf{t > t1 + 1 : h(Xt ) = h1 + 1} (= ∞ if no such t exists),
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λ1 = sup{h(Xt ) : t1 + 1 ≤ t ≤ ŝ1}.
As observed, if ŝ1 = ∞, then T2 = T1 + 1 and h(XT2) = h1 + 1. On the other

hand, if ŝ1 < ∞, then none of the values in [h1 + 1, λ1] are cut-levels and hence
h(XT2) ≥ λ1 + 1. On the event ŝ1 < ∞ we therefore define also

s1 = inf{t > t1 : h(Xt ) = λ1 + 1} = inf{t > ŝ1 : h(Xt ) = λ1 + 1},
and we take s1 = ∞ on {̂s1 = ∞}. Note that s1 < ∞ a.e. on {̂s1 < ∞}.
(This is true both when the X-process is transient and when it is recurrent.) If
ŝ1, . . . , ŝk, λ1, . . . , λk, s1, . . . , sk have already been defined, and sk < ∞, then we
define similarly

ŝk+1 = inf{t > sk : h(Xt ) = h(Xsk ) = λk + 1} (= ∞ if no such t exists),

λk+1 = sup{h(Xt ) : sk + 1 ≤ t ≤ ŝk+1}
and

sk+1 = inf{t > sk : h(Xt ) = λk+1 + 1} = inf{t > ŝk+1 : h(Xt ) = λk+1 + 1}
(see Figure 1). Note that if sk+1 < ∞, then

sk < ŝk+1 < sk+1,

and that the process reaches a new level at the times sk . Indeed,

sk = τ(sk−1, λk + 1) (3.6)

in the notation of (2.15). The times sk are the potential cut-times. However, if
ŝk+1 < ∞, then sk turns out not to be a cut-time. Finally, we define

κ = inf{k : ŝk = ∞}.

Fig. 1. Part of the sample path of h(Xn)with sk, ŝk+1 and sk+1 marked. In this figure, sk turns
out not to be a cut-time.
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Then ŝκ−1 < ∞ and sκ−1 < ∞ a.s., while ŝκ = ∞. Thus h(Xt ) > λκ−1 + 1 for
all t > sκ−1 + 1 and T2 = sκ−1 + 1, h(XT2) = λκ−1 + 1. Thus we have (with
λ0 = h1)

h(XT2)− h(XT1) = 1 +
κ−1∑
i=1

[λi − λi−1]. (3.7)

This is the desired decomposition for h(XT2)− h(XT1).
We remind the reader that we already assumed that T1 = t1, h(Xt1) = h1. We

shall therefore be interested in conditional expectations given the event

C = C(h1, t1) := {h(Xn) < h1 for n < t1, h(Xt1)

= h1, and h(Xt ) > h1 for t > t1}.
It is convenient to write this event as C′

i−1(m) ∩ C′′
i−1(m), where m ≥ 1 is an

integer, and (with s0 = t1 + 1 and τ(n, j) as in (2.15))

C′
i−1(m) := {h(Xn) < h1 for n < t1, h(Xt1) = h1 and h(Xt )

> h1 for t1 < t ≤ τ(t1, h(Xsi−1 +m− 1))},
C′′
i−1(m) := {h(Xt ) > h1 for t > τ(t1, h(Xsi−1 +m− 1))}.

C′
i−1(m) ∈ Fτ(t1,h(Xsi−1+m−1)), whereas C′′

i−1(m) depends on the future after time
τ(t1, h(Xsi−1 +m− 1)). An immediate consequence of (3.7) is that for p > 1(
E{[h(XT2)− h(XT1)

]p|C}
)1/p

≤ 1 +
∞∑
i=1

(
E{I [κ > i][λi − λi−1]p|C}

)1/p
(by Minkowski’s inequality)

≤ 1 +
∞∑
i=1

(
P {κ > i − 1|C}

)1/p(
E{I [κ > i][λi − λi−1]p|C, κ > i − 1}

)1/p
.

(3.8)

Next we estimate the tail of the conditional distribution of I [κ > i] · [λi − λi−1]p

given the event Di−1 := C ∩ {κ > i − 1} = C ∩ {̂si−1 < ∞}. Now we have for
any integer m ≥ 2,

P {I [κ > i] · [λi − λi−1] ≥ m|Di−1}
= P {h(Xt ) returns to h(Xsi−1)

after reaching h(Xsi−1)+m− 1|Di−1}
= 1 − P {h(Xt ) never returns to h(Xsi−1)

after reaching h(Xsi−1)+m− 1|κ > i − 1, C′
i−1(m), C

′′
i−1(m)}

≤ 1 − P {C′′
i−1(m), h(Xt ) > h(Xsi−1) for all

t ≥ τ
(
t1, h(Xsi−1)

)+m− 1|κ > i − 1, C′
i−1(m)}. (3.9)

We now apply the argument in (2.42) to the tree T (Xsi−1). In (3.9) we have to find a
lower bound for the probability that we do not return to the root of this tree once we
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reached height m− 1 above this root. Essentially as in (2.42) we have for large m

P {C′′
i−1(m), h(Xt ) > h(Xsi−1) for all t ≥ τ

(
t1, h(Xsi−1)+m− 1

)|
κ > i − 1, C′

i−1(m)}

≥
∞∏

j=m−1

[1 − sup
h(v)=j

β(h(v), v)]

≥
∞∏

j=m−1

[
1 −K8 exp[−K9j

1/4]
]

(see (2.40))

≥ exp
[

− 2K8

∞∑
j=m−1

exp[−K9j
1/4]
]

≥ exp
[

− 2K8

∫ ∞

m−2
exp[−K9x

1/4]dx
]

≥ exp
[

−K12m
3/4 exp[−K9m

1/4]
]

≥ 1 −K12m
3/4 exp[−K9m

1/4]. (3.10)

Substitution of this estimate into (3.9) yields

P {I [κ > i] · [λi − λi−1] ≥ m|Di−1} ≤ K12m
3/4 exp[−K9m

1/4].

In turn, this implies

E{I [κ > i] · [λi − λi−1]p
∣∣Di−1}

≤ K13

∞∑
m=1

mp−1P {I [κ > i] · [λi − λi−1] ≥ m|Di−1} ≤ K14,

for a suitable constant K14 = K14(p) < ∞. It follows that the right hand side of
(3.8) is bounded by

1 +K
1/p
14

∞∑
i=1

(
P {κ > i − 1|C}

)1/p
. (3.11)

Finally we show that the sum here is finite. To see this we show that κ is
stochastically smaller than a geometric random variable. Indeed, if we take into
account that {si−1 < ∞} and {̂si−1 < ∞} differ only by a set of probability 0, and
the fact that h(Xsi−1) = λi−1 + 1 is reached for the first time at time si−1, so that
τ
(
t1, h(Xsi−1)) we obtain

P {κ = i|κ > i − 1, C}
= P {κ = i |̂si−1 < ∞, C}
= P {h(Xt ) > h(Xsi−1) for all t > si−1|si−1 < ∞, C′

i−1(1), C
′′
i−1(1)}

≥ P {C′′
i−1(1), h(Xt ) > h(Xsi−1) for all t > si−1|si−1 < ∞, C′

i−1(1)}
≥ b

b + c
P {Xn never returns to v0|A0} > 0 (by Lemma 1). (3.12)
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Thus, if we denote the last member of (3.12) by δ, then

P {κ > i|C} ≤ (1 − δ)P {κ > i − 1|C} ≤ . . . ≤ (1 − δ)i .

Together with (3.8) and (3.11) this proves the lemma. �

Lemma 8. Under the conditions of Theorem 1, T2 − T1 has all moments finite.

Proof . We shall reduce this Lemma to the preceding one. We first want a lower
bound for

P {h(X.) reaches h(v)+ q before it reaches h(v)− q|Fn}
on the set {Xn = v}. As before, let r = (v0, . . . , vh) be the self-avoiding path from
the root to v. Until h(X.) reaches h(v) − q, X. has to stay inside T (vh−q). This
time we apply the argument for (2.42) to the tree T (vh−q) which is rooted at vh−q .
We then obtain (with the help of (2.40) for the last step)

P {h(X.) reaches h(v)+ q before it reaches h(v)− q|Fn}
≥ inf

m
ess inf

ω:h(Xm(ω))=q
P {h(X.) reaches 2q in T (vh−q)before it reaches vh−q |Fm}

≥ inf
m

2q−1∏
j=q

[ ess inf P {τ(τ (m, j), j + 1) < τ(τ(m, j), 0)|τ(m, j) < τ(m, 0)}]

≥
2q−1∏
j=q

[1 − sup
h(v)=j

β(h(v), v)]

≥
2q−1∏
j=q

[1 −K8 exp[−K9j
1/4].

For the remainder of this proof we now fix q such that

P {h(X.) reaches h(v)+ q before it reaches h(v)− q|Fn} ≥ 3

4
a.s. on {Xn = v}

(3.13)
for all n and v.

Next we consider the X-process at the times when h(X.) is a multiple of q. By
(3.13) this is bounded below by a random walk with positive drift, and this will be
crucial for our argument. Here are the details. Define ν(0) = 0 and

ν(j + 1) = inf{n > ν(j)∣∣|h(Xn)− h(Xν(j))| = q}.
Also set

yj = h(Xν(j)).

Then (3.13) implies

P {yj+1 = yj + q|Fν(j)} = 1 − P {yj+1 = yj − q|Fν(j)} ≥ 3

4
. (3.14)
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Let
j∗ = inf{j : ν(j) ≥ T1}.

Thus ν(j∗) is the smallest ν(j) greater than or equal to T1. From the definition of
the cut-times it follows that h(Xn) > h(XT+ ) implies n > T+. We claim that this
implies for any choice of the constants K15,K16 ∈ (0,∞) and any m ≥ 1 that

P {T2 − T1 ≥ m} ≤ P {h(XT2)− h(XT1) ≥ K15m}
+P {yj∗+�K16m� < h(XT1)+K15m}
+P {ν(j∗)− T1 > m/2}
+P {ν(j∗ + �K16m�)− ν(j∗) > m/2}. (3.15)

To see this we note that if none of the four events on the right hand side of (3.15)
occur, then

h(XT2) < h(XT1)+K15m ≤ yj∗+�K16m� = h
(
Xν(j∗+�K16m�)

)
,

and hence
ν(j∗ + �K16m�) > T2.

But also
ν(j∗ + �K16m�) ≤ T1 +m,

so that
T2 < T1 +m.

Thus (3.15) holds. It therefore suffices for this lemma to prove that for any p > 0
and a suitable choice of K15,K16

∞∑
m=1

mp−1P {h(XT2)− h(XT1) ≥ K15m} < ∞, (3.16)

∞∑
m=1

mp−1P {yj∗+�K16m� < h(XT1)+K15m} < ∞, (3.17)

∞∑
m=1

mp−1P {ν(j∗)− T1 > m/2} < ∞ (3.18)

and ∞∑
m=1

mp−1P {ν(j∗ + �K16m�)− ν(j∗) > m/2} < ∞. (3.19)

Clearly, (3.16) is equivalent to E{[h(XT2) − h(XT1)]
p} < ∞, and this holds by

virtue of Lemma 7, no matter what the value of K15 ∈ (0,∞) is. (3.17) follows
from the fact that

yj∗+�K16m� − h(XT1) ≥
j∗+�K16m�−1∑

i=j∗
[yi+1 − yi]
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and (3.14). Indeed (3.14) implies that {yj /q} stochastically dominates a nearest
neighbor random walk which moves one step to the right (left) with probability 3/4
(respectively, 1/4) and

E{yj+1 − yj |Fν(j)} ≥ q

2
.

Standard exponential bounds for random walk (see Billingsley (1986), Theorem
9.3) then show that

P


j∗+�K16m�−1∑

i=j∗
[yi+1 − yi] < K15m


tends to zero exponentially in m as soon as

K16
q

2
> K15. (3.20)

To prove that (3.18) and (3.19) hold we note that for any n, on {ν(j) ≤ n} it holds
that P {ν(j + 1) ≤ n+ q|Fn} ≥ K17 > 0. Therefore,

P {ν(j + 1)− ν(j) ≥ m|Fν(j)} ≤ K18e
−K19m,

P {ν(j∗)− T1 ≥ m|FT1} ≤ K18e
−K19m (3.21)

and
E{ν(j + 1)− ν(j)|Fν(j)} ≤ K20,

for suitable constants 0 < Ki < ∞. (3.18) is now immediate from (3.21). Finally,
(3.19) also holds by standard large deviation estimates as soon as

K16K20 <
1

2
,

because {ν(j)} is stochastically dominated by a random walk whose increments
have exponential tails, and which have mean at most K20 (see Billingsley (1986),
Theorem 9.3). Clearly we can choose first K16 and then K15 so as to satisfy this
and (3.20). �

As we pointed out before, Theorem 2 follows directly from Lemmas 7 and 8.
Proof of Remark 2 As in (2.41), let

τ(k) = inf{n : h(Xn) = k}
and

N(k) = {number of times n < τ(k + 1) with h(Xn) = k}
= {number of times n ∈ [τ(k), τ (k + 1)) with h(Xn) = k}.

The second equality here holds because h(Xn) = k does not occur before time
τ(k), by definition. Clearly,

τ(k) ≥
k−1∑
i=1

N(i)
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and

S ≤ lim inf
k→∞

h(Xτ(k))

τ (k)
= lim inf

k→∞
k

τ(k)
.

Thus, for any constant K , we have

1

S
≥ lim sup

k→∞
τ(k)

k
≥ lim sup

k→∞
1

k

k−1∑
i=1

{N(i) ∧K}.

Taking expected values, using the fact that S is almost surely constant, and applying
Fatou’s lemma to K − lim supk→∞ k−1∑k−1

i=1 {N(i) ∧K}, gives

1

S
= E

{ 1

S

} ≥ lim sup
k→∞

1

k

k−1∑
i=1

E{N(i) ∧K}. (3.22)

Now, at any time n < τ(i + 1), the X-process has not passed from height i to
height i + 1, and therefore the edges between any vertex x with h(x) = i and its
children have not yet been reinforced. On the other hand, ifXn = x for some x with
h(x) = i, then the edge between the parent of x and x has been traversed at least
once, and this edge therefore has weight c at time n. It follows that conditionally
on Fn, on the event {n < τ(i + 1),Xn = x} with h(x) = i the probability for
h(Xn+1) = i − 1 equals c/(b + c). If h(Xn+1) = h(Xn)− 1 = i − 1, then h(X.)
will eventually return to the level i, and then there is again a conditional probability
of c/(b+ c) that the height will go down to i− 1 in the next step. This implies that

P {N(i) ≥ j |Fτ(i)} = [c/(b + c)
]j−1

,

and

E{N(i) ∧K} ↑ b + c

b
as K ↑ ∞.

Together with (3.22) this implies (1.4).

4. Proof of Theorem 3

Since we have proven the existence of the appropriate moments in Lemmas 7 and
8, Theorem 3 follows from standard arguments for regenerative processes (see for
instance S. Asmussen (1987), Section V.3 and also the proof of the central limit
theorem for Markov chains in Chung (1967), Section I.16). We merely give an
indication of the proof.

We define ϕ(x) for any x ≥ 0 as the unique index for which

Tϕ(x)−1 < x ≤ Tϕ(x).
The law of large numbers (3.2) shows that

lim
n→∞

1

n
sup
t≤1

∣∣ϕ(nt)− nt

E{T2 − T1}
∣∣ = 0 a.s. (3.23)
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Furthermore, since T2 − T1 has a finite second moment,

1√
m

∣∣Tϕ(m) − Tϕ(m−1)
∣∣→ 0 a.s.

Consequently also
1√
n

sup
t≤1

|Tϕ(nt) − nt | → 0 a.s. (3.24)

In view of the fact that

h(XTϕ(m)−1) ≤ h(Xm) ≤ h(XTϕ(m)),

a similar argument shows that also

1√
n

sup
t≤1

|h(XTϕ(nt) )− h(Xnt )| → 0 a.s. (3.25)

(3.23)–(3.25) combined show that for any δ > 0, ε > 0,

lim sup
n→∞

P

 sup
0≤t ′,t ′′≤1
0≤t ′−t ′′≤δ

1√
n
|h(Xnt ′)− nt ′S − h(Xnt ′′)+ nt ′′S| > ε


≤ lim sup

n→∞
P

 sup
0≤k′,k′′≤2n/E{T2−T1}

0≤k′−k′′≤2δn/E{T2−T1}

1√
n

∣∣h(XTk′ )−Tk′S−h(XTk′′ )+Tk′′S
∣∣>ε

 .
(3.26)

Now define T0 = 0 and for k ≥ 0

Wk = h(XTk+1)− h(XTk )− (Tk+1 − Tk)S. (3.27)

Then the right hand side of (3.26) can be written as

lim sup
n→∞

P

 sup
0≤k′,k′′≤2n/E{T2−T1}

0≤k′−k′′≤2δn/E{T2−T1}

1√
n

∣∣ k′′−1∑
i=k′

Wi | > ε

 . (3.28)

The regenerative property of the cut-times says thatW1,W2, . . . are i.i.d. A simple
calculation and (3.4) show they have mean 0. Moreover, EW 2

k < ∞ by virtue of
Lemmas 7 and 8. Donsker’s theorem (see Billingsley (1968), Section 2.10) tells us
that the limit of (3.28) as δ ↓ 0 equals 0, and the same holds for the left hand side
of (3.26). In turn this means that the family of functions {h(Xnt ) − ntS}0≤t≤1 is
tight in C([0, 1],R). Thus to complete the proof of Theorem 3 it suffices to show
that the finite dimensional distributions of {h(Xnt )− ntS}0≤t≤1 converge to those
of {σB(t)}0≤t≤1 with

σ 2 = 1

E{T2 − T1}Variance(W1), (3.29)

and that σ 2 > 0.



592 R. Durrett et al.

The convergence of the finite dimensional distributions is immediate from the
central limit theorem or Donsker’s theorem and the fact that

1√
n

[
h(Xnt )− ntS −

∑
0≤i≤nt/E{T2−T1}

Wi

]
→ 0 in probability (3.30)

(see (3.23)–(3.25) and use the fact that (3.26) tends to 0 as δ ↓ 0). Finally σ 2 > 0
follows easily from the fact that the variance of W1 is strictly positive. Indeed,
T2 − T1 still can take arbitrarily large values even when the difference of the two
successive cut-levels,h(XT2)−h(XT1), is fixed; one merely has to let theX-process
move back and forth over the same edge a large number of times.
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