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Summary. In recent years several authors have obtained limit theorems for 
Ln, the location of the rightmost particle in a supercritical branching 
random walk but all of these results have been proved under the assump- 
tion that the offspring distribution has (p(O)=.fexp(Ox)dF(x)<oo for some 
0>0.  In this paper we investigate what happens when there is a 
slowly varying function K so that 1-F(x)~x-qK(x)  as x ~ o o  and 
log(-  x) F(x)~O as x - - , - o o .  In this case we find that there is a sequence 
of constants a N, which grow exponentially, so that L,/a,, converges weakly to a 
nondegenerate distribution. This result is in sharp contrast to the linear 
growth of L, observed in the case (p(0) < oo. 

Introduction 

Consider a supercritical branching random walk in R 1 with an offspring 
distribution Pk which has ~ k p k = m  < oo and assume that the displacements of 
the offspring from the parent are independent and have a distribution F. Let 
L, be the position of the right most particle alive at time n and set L n = - o o  if 
the nth generation is empty. In this paper we will prove a limit theorem for L n 
under the assumption that there is a slowly varying function K so that 

1-F(x)~x-qL(x)  as x - ~  
and 

log(-x)F(x)~O as x-~ - oo. 

To describe these results we need to introduce some notation. By a result 
of Seneta and Heyde (see Athreya and Ney (1972), p. 30) we can pick a 
sequence c -~oo  so that ZJcn-*W where P(W=O)=P(Z~-,O). Since c~--,oo and 
1-F(x )~x-qK(x)  as x--~oo we can pick a n so that c~(1-F(a~))~l. Having 
selected a, in this way we obtain the following limit theorem: 

Theorem 1. For all x > 0 we have 

oo 

P(L, <= a, x)--, ~ P(r We dy) exp ( - y x -  q) 
0 
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where 

r= ~ m-JP(Zj>O). 
j=o  

In the theorem above if ~ ( k l o g k ) p k < o e  we can take c.=rn n (see Athreya 
and Ney, p. 24) and if 1 - F ( x ) ~ x  -q we can let a.=&./q. If both conditions hold 
we have a . = m  "/q so the results in this case are much different from those 
obtained by Bramson (private communication, see [3] for some related results). 
He has shown that if the conditions of Bahadur and Rao (1960) are satisfied 
and F assigns a probability less than 1/m to sup{x: F (x )< l}  then there is a 
sequence of constants b n ~ c n so that L n - b .  is tight. 

To see why our results are different from Bramson's consider M. the 
maximum displacement experienced by a particle which has offspring alive at 
time n. When 1 - F ( x ) ~ x - q K ( x )  we have that 

O o  

P(M n <= a. x)--+ ~ P(r W~ dy) exp( - y  x-q) 
o 

so the position of the rightmost particle is determined by the largest displace- 
ment. On the other hand if we have a bounded distribution (which is one of 
the possibilities in Bramson's theorem) then the rightmost particle gets to its 
location by a sequence of small jumps. 

Section 2 

In this section we will prove Theorem 1. The proof will be accomplished in 
four steps: 

1. Let Z~ be the number of particles alive at time k which have offspring 
- -  n n alive at time n and let Y . - Z  1 + ... + Z . .  As n ~ o %  Y./c.--+rW almost surely. 

2. Let Xi, j 1 <= i,j < o~ be a collection of independent and identically distrib- 
uted random variables with distribution F, which are defined so that 
Xn, a , ' " ,Xn ,z ,  were the steps taken by the Z.  offspring in the nth generation. 
Let M. = max {Xi,j,  1 < i < n, 1 <j  < Zi, particle j has an offspring alive at time 
n} 

OG 

P(M.  < a. x) = ~ P (Y" 6 dy ] F(a. x)' on__+ ~ P(r W~ d y) exp ( - y x - q). 
0 \On / 0 

3. I f 0 < e < x  then 

and 

P(L.  > a. x) < P(M.  > a.(x - e)) + P(L.  > a. x, M .  < a.(x - e)) 

P(L.  > a. x, m .  < a . ( x -  8))--+O 

4. If e > 0 then 
P(L.  > a. x) 

lim.~inf p(M.  _> a.(x + e)) > 1. 
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Combining 3 and 4 with 2 shows that 

lim P(L. > a. x)/P(M. > a. x) = 1 
n~oo  

and proves the theorem. The rest of the paper is devoted to showing 1-4. 

1. It is clear that for any fixed j we have 

Z,~ j/c._j--+W and Z~_JZ._j--+P(Z~>O) 

almost surely on {W>0} so for every positive integer N 

z';/c.-,w ~ m-JP(z~>0). 
i = n - N  j = 0  

To estimate the remainder we observe that from the proof of Seneta's result 
(see [1], p. 30) c .+jc .Tm and c 2 / q > l  so 

O< y~ Z'~/c<(supZjci)  
i = 1  i>=l n = N + l  \ C l ]  

Letting N ~  oo now shows 

Y . / c . ~ W  ~, m-JP(Zj>O)=rW. 
j=0 

2. Since the particle displacements are independent of the branching pro- 
cess we have 

For fixed y 

SO 

oo 

\ C  n ] 

y c.(1 - F(a. x)) = y(c.(1 - F(a.))) 1 - F(a. x) 
1 - F ( a . )  -'YX-q 

F(a. x)Y~----, exp ( - y x -q). 

Now F(a. x)<  1 so F(a. x) yc" is a nonnegative decreasing function. From this it 
follows that 

oo 

P(M. < a. x)--+ ~ P(r Wedy) exp( - y  x-q). 
0 

3. Let L. be the position of the rightmost particle alive at time n. Let 
0 < ~ < x  

P(L. > a. x) <= P(M. > a.(x - e)) + P(L. > a. x, m .  < a.(x - e)) 

P(L.>a.x ,m.<a. (x-e) )<=E(t l . (a .x  , oo); m . < a . ( x - e ) )  

where ~.(a. x, oo) is the number of particles in (a. x, oo) at time n. 
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We want to show that P(L.>anX , M , < a n ( X - e ) ) ~ O .  To do this we need to 
introduce the truncated distribution function. Let Fr(x)=F(x)/x  F(y) and let Fn y 
be the nth convolution of F r. It is easy to see that if S n is a random walk which 
takes steps with distribution F then 

FY.(x)=P(S.<x,  sup S j - S j _ I  < y  ) 
l < j < n  

and F~"<x-~)(a,x) is the probability a given particle in the nth generation is in 
( - o o ,  a ,x]  and all its ancestors took steps of size <a~(x-~) .  From this it 
follows that 

E( t ln (a  n x, OO); M n < a~(x - e)) < m"(F, ~"(~-~)(oo) -F2~(~-~)(a, x)). 

To estimate the right hand side we will use the following result which was 
proved by Durrett  (1979), Sect. 3). 

Lemma.  Suppose (a) p > l ,  E(X~)P<o% E(Xi-)2<o% and E X I = O  or (b) 
0 < p < 1 E(X-~)P < c~. I f  x,/(nll(P ̂  2) log n) ~ oO and y,  = r x n then there is a con- 
stant Kp SO that 

FY"( oo ) - F~"( x n) < 3 ( n K p/ yP) 1/'. 

for all n sufficiently large. 

To apply the lemma we take p < q, x n = a. x and r = ( x - e ) / x .  If q < 1 then 
p < 1 and we have 

F2.~_~)(oo)_F~.,~_~)(a.x)< 3 (_ nKp _]x/x-~ 
\aPn(x- -  e) p ] 

for all n sufficiently large. To apply the lemma when q > 1 we have to truncate 
the distribution. Let G be the distribution of X + - E X - { .  It is easy to see that 

Grnt oo~ _ G y . f x  _ n l:, Y + ~ > ~ y . -  EX~I y.--EX~ (X .  - -  n E X  +) n ,  , , t .  ~ ' ~ l , = ~ .  (oo)--G. 

>>= Frn "( oO ) - F~"(x.). 

Applying the lemma now to G gives that if 6 > 0 we have that 

(_ nKp _]x(1-~)/(~-~) 
Ga"(~-~)(oo) - Ga"(~-~)(a n x(1 - 6)) < 3 \aVn(X _ e)p ] 

for all n sufficiently large. Combining this with the inequalities above shows 
that if q > 1, p < q, and 6 > 0 then 

(_ nK;  .f(1-~)l~-~ Fn ~"(x- ~)( oo ) - F ""(x- ~)(a n x) < 3 \aPn(x _ e) p (1) 

for all n sufficiently large. Since this result is weaker than the conclusion we 
have in the case q < 1, (1) also holds in that case. 

To complete the proof  at this point we want to show that there is a p < q  
and 6 > 0 so that 

(_ nKp ]x,l-6)/x-e 
3m" \aP(x_e)p ! ~0 .  
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To do this we need an expression for a n. Now L is a slowly varying 
function so from Feller (1971, p. 277) we have that if r > q  then (1 - F ( x ) ) > 2 x  -~ 
for all x sufficiently large 

2 1/r 1/r c, >=_l/r 
an > cn(1 - F(a,)) cn " 

Using this inequality gives that rn n times the right hand side of (1) is 

( n K p  ]x(1-~)/x-~ px(1-~) 
< \ ( x -  ~)P / "mn/'c"~(x- ~) " 

Now since e > 0 we can pick 6 > 0 and r > q > p so that p x(1 - 6)/r(x - e) = p > 1. 
If we do this and take logarithms we have 

log E(tl,(a n x, or); M,  < an(x - e)) 

X(1 6) [ nKp \ 
< x - e  l o g [ ~ ) + n l o g m - p l o g %  (2) 

Now log(cn/c" 1)~logm and p > l  so the right hand side of (2)-- , -0o.  This 
shows that 

E(tl,(a,x, 0o; m n < a n ( x - ~ ) ) ~ O  

which proves the desired result. 

4. The last step in the proof  is to show that if l o g ( -  x) F(x)--,O as x ~ 0 o  
then 

l iminf  P ( L , > a , x )  _>1. (3) 
n~ oo P ( M ,  > an(x + e)) - 

Let In, J n be defined so that X r , , j = M  .. From the definition of M n we know 
that this particle has at least one descendant alive at time n. Let )~1, . . . ,X ,  be 
the displacements experienced by his ancestors who were alive at times 1, ..., n, 
and let P(x)=FY(x) /FY(0o) .  Now ~ I - - - M ,  and the 2i ,  i + I  n are independent 
and have distribution pM~ so to prove (3) it suffices to show 

To do this we observe 

Pff"(- a. e)--,O. 

F.~~ ~) <=F~ a. ~)+ P(M. <=0) 

and P ( M , < O ) ~ O  so it suffices to show that P ~  or that if S o is a 
random walk which takes steps with distribution F ~ then S,/a,--*O in probabili- 
ty. 

By the degenerate convergence criterion (see [8], p. 124) this occurs if and 
only if 

(i) n F ~  for all e > 0  
0 

(ii) na~ 1 ~ x Z d f ~  and 
--an 
0 

(iii) na21 ~ x d F ~  
- - a  n 
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To check these conditions we begin by observing that 

nffO(_a.e)=" n e).log(a.e)ffO(_a.~). 
logta. 

Now from computat ions above we have that if r > q, a. > c 1/r so if we let c o -- 1 
then 

l o g ~ + r  -1 ~ log(ck/ck-i) 
log m log(a, e) > log e + r= i log c. = k= 1 ~ - -  

n /'/ /7 r 

By our assumption we have log(a.e)ff~ so this shows condition (i) is 
satisfied. 

To show that (ii) and (iii) are satisfied we observe that 

0 0 o 
na; 2 ~ xZdF~ < - n a ;  2 ~ 2xff~ 1 ~ F~ 

- - a n  - -an  - - a n  

and the last expression is also an upper bound for the negative of the ex- 
pression in (iii) so it suffices to show that the right hand side of the last 
inequality converges to O. To do this we write the integral as 

_ a l l 2  
n o 

2na~ 1 ~ ff~ ~ ff~176 
- - a n  - - a l / 2  

n 

The first term ~ 0  by the computat ion used to prove (i). The second term ~ 0  
since a.--+ ~ exponentially rapidly. 
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