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ABSTRACT
Historically, linkage mapping populations have consisted of large, randomly selected samples of progeny

from a given pedigree or cell lines from a panel of radiation hybrids. We demonstrate that, to construct
a map with high genome-wide marker density, it is neither necessary nor desirable to genotype all markers
in every individual of a large mapping population. Instead, a reduced sample of individuals bearing
complementary recombinational or radiation-induced breakpoints may be selected for genotyping subse-
quent markers from a large, but sparsely genotyped, mapping population. Choosing such a sample can
be reduced to a discrete stochastic optimization problem for which the goal is a sample with breakpoints
spaced evenly throughout the genome. We have developed several different methods for selecting such
samples and have evaluated their performance on simulated and actual mapping populations, including
the Lister and Dean Arabidopsis thaliana recombinant inbred population and the GeneBridge 4 human
radiation hybrid panel. Our methods quickly and consistently find much-reduced samples with map
resolution approaching that of the larger populations from which they are derived. This approach, which
we have termed selective mapping, can facilitate the production of high-quality, high-density genome-wide
linkage maps.

SINCE its inception in the early decades of this cen- gained from culling relatively uninformative genotypes,
a selective sampling approach is highly desirable. Totury, genetic linkage mapping has been based on

random sampling of individuals from large recombinant that end, we have developed computational methods
for finding good mapping samples and have tested thepopulations (F2’s, doubled haploids, etc.) and, more re-

cently, from panels of radiation hybrid cell lines. A ran- application of these methods to several widely used map-
ping populations, including a set of Arabidopsis thalianadom sampling approach provides a means of mapping

with little prior knowledge about each individual. How- recombinant inbred lines (Lister and Dean 1993) and
the GeneBridge 4 human radiation hybrid panel (Gya-ever, large samples of recombinational crossover sites

or radiation-induced fragmentation sites, collectively re- pay et al. 1996).
A two-phase mapping approach: We propose thatferred to as breakpoints, can only be obtained by genotyp-

there be two experimental phases in the constructioning large numbers of individuals.
of a high-density genetic map: the first is to constructSince individuals differ in the number and distribu-
a high-confidence framework and the second is to addtion of breakpoints, different combinations of individu-
new markers to this framework. This two-phased strategyals complement one another to varying degrees in the
allows many markers to be placed on a well-measuredorder and position information they provide. In princi-
map with a minimum of genotyping and avoids theple, with prior knowledge of the number and position
loss in map resolution that would result from arbitrarilyof breakpoints in a mapping population, it should be
shrinking mapping population size. We have dubbedpossible to select a sample of individuals with a more
this strategy selective mapping. Similar strategies havedesirable distribution of breakpoint sites than is likely
been proposed for determining the linkage relation-in a random sample of the same size. (We discuss some
ships between markers and phenotypic variants (e.g.,possible measures of “desirability” in what follows.)
Paterson et al. 1991; Darvasi 1997) and selective geno-Given the magnitude of current research efforts in the
typing of human pedigrees has been employed to maparea of linkage mapping (e.g., Wang et al. 1998), and
markers already known to be in a particular regionthe potential savings in throughput and expense to be
(Fain et al. 1996). However, we are aware of no previous
application of these ideas to whole-genome mapping of
molecular markers.
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tion are located using a limited number of the available
markers, which we refer to as the framework markers.
Preferably, these markers are chosen on the basis of
prior knowledge concerning their even distribution
throughout the genome, as measured by breakpoint
density. The map constructed in this first phase, in
which the framework markers are placed confidently
and precisely, is referred to as the framework map. This
concept has been modified somewhat from that of
Keats et al. (1991). In the second phase, the genotypes
for all subsequent markers are scored in a small sample
of individuals that have been selected on the basis of
the information obtained during the first phase. The
data obtained in this second phase allow the mapping
of new markers relative to the fixed framework. We Figure 1.—The concept of a bin. A bin is the interval
have recently developed methods of analysis designed between the most closely adjacent breakpoints in the sample
specifically to accommodate selected samples (D. G. under consideration. This schematic shows that while deleting

one or more individuals may result in there being fewer bins,Brown and T. J. Vision, unpublished results). Conven-
this need not result in an increased maximum bin length.tional mapping software packages may also be modified
Boundaries between shaded and unshaded areas representfor this task. breakpoints. Bin lengths are drawn to scale. Individuals are

Map resolution: A major concern raised by selective assumed to be haploid. (A) The inclusion of all three individu-
mapping is how much of a cost one must pay in map als breaks the interval into four unequal length bins. (B)

Removing the third individual causes the loss of the smallestresolution in return for the benefit of genotyping mark-
bin but the maximum bin length remains unchanged.ers on only a subset of the mapping population. To

answer this question, and to explore ways of minimizing
this sacrifice, it is necessary to precisely define map

bin length (ABL), the sum of the squares of the binresolution.
lengths (SSBL), and the maximum bin length (MBL).We first define a bin to be an interval along a linkage

The ABL is easily minimized. It is equal to the sumgroup within which no breakpoints occur among any
of all bin lengths (the genome length) divided by themembers of a given set of individuals but which is
number of bins. Since the first of these is constant, thebounded by such breakpoints in at least one individual
function is minimized by maximizing the number of(or by the end of a linkage group; see Figure 1). Bins
bins. Thus, the sample of k individuals out of a mappingare the smallest unit of resolution in a genetic map; two
population of size n that minimizes the ABL consists ofor more loci within a single bin cannot be ordered
the k individuals with the most breakpoints, assumingrelative to one another without supplementary informa-
all breakpoints are at unique positions. Unfortunately,tion. This limit to resolution is a very real problem for
this sample may contain a small number of very longa high-density map. Ben-Dor and Chor (1997) note
bins, resulting in a considerable fraction of markers be-that it is currently impractical to construct a mapping
ing coarsely mapped. Since this is undesirable, we sug-population with sufficient breakpoint density, even for
gest that it is preferable to minimize one of the alterna-a radiation hybrid panel, that the relative order may be
tive statistics: either the SSBL or the MBL.resolved for every triplet of linked markers when the

Minimizing the SSBL is equivalent to minimizing thenumber of markers is much greater than 100.
expected length of the bin containing a marker chosenWe define the map resolution for a given set of individu-
uniformly at random from the whole genome. To seeals to be the set of the lengths of the bins in that set of
this, consider a genome of length L, divided into binsindividuals. Assuming that the location of each break-
of length l1, . . . lm. A uniformly chosen marker has proba-point is unique, and that no more than one population
bility p1 5 l1/L to be in the first bin, p2 5 l2/L to be inmember has zero breakpoints, different samples of the
the second, and so on. The expected length of the binpopulation will also differ in the distribution of bin
containing a uniformly chosen marker is Rm

i51 pili 5 (1/L)boundaries and bin lengths. By selecting a collection of
Rm

i51 l 2
i . Since L is constant, the expected bin length isindividuals with optimal (or near optimal) map resolu-

directly proportional to the SSBL. We note that minimiz-tion for a given size, we aim to place markers with greater
ing the SSBL is not the same as minimizing the varianceprecision in the second phase of selective mapping than
of the bin lengths. While the two functions are similar,would likely happen using a random sample of the same
the SSBL implicitly takes into account the number ofsize from the same mapping population.
bins. It can be thought of as a single statistic incorporat-Evaluation statistics: The observed distribution of bin
ing information about both the variance and the meanlengths, and thus the resolution of a genetic map, may
of the bin length distribution.be characterized by many different evaluation statistics.

Three measures that we discuss here are the average The MBL provides an upper bound to the length of
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the longest bin in the genome, which may be an attrac- tial functions for protein folding (e.g., Crippen 1991)
and in the design of gene expression experiments (Karptive prospect to some investigators. On the other hand,

we have found that minimizing SSBL maximizes the et al. 1999), among other applications. In addition to
these tools, we have also evaluated the utility of a clean-genome-wide accuracy and precision in marker place-

ment (D. G. Brown and T. J. Vision, unpublished re- up procedure designed to ensure that each member
of the chosen sample contributes to the value of thesults). We feel that both the MBL and the SSBL are

legitimate as minimization goals. Furthermore, they are objective function.
Greedy algorithms: Greedy algorithms tend to be fastclosely correlated among samples.

and to give satisfactory solutions, but can only guarantee
to find a local optimum. The simplest formulation of

METHODS AND RESULTS
the greedy algorithm is as follows. To construct a sample
of size k, start with an empty sample. Then, until theWe first consider an idealized case, in which the loca-

tions of the breakpoints are exactly known. We are given desired sample size is reached, find the unchosen popu-
lation member that, when added to the current sample,a population P with n members, which we label as P 5

{1, 2, . . ., n}, and seek the best sample subset of the most improves our objective function. The underlying
hope is that these k good choices will combine to givepopulation for a given size k.

We cannot consider all (n
k) possible samples, since this a sample that is good overall (Nemhauser and Wolsey

1988, p. 393). An alternative strategy is to start withnumber is prohibitively large for realistic values of n
[e.g., (100

30 ) 5 1026]. Instead, we have considered a number the entire population as the sample, and at each step,
remove the member from it that would have the leastof naive heuristics, which turn out to perform rather

poorly, and have developed much more desirable algo- effect on the objective function, until the sample is of
the desired size. We did not employ this strategy becauserithms using ideas from the field of discrete optimiza-

tion. it is computationally very expensive for large popula-
tions.To evaluate the quality of a possible sample, we order

all of the breakpoints in the members of the sample One can avoid focusing on a single local optimum
by incorporating a limited element of randomness intoand compute the MBL, that is, the longest distance

between consecutive breakpoints (including the ends the choice of each member of the sample set. To imple-
ment a randomized greedy algorithm, choose the nextof linkage groups). This statistic is our objective function;

for each sample size k, we seek the population sample sample member uniformly at random from the r choices
that would most improve the objective function for someof that size that minimizes the objective function. Later,

we consider data from real populations, where we do small value of r (e.g., 3 or 5; Resende 1998). Repeat this
a large number of times, and choose the best samplenot know the exact sites of the breakpoints. For such

cases, we will seek a sample that minimizes a slightly set found.
To further improve upon this scheme, we have consid-modified objective function.

Let the performance ratio of a sample be the ratio of the ered a mixed greedy algorithm that sequentially employs
two different objective functions. To build a mixedobjective function value for the sample to the objective

function value for the population as a whole. Clearly, greedy sample of size k, first build a sample S1 of size
k/2 by performing the greedy algorithm with the SSBLthe best possible performance ratio is 1.0, and the per-

formance ratios of all algorithms will approach 1.0 from objective function. After k/2 selections, switch to the
greedy algorithm to minimize objective function MBL,above as k approaches n.

Naive algorithms: One naive algorithm is to generate augmenting S1 until a sample S of size k is obtained.
The reasoning behind this approach is that minimizinga large number of random samples of size k and select

the generated sample with minimum objective function the first objective function forces all bins to be small,
rather than myopically focusing on the largest bin. Thus,value. A less naive algorithm is to choose the sample that

consists of the k individuals having the most break- upon switching to the MBL objective function, one has
a better starting point than if one had begun with thepoints. As discussed above, this latter sample is guaran-

teed to have the smallest possible ABL for a given k. MBL objective function initially. We have considered a
randomized version of this algorithm where the halfHowever, it may be far from optimal at minimizing the

MBL or SSBL. sample S1 is produced by a randomized greedy proce-
dure and the augmentation to the full sample is by aPreferred algorithms: In addition to evaluating the

performance of these naive algorithms, we have made nonrandomized greedy algorithm. Since we have found
that this randomized mixed greedy algorithm consis-use of more sophisticated tools, including greedy algo-

rithms, integer programming, and linear programming tently outperforms simpler (nonrandomized or non-
mixed) greedy algorithms both in simulations and inwith randomized rounding. Neither greedy algorithms

nor mathematical programming are new to biological real data, we only report results for the randomized
mixed greedy algorithm in our results on the MBL. Weapplications. Greedy algorithms have been used for

DNA sequence assembly (e.g., Staden 1979), while math- also report results using an unmixed randomized greedy
algorithm to optimize SSBL alone.ematical programming has been used to design poten-
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Integer linear programming: Integer linear program- corresponding to the midpoint of the range (Nem-
hauser and Wolsey 1988, p. 127).ming is an alternative solution method that has the

Unfortunately, integer programs can be quite slow toadvantage of finding the optimal sample of size k. How-
solve, and their solution time increases quite dramati-ever, it requires a prohibitive amount of computation
cally as their size increases (Nemhauser and Wolseyfor a large population.
1988, p. 125). In this case, the solution time dependsLet the objective function be MBL and consider the
primarily on the population size. While the optimalpopulation P 5 {1, . . ., n}. To each member i of P, assign
threshold, and its associated sample, can be calculateda decision variable yi, where yi 5 1 if member i is included
for reasonably small, simulated data, this is not so forin our sample, and yi 5 0 otherwise. The constraints on
moderate to large mapping populations. Thus, we havethe variables model the requirements of the sample and
employed integer programming primarily to evaluatemust be linear constraints in the decision variables. The
the performance of alternative algorithms, none offirst constraint on the yi’s is that oiyi 5 k, requiring that
which can guarantee an optimal sample.a sample of size k must be chosen. To formulate the

Linear programming with randomized rounding: Linearsecond set of constraints, consider an objective function
programming, another form of mathematical program-value B and suppose that it is possible to find a sample
ming, provides a common way to work around the com-of size k that achieves this value. In this sample, the
putational intractability of integer programming. Onelongest distance between consecutive breakpoints is less
“relaxes” the integer programming requirement thatthan or equal to B. To encode this into a finite number
the yi variables are 0 or 1 and simply requires that theof constraints, we note that the distance between any
yi be in the closed interval from 0 to 1. One then obtainsbreakpoint in the entire population and the next
solutions that may fractionally choose population mem-breakpoint in the sample is less than or equal to B,
bers, with the sum of the fractions still equal to k. Forsince each unchosen breakpoint is between two chosen
a given threshold B, we consider the following linearbreakpoints, which we know are separated by a distance
program, which we call LPB:less than or equal to B. For each breakpoint j in any of

the members of the population, let Cj,B be the set of o
i
yi 5 k; (4)

population members i that have a breakpoint after j
and within distance B of it. Then, for each breakpoint o

iPCj,B

yi $ 1, for each breakpoint j; (5)
j in the entire population, at least one member of Cj,B

must have been chosen. For each breakpoint j, this 0 # yi # 1, for all i 5 1 . . . n. (6)
requirement can be modeled by adding to the integer

These linear programs, without the integer require-program the constraint oiPCj,B yi $ 1. Thus, there is a
ment on the yi, are much easier to solve (Chvátal 1983)sample of size k with objective function value less than
and assignments to the yi variables that satisfy theseor equal to B exactly when there is a solution to the
constraints are still valuable despite being potentiallyfollowing set of constraints, which is the integer program
fractional. For example, they allow us to judge the qual-corresponding to distance B, or IPB:
ity of a given sample. Let B *

LP be the smallest value of B
for which LPB is feasible. Then B *

LP # B *, since if y iso
i
yi 5 k; (1)

the 0–1 assignment that shows that IPB*. is feasible, then
y is also a feasible assignment for LPB*. Suppose, then,o

iPCj,B

yi $ 1, for each breakpoint j; (2)
we find a sample S with objective function value BS,
which is close to B *

LP. Then B * # BS, since B * is the bestyi P {0, 1}, for each i 5 1, . . . , n. (3)
possible value. So B *

LP # B* # BS, and if BS is close to
We say that a set of constraints is feasible if it can be B *

LP, then it must also be close to B *. Hence, the linear
satisfied by an assignment to the yi decision variables program gives a lower bound on the optimal objective
(called a feasible solution); otherwise it is infeasible. One function for the integer program.
seeks B *, the minimum possible value of B for which In addition to obtaining lower bounds on B * with the
IPB is feasible; this is the best objective function value linear programs, one can also use feasible yi assignments
that can be attained for sample size k. An optimal sam- to the linear programs to select actual samples. Each of
ple, then, consists of the k population members for the yi will range from zero to one. If we treat yi as the
which yi 5 1 is a feasible solution to IPB. Note that there probability with which we choose to include population
may be multiple feasible solutions for a given feasible member i, and we make these choices independently,
set of constraints. then the expected sample size is k. Intuitively, this “ran-

One can obtain the value of B * solving a limited num- domized rounding” scheme takes advantage of the in-
ber of integer programs using a bisection search strat- formation in the yi. If yi is near one, one is likely to
egy. To do this, one maintains a range of values in which include member i; if it is near zero, it will probably not
B * may fall and cuts the range in half at each step based be included in our sample (Raghavan and Thompson

1987). If the sample chosen is smaller than k, augmenton the feasibility or infeasibilty of the integer program
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it greedily until it is of size k; if too large, remove the 5 min and was almost entirely devoted to solving the
linear programs.sample members whose deletion has the least impact

on the objective function until the sample is of size k. The results are shown in Figure 2A. The figure shows,
for several algorithms, the mean performance ratio (theRepeat the process many times and choose the best

sample set found. MBL of the sample divided by the MBL of the entire
population) for the samples found of a given size. WeInteger and linear programs designed to minimize

SSBL, as opposed to MBL, are too computationally in- also computed the optimal samples of each size using
integer programming. The randomized mixed greedytensive to be practical even for moderately sized data

sets. Therefore, we report only mathematical program- and linear programming with randomized rounding so-
lutions were nearly indistinguishable from one anotherming results for the MBL objective function.

Post-selection clean-up: In optimizing the MBL, it is often and were extremely close in MBL to the optimal samples
found by integer programming.possible to improve the samples chosen by the greedy

and randomized rounding algorithms described above On the other hand, the two naive algorithms (choos-
ing the best of 50 random samples and choosing theby adding a clean-up routine. The longest interbreakpoint

interval of a given sample is defined by only two sample sample containing the most breakpoints) required sam-
ples approximately twice as large, or larger, than wouldmembers: the member that includes the first breakpoint

of that interval and the member that includes the sec- be optimal for a given performance ratio. For example,
the mean performance ratio of the samples from theond breakpoint. Taking advantage of this fact, imple-

ment a clean-up routine by looking at a provisionally randomized mixed greedy algorithm of size 25 was 1.27;
this performance ratio was not achieved until size 52selected sample, in the order in which the individuals

were added, and removing individuals whose deletion when the best of 50 random samples was selected and
until size 68 when the population members with thedoes not increase the maximum bin length. Then restart

the greedy algorithm and augment the now incomplete most breakpoints were selected. We examined whether
choosing the best out of a larger set of random samplessample until it reaches size k. Repeat this process until

removing any single member from the sample would (1000, instead of 50) made a qualitative difference to
this conclusion and found that it did not (results notincrease the MBL. In the experiments we report below,

the randomized mixed greedy and randomized round- shown). Figure 2A also shows the average, as opposed
to the best, performance ratio among 100 random sam-ing algorithms both include this clean-up routine.
ples. If a researcher were to randomly cull a population
comparable to this one, for whatever reason, this is the

Simulated populations with exactly specified breakpoints
sacrifice in mapping resolution that would result. As
can be seen from the comparison of the average and theWe evaluated the performance of our sample selec-

tion algorithms on simulated data with exactly specified best random samples, the variability among the random
samples was small compared to the distance betweenbreakpoints. We looked for the minimum sample sizes at

which these algorithms found samples whose objective these samples and those selected by the more sophisti-
cated algorithms.function values were close to the objective function

value for the full population. We then chose samples The addition of the clean-up routine made a substan-
tial contribution to the quality of the samples chosen,of constant size from populations of increasing size.

This was done with the twofold aim of evaluating the particularly for the randomized rounding routine. The
cleaned randomized rounding samples had a perfor-sensitivity of algorithm performance to population size

and providing some guidance as to how large a popula- mance ratio 12.6% closer to 1.0 than uncleaned sam-
ples, when samples of all sizes were considered. Wetion size should be used in constructing a framework

map. All of our test codes were implemented in Matlab also found that, in the absence of the clean-up routine,
samples chosen by randomized rounding had signifi-5.3 (Mathworks, Natick, MA) and run on a Sun Ultra

Sparc 10 workstation. Our linear and integer programs cantly higher MBL than samples chosen by the random-
ized mixed greedy algorithm. When the clean-up rou-were solved with CPLEX 4.0 (CPLEX Optimization, In-

cline Village, NV), an industrial mathematical program- tine was added, the performance ratios of samples
chosen by these two algorithms became nearly indistin-ming package.

Fixed population size with increasing sample size: In guishable. While the clean-up routine was appended to
the end of these two algorithms and not the others, weour first set of tests, we simulated 10 F1 recombinant

populations of 100 haploid organisms with a genome found that this difference was not wholly responsible
for the striking separation between the two classes oflength of 1000 cM. Breakpoint sites were generated by

simulating, for each organism, a homogeneous Poisson algorithms; the randomized rounding and randomized
mixed greedy selected samples had consistently lowerprocess with mean inter-breakpoint distance of 100 cM.

For all sample sizes, the randomized greedy algorithms performance ratios than samples chosen by the other
algorithms even in the absence of a clean-up routineran in less than 10 sec. The computation time for the

randomized rounding procedure was typically less than (results not shown).
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Figure 2.—Optimization for the maximum bin length in simulated populations with exact breakpoint placement. The haploid
F1 population size is 100 and the simulated map length is 1000 cM. (A) Shown are the average performance ratios, over 10
replicates, for samples of varying sizes chosen by each of six different algorithms. The performance ratio is defined as the ratio
of the maximum bin length in the selected sample relative to that for the population as a whole. (B) Shown are the maximum
bin lengths in samples of size 30 chosen from populations of variable size using several different algorithms. Plotted is the
maximum bin length value averaged over 50 simulated populations. Integer programming results are not shown. (3) Random-
mixed greedy; (1) randomized rounding; (e) most breakpoints; (h) best of 50 random samples; (n) average random sample;
(—, in A) the integer programming, or optimal, solution; (s, in B) the linear programming lower bound; and (d, in B) the
whole population. Note that the random-mixed greedy and randomized rounding solutions approach the optimal solution (in
A) or the lower bound (in B) and greatly outperform the alternative heuristic algorithms.

Increasing population size with fixed sample size: In ized mixed greedy and randomized rounding algo-
rithms performed quite well. In contrast, the best-of-50-the second set of simulations, we examined the effect

of increasing the size of the mapping population while random-sample algorithms selected samples of equally
poor quality at all population sizes. Interestingly, theholding the sample size fixed. Better samples potentially

exist within larger populations but, because the search algorithm that chose the population members with the
most breakpoints improved only slightly in performancespace expands rapidly with increasing population size,

it might be more challenging to find them. Further- as the population size increased.
The randomized rounding and randomized mixedmore, the map resolution of the best sample of a given

size may not increase as rapidly as that of the whole greedy algorithms improved in an absolute sense as the
population size increased; however, their performancepopulation. Thus, we desired to measure both the abso-

lute and relative map resolution as a function of popula- ratios slowly increased, as well. In other words, the MBL
of the whole population decreased faster than thetion size.

We simulated 50 haploid recombinant F1 populations MBL of selected samples of fixed size. The performance
ratio of the linear programming lower bound B *

LP alsoeach of sizes 50, 75, 100, 125, and 150, with genome
length 1000 cM, as before, and generated samples of increased (Figure 2B), suggesting that the randomized

rounding and randomized mixed greedy samples weresize 30 from each of these populations. The results are
shown in Figure 2B; the figure shows, for each popula- still close to optimal for their size.

The MBL of the population as a whole approximatelytion size, the MBL in samples generated by each of
the algorithms. Due to the computational speed of the halved as the population size doubled. (This can be

explained by noting that the entire population of Nrandomized greedy algorithm, we were able to select
samples of size 200 from populations as large as 500 in individuals is equivalent to a sample from a single homo-

geneous Poisson process with mean inter-event distanceonly a moderate amount of computer time. The linear
programming algorithm was practical for populations of 100/N cM). An important consequence of this non-

linear relationship between population size and mapof fewer than about 300. The integer program did not
converge within 24 hr for populations of size 125 and resolution is that, even in the absence of selected sam-

pling, improvements in map resolution become increas-150, so these results were not obtained; for clarity, the
integer programming results are not shown in Figure 2B. ingly more modest as the population size grows.

Optimizing the SSBL for simulated populations: WeAt all of the population sizes considered, the random-
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Figure 4.—Cumulative bin length distributions under dif-Figure 3.—Optimization for the sum of squares of bin
ferent sample selection algorithms. The haploid F1 populationlengths in simulated populations with exact breakpoint place-
size is 100 and the simulated map length is 1000 cM. Thement. The haploid F1 population size is 100 and the simulated
fraction of the genome found in bins of less than a given binmap length is 1000 cM. Shown are the performance ratios
length is shown for samples of size 30 found using four differ-for one replicate, in samples of varying size, chosen by four
ent sample selection methods and for the whole population.different algorithms. The performance ratio is defined as in
(d) Whole population; (,) random greedy (minimizing sumFigure 2. (3) Random greedy; (e) most breakpoints; (h)
of squares of bin lengths); (3) random mixed greedy (min-best of 50 random samples; (n) average random sample.
imizing maximum bin length); (e) most breakpoints (most
breakpoints (minimizing average bin length); (n) single ran-
dom sample.

also evaluated samples chosen solely to minimize SSBL
in a 100-member simulated population. Figure 3 shows
the result from this experiment, plotting the SSBL vs. at one extreme and that of a single random sample at

the other.the mapping population size for the best of 50 randomly
chosen samples of each size, the sample chosen to have Application to existing mapping populations: We ap-

plied these algorithms to a number of different existingthe most breakpoints, and the sample found by the
greedy randomized algorithm. (A mathematical pro- mapping populations. We report on these results in

detail for two populations constructed in very differentgramming formulation is computationally impractical
with this objective function.) The differences in sample ways. The first of these is a recombinant inbred (RI)

population derived from a cross between A. thalianaquality among the algorithms are not as pronounced
as for MBL, but it is still clear that the randomized ecotypes Columbia and Landsberg erecta (Lister and

Dean 1993; http://nasc.nott.ac.uk/RIdata). We ana-greedy samples are of higher quality than can be found
by naive methods. lyzed 101 lines scored for 261 of the identified frame-

work markers spaced at an average of 2.0 cM apart. TheWe were also interested in the distribution of the bin
lengths in samples chosen to minimize ABL, MBL, or total map length in this population is 513.1 cM. Since

there is a twofold expansion of crossover frequency asSSBL. Figure 4 shows the cumulative fraction of the
genome found in bins of various lengths for selected a result of the repeated selfing of these lines (Haldane

and Waddington 1931), the Arabidopsis RI populationsamples of size 30 chosen from the same 100-member
simulated population. For reference, the distribution is closely comparable to the simulated haploid recombi-

nant F1 population, for which the total map length wasfor the entire population is shown. Despite there being
many small bins in the sample containing the most 1000 cM. The second mapping population that we con-

sider in detail is the GeneBridge 4 radiation hybridbreakpoints, much of the genome is still represented
by large bins. The samples minimizing MBL and SSBL (RH) panel of 93 hamster cell lines, each retaining

about 32% of the human genome (Gyapay et al. 1996).concentrate more of the genome in small to moderate-
length bins. Unlike the MBL sample, the SSBL sample Due to several large gaps between the framework mark-

ers in the RH map, we divided the linkage groups withdoes not accumulate bins that are just shy of the maxi-
mum length. On the other hand, the SSBL sample does gaps of length greater than 25 centirays (cR), or a popu-

lation breakage frequency of 25%, into linkage groupshave a slightly longer maximum bin length than the MBL
sample. The ABL, MBL, and SSBL bin length distribu- within which all framework intervals were less than or

equal to 25 cR. This, in principle, makes bin lengthtions are clearly set off from that of the whole population
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estimation more precise. However, it does not preclude further modification to handle the imprecisely specified
breakpoints of the RI and RH data. For the randomizedthe occurrence of bins greater than 25 cR since bins

may span multiple framework intervals. We found in rounding algorithm, we treat a feasible set of yi variables
to a very closely related linear program as the probabilitysimulation experiments (results not shown) that intro-

ducing a small number of long (greater than 40 cM) that each population member is either rejected or ac-
cepted to the sample and then greedily adding to thegaps into a simulated framework map had only a small

effect on the ability of our algorithms to find samples sample until it is of full size. See appendix b for the
differences between the linear program solved in the exactwith small MBL. But there were many such gaps in the

human data set, and we chose to be conservative. In case and that needed for the stochastic case. Integer
programming is not appropriate in this case, as ourtotal, we analyzed 55 human linkage groups with a map

length of 10,866 cR. In addition to these, we analyzed previous integer programming model assumed knowl-
edge of exact breakpoint placement. We note that thea number of other published mapping data sets.

Unlike the simulated populations, in which break- linear programs solved in this case are much smaller
than for the exact case and can easily be solved forpoints could be precisely localized, the marker geno-

types in the real data sets allow us only to identify those populations of size greater than 300.
intervals bearing odd numbers of breakpoints. Although
unobserved breakpoints undoubtedly occur in the map-

Results for Arabidopsis, human, and other data sets
ping populations under consideration, they do not con-
tribute to our choice of a sample. For each observable For the Arabidopsis data (Figure 5A), we found that

the randomized mixed greedy and randomizedbreakpoint, we assume that there is exactly one break-
point uniformly distributed between the flanking mark- rounding algorithms both performed well, although not

as well as on simulated data, and they greatly outper-ers and that no breakpoints occur in intervals having
identical flanking markers. Further, we assume that the formed the naive algorithms. For example, the random-

ized mixed greedy algorithm found a sample of size 30sites of breakpoints are unique and independent of one
another. with performance ratio less than 1.3; to achieve the

same performance ratio with a sample containing thoseThis conforms to our earlier assumption that break-
point sites are generated by independent Poisson pro- lines with the most breakpoints required 45 individuals.

For samples of size 30, the randomized mixed greedycesses. It also assumes that map distances are additive,
which is ideally the case. Since nonadditivity of map and randomized rounding algorithms ran in less than

5 min. Much of this time was occupied in repeateddistances, and the related phenomenon whereby the
map length expands with the addition of new markers, evaluations of the objective function via simulation dur-

ing the greedy additions.are largely due to the use of an inappropriate mapping
function (Liu 1998) and/or the accumulation of geno- For the radiation hybrid data (Figure 5B), we found

that both the differences among the algorithms and thetyping errors (Lincoln and Lander 1992), sample se-
lection should be preceded by careful error checking improvements obtained by selective sampling were less

dramatic than for the recombinant inbred data. Whileand rigorous analysis of framework marker data.
Updating the algorithms: Given the uncertainty in the shape of the relationship between performance ratio

and minimum sample size was similar for both data sets,precise breakpoint location, we wish to minimize the
expectation of the MBL or SSBL, under the assumption the samples required to achieve a given performance

ratio were approximately 50% larger for the humanthat known breakpoints are uniformly and indepen-
dently distributed within framework intervals. A closed- data. In addition, the superiority of the randomized

mixed greedy and randomized rounding algorithms di-form formula for E (MBL) is not readily available. So,
to evaluate the MBL objective function, we generate minished as the performance ratio approached 1.0. Still,

for modest sizes, we did experience significant improve-100 replicates of the population in which all breakpoints
have been instantiated (i.e., randomly resolved to exact ments. A sample of size 47 was obtained by both the

greedy and linear programming algorithms with a per-sites). We compute the mean quality of our chosen
sample for these replicates using the same objective formance ratio less than 1.5. By comparison, the same-

sized sample containing those cell lines with the mostfunction as in the simulations described above, where
breakpoints were known with precision. For E(SSBL), visible breakpoints had a performance ratio greater

than 1.7.we have derived a closed-form solution given known
marker sites and a known number of breakpoints be- The superior performance of selective sampling in

the Arabidopsis population appears to be due to thetween consecutive markers. For a full derivation of
this formula, see appendix a. Accordingly, our mixed smaller number of breakpoints per individual. Compari-

sons of simulated data with comparable average break-greedy algorithm selects the first half of the sample
without the need to randomly resolve the breakpoint point densities (10 or 100 per individual) gave qualita-

tively the same results as the Arabidopsis and humanlocations many times over, thereby improving both the
accuracy and the speed of the algorithm. data, respectively (results not shown). That is, for the

higher breakpoint density, significantly larger sampleThe mathematical programming algorithms require
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Figure 5.—Analysis of existing mapping populations. Shown are the performance ratios (of maximum bin length) for samples
of varying size chosen by four different algorithms: (3) random-mixed greedy (minimizing maximum bin length); (1) randomized
rounding (minimizing maximum bin length); (e) most breakpoints; and (h) best of 50 random samples. (A) The Lister and
Dean Arabidopsis recombinant inbred (RI) population. Population size is 101 and map length is 513.1 cM. (B) The Genebridge
4 human radiation hybrid (RH) panel. Population size is 93 and map length is 10,866 cR.

sizes were required for a given performance ratio and much smaller sample can be selected for subsequent
the sizes needed to approach a performance ratio of mapping that very nearly minimizes the necessary sacri-
1.0 were similar for all of the algorithms, including the fice in map resolution. Two computationally efficient
naive ones. The explanation for this appears to be as algorithms have been found that are successful in find-
follows. Consider a long genome composed of some ing samples with small maximum bin length. The first is
number of short genomes concatenated end to end. a greedy algorithm that employs two objective functions
The breakpoint distributions in the short genomes are sequentially, first minimizing the sums of the squares
independent and the MBL of the long genome is the of the bin lengths and then minimizing the maximum
maximum of the MBL among the short genomes. For bin length. It also exploits randomness to search a large
any sample, the performance ratio for the long genome space of possible good samples. The second algorithm
will be the worst performance ratio achieved for any of involves linear programming with randomized round-
the short genomes. This will clearly be worse than the ing to convert fractional assignments into integral ones.
average performance ratio among the short genomes. Sample sets from both algorithms are improved by the
Hence, the gain to be realized by selective sampling for inclusion of a clean-up routine that disposes of members
MBL is diminished by increasing breakpoint density. that do not contribute to the quality of the sample and

Table 1 shows the results of selective mapping for greedily replaces them with other selections that do.
maximum bin size using 10 data sets, including the two The greedy and linear programming algorithms dramat-
described above. Samples were chosen, using several ically outperform more naive alternatives such as choos-
different algorithms to be approximately 30% the size ing the individuals with the most visible breakpoints or
of the base population. The randomized rounding and choosing the best of a collection of randomly generated
randomized mixed greedy algorithms performed com- samples. Furthermore, the linear programming and
parably to one another and outperformed the most greedy algorithms find samples that are within a few
breakpoints sample in all populations. For the random- percentage points of the optimal sample for a given
ized greedy algorithm, performance ratios ranged from size, as indicated by comparisons with the integer pro-
1.29 to 2.2. While maximum bin length was significantly gramming solution for simulated data. For an alterna-
correlated with genome length (for the randomized tive objective function, the sum of the squares of the bin
greedy algorithm, r 5 0.8, P , 0.005), performance lengths, the samples we find by using the randomized
ratio was not. greedy algorithm are also superior in map resolution

to random samples.
The radically different origins of the breakpoints in

DISCUSSION the various recombinant populations examined here
and the GeneBridge 4 human radiation hybrid panelWe have shown that, given genotypic data for a limited

number of markers in a large mapping population, a suggest that selective mapping is appropriate for a wide
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TABLE 1

Maximum bin size in samples from a variety of datasets

Population Sample Map Whole Random Random Most Random
Organism size size length population rounding greedy breaks sample

Arabidopsisa 101 30 510 4.5 5.9 5.8 8.0 10.3
Barleyb 150 46 1,100 4.8 8.7 8.8 10.5 13.7
Barleyc 73 22 1,000 8.0 14.9 14.3 17.3 24
Humand 93 28 10,900 15.4 21.8 20.7 23.8 38.4
Maizee 89 28 2,000 6.3 10.3 10.6 13.4 15.7
Mousef 94 28 1,400 5.9 11.8 11.4 15.1 18.3
Mousef 94 28 1,300 5.5 12.6 12.1 13.8 18.8
Riceg 98 28 1,200 4.8 9.5 9.3 12.8 13.6
Tomatoh 67 19 1,300 6.7 10.4 10.8 12.9 16.4
Zebrafishi 96 28 3,100 11.3 17.7 17.8 19.2 26.6

All distances are measured in centimorgans except for the human radiation hybrid panel, which is measured
in centirays.

a Lister and Dean (1993).
b Kleinhofs et al. (1993).
c Graner et al. (1994).
d Gyapay et al. (1996).
e Burr and Burr (1991).
f Blake et al. (1999).
g Taguchi-Shiobara et al. (1997).
h Tanksley et al. (1992).
i Postlethwaite et al. (1998).

variety of mapping populations. We have not analyzed and an incremental cost per genotype. With selective
mapping, the latter costs are reduced in direct propor-multigenerational pedigrees here, because of the added

complication due to breakpoints that are identical by tion to the reduction in the size of the mapping popula-
tion. For inherently serial genotyping methodologies,descent. But these could, in principle, be accommo-

dated. Our methodology does not require that any map- such as denaturing high-pressure liquid chromatogra-
phy (Underhill et al. 1997) or mass spectrometryping function be used to derive the framework map.

However, the assumptions made about breakpoint dis- (Griffin et al. 1997), there would also be a directly
proportional reduction in the time required to maptribution in the sample selection process are the same

as those underlying the Haldane mapping function each locus. Since mapping on the order of 5000 markers
currently requires tens to hundreds of thousands of(Haldane 1919). Under these assumptions, our meth-

odology can accommodate segregating populations dollars and may take several years for a moderately
equipped lab to complete, the potential savings fromwith unknown linkage phase (e.g., an F2) without further

modification. If the model is violated by the presence the application of selective mapping are considerable.
Rather than sacrificing map resolution, one could applyof interference, then fewer double recombinations

would be expected to occur between framework mark- selective mapping to a project with the aim of attaining
the finest map resolution possible given the resourcesers. As a consequence, the performance of the selection

algorithms may be somewhat improved. that are available by tuning the population size, sample
size, and framework density accordingly.On the basis of these results, we propose a two-phase

mapping strategy for projects in which a very large num- Clearly, it is desirable to have a framework map suffi-
ciently dense that one may catalog the locations of theber of markers are to be mapped on a single population.

In the first phase, the genotypes at a set of framework overwhelming majority of the breakpoints in the popula-
tion. But it would be counterproductive to make themarkers are scored in the full mapping population, and

a framework map is constructed from these data. In the framework so dense that only a small proportion of the
markers remain to be genotyped in the selected sample.second phase, markers are mapped using only a selected

subset of the population and positions are inferred rela- We propose the rule of thumb that, at the very least,
framework markers should be chosen so as to be evenlytive to the fixed framework map. By adopting this strat-

egy, a near-optimal balance may be reached between spaced at intervals of less than half the length that would
be tolerated as the maximum bin length. The rationalemapping precision and genotyping effort.

Practical considerations: The cost of genotyping is for this is that if two adjacent framework intervals each
contain one breakpoint, the distance between the twodependent upon laboratory methodology (Cotton

1996), but generally involves both a fixed cost per locus outer markers is an upper bound on the length of the
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TABLE 2 number of individuals allows for an extremely large
number of possible genotypic configurations. For aEffect of framework marker spacing on map
mapping population of n individuals, in which one canresolution of selected samples
distinguish x genotypes at each locus, there are xn possi-
ble genotypic configurations. For reasonable values ofMBL SSBL

Spacing n and x, the number of possible configurations is far
(cM) Perceived Actual Perceived Actual larger than can be expected to occur in an actual map-

1 7.8 (0.7) 7.9 (0.9) 3.9 (0.2) 3.9 (0.3) ping population (e.g., 230 . 1 3 109). However, the
2 8.1 (0.6) 8.1 (0.7) 4.0 (0.2) 4.0 (0.2) actual number of bins in a population is limited by the
3 8.6 (0.5) 8.6 (0.3) 4.0 (0.2) 4.0 (0.2) rarity of recombinational or radiation-induced break-
4 9.5 (0.4) 10.0 (1.1) 4.1 (0.2) 4.1 (0.2) points within each individual and will always be orders
5 9.2 (0.3) 9.7 (2.0) 4.1 (0.1) 4.2 (0.2)

of magnitude less than xn. It is governed both by the6 9.9 (0.2) 10.1 (0.7) 4.3 (0.1) 4.3 (0.2)
size of the population and the type (e.g., in an F2 popula-8 11.1 (0.2) 13.0 (1.5) 4.4 (0.2) 4.3 (0.2)
tion of size n, the expected number of bins is 2n 1 110 11.9 (0.3) 12.4 (0.8) 4.5 (0.1) 4.5 (0.2)

12 12.5 (0.3) 12.5 (1.8) 4.6 (0.1) 4.5 (0.3) for a 100-cM linkage group). We have found that multi-
15 13.0 (0.6) 14.4 (3.0) 4.7 (0.2) 4.7 (0.2) ple bins with identical or near-identical genotypic con-
20 14.0 (0.7) 14.1 (0.9) 5.0 (0.2) 4.8 (0.4) figurations only occur in very small mapping popula-
24 14.4 (0.8) 14.1 (2.5) 5.2 (0.2) 4.8 (0.3) tions and are not a major concern in practice (D. Brown
30 15.6 (0.4) 15.2 (3.1) 5.5 (0.2) 4.8 (0.3)

and T. Vision, unpublished results).
Mean and standard error (in parentheses) for samples of The problem of data analysis after the second round

30 from five simulated haploid F1 populations of size 100 with of genotyping is somewhat novel, in that all distance
genomes 600 cM long. Data for SSBL are divided by genome information is derived from the observed distances inlength and are thus expected bin size.

the framework map and potentially large numbers of
new markers, genotyped only in the selected sample,
are to be placed in ordered bins. We have developedlongest bin between them. If markers are spaced more

widely, then the algorithms described in this article may fast and robust methods, to be reported elsewhere, that
are appropriate to this analysis (D. Brown and T.perform poorly in finding a sample with a desirable

breakpoint distribution. Table 2 shows the results of Vision, unpublished results). Conventional mapping
software may also be modified to order new markerssimulations in which marker density was varied on popu-

lations with exactly specified breakpoints with simulated relative to the framework and to each other and to
measure distances relative to the fixed framework.genome length 600 cM, where samples were selected

on the basis of the visible marker genotypes. Measured A natural extension of selective mapping would be
to divide a very large population (of size much greaterby MBL, both actual and perceived resolution varies

roughly 2-fold between the highest (1 cM) and lowest than 100) into multiple samples, each containing a de-
sirable distribution of breakpoints for a particular chro-(30 cM) densities, while for SSBL, it varies about 1.5-fold

for perceived resolution and only 1.25-fold for actual mosome, or region of the genome. These samples may
be used to finely map a locus of particular interest afterresolution. Thus SSBL is more robust to framework

density, although it tends to overestimate the expected it has already been localized to a region by use of a
selected whole-genome sample (Fain et al. 1996). Thisbin length at sparse densities.

Investigators should also consider the base population extension would allow high-density mapping at fine res-
olution with only a moderate increase in experimentalsize and the intended sample size prior to undertaking a

high-density mapping experiment. The expectation of the effort over the use of a single genome-wide mapping
sample.MBL for the base population can be calculated a priori

from the formula E(MBL) ≈ L 3 ln(rn 1 z)/(rn 1 z), The authors discourage application of selective map-
ping by individual investigators to community mappingwhere L is the length of the genome in centimorgans

or centirays, r is the expected number of breakpoints projects, such as the interspecific mouse backcross maps
being coordinated by the Jackson Laboratory. Due toper individual based on the type of population under

consideration (e.g., r 5 2L/100 for an RI population the importance of monitoring data quality from differ-
ent laboratories and the difficulties inherent in mergingderived from an F2 cross by recurrent selfing), n is the

size of the base population, and z is the number of partial data sets, such projects require that genotyping
be done on a common set of individuals.chromosomes (which can be treated as if due to the

occurrence of z 2 1 uniformly distributed breakpoints; Software availability: While the greedy and linear pro-
gramming algorithms are nearly identical in perfor-Feller 1957).

A further issue in sample selection is the need to mance, the greedy algorithm has the advantage that it
does not require specialized linear programming soft-avoid a sample for which multiple bins cannot be distin-

guished by genotype. This situation would create ambi- ware to implement and can be easily adapted to the
SSBL objective function. On the basis of prototype Mat-guity in marker placement. In principle, even a small
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Wang, D. G., J. B. Fan, C. J. Siao, A. Berno, P. Young et al., intervals, we first consider the two-interval case, where
1998 Large-scale identification, mapping and genotyping of sin- M 5 (m1, m2) and C 5 (c1, c2).gle nucleotide polymorphisms in the human genome. Science

Proposition 2. In this case, F(M, C) 5 F(m1, c1) 1280: 1077–1082.
F(m2, c2) 1 2m1m2/[(c1 1 1)(c2 1 1)].Communicating editor: G. A. Churchill

Proof. The case when either c1 5 0 or c2 5 0 is straight-
forward, since we add the length of the empty frame-
work interval to the length of the first (respectively, last)

APPENDIX A: A CLOSED-FORM FORMULA bin in the other framework interval; for brevity, we omit
FOR THE EXPECTED SUM OF THE SQUARES it and assume both intervals have a nonzero number of

OF THE BIN LENGTHS breakpoints. Let X be the position of the last break-
point in the first interval and Y be the position of theThis section provides a closed-form formula for the
first breakpoint relative to the beginning of the secondexpected sum of the squares of the bin lengths, or
interval. These variables are independent in our proba-E(SSBL). We assume that we are given the number of
bilistic model. We expect that it is the bin between thesebreakpoints in each framework interval, over the whole
two breakpoints that may make the calculations difficult.sample, and given the lengths of the framework inter-
By analogy with the proof of Proposition 1, we see thatvals.

Let M 5 (m1, . . ., mn) be the real-valued vector of
F(M, C) 5 #

m1

0
#

m2

0
[F(x, c1 2 1) 1 F(m2 2 y, c2 2 1)

framework interval lengths, and let C 5 (c1, . . ., cn) be
the vector containing the number of breakpoints in 1 ((m1 2 x) 1 y) 2]p(y)p(x)dydx
each interval. Let I1 be the first interval, I2 the second,
and so on. For example, if M 5 (14, 20) and C 5 (2, 5 #

m1

0
#

m2

0 31 2x 2

c1 1 1
1 (m1 2 x)22 1 12(m2 2 y)2

c2 1 1
1 y2

2

3), there are two intervals. I1 has length 14 and two
breakpoints, and I2 has length 20 with three breakpoints. 1 2y(m1 2 x)4p(y)p(x)dydx
Finally, let F(M, C) be the expected value that we seek
under the hypothesis that the Ci breakpoints in interval 5 F(m1, c1) 1 F(m2, c2) 1 #

m1

0
#

m2

0
2y(m1 2 x)p(y)p(x)dydx.

Ii are independent and uniformly distributed across that
interval. We assume that the first and last markers are The last equality follows because each of the first two
also breakpoints. groups of terms depends only on one of the variables;

Proposition 1. If the genome consists of only one frame- when separated, these integrals are exactly analogous
work interval, of length M 5 m, C 5 c, then F(M, C) 5 to those from the proof for Proposition 1. After some
2m2/(c 1 2). simple calculus on the remaining integral, given that

Proof. By induction on c. The base case is if c 5 0; then the distribution of X has already been found and the
the only bin is the framework interval of length m, so F(m, distribution of Y is easily seen to be similar, we find that
c) 5 m2 5 2m2/(0 1 2). F(M, C) 5 F(m1, c1) 1 F(m2, c2) 1 2m1m2/[(c1 1 1)(c2 1

For the inductive case, suppose F(m, c9) 5 2m2/(c9 1 1)], as claimed.
2) for all c9 , c0. Consider F(m, c). We analyze this by A simple extension and symmetry argument shows
conditioning on the random variable X, which is the that, under the assumption that all framework intervals

(except possibly the first and last) contain breakpoints,position of the last breakpoint in the interval. Then we
see that the other c 2 1 breakpoints in the interval [0,
X] are distributed independently and uniformly, so the F(M, C) 5 o

i51...n

F(m2, ci) 1 o
i51...n21

2mimi11

(ci 1 1)(ci11 1 1)
.

expectation of the sum of the squares of their induced
bins is F(X, c 2 1) 5 2X 2/(c 1 1) by our inductive For framework intervals with no breakpoints, the cal-
hypothesis. The cumulative distribution function of X culations become a bit more tedious. Here, if ci 5 0,
is P(X # x) 5 (x/m)c, since if X # x, then all of the c there is a bin from the last breakpoint of Ii21, to the
uniform breakpoints occurred before x ; each of these first breakpoint of Ii11; the square of its length must be
c independent events has probability x/m. Its density properly added to the sum. Further computation shows
function is p(x) 5 cx c21/mc. By the definition of expecta- that we must only add the term 2mi21mi11/[(ci21 1 1)
tion, then, we see that (ci11 1 1)], which controls for the interaction between

intervals Ii21 and Ii11. This term is exactly analogous toF(m, c) 5 #
m

0
[(m 2 x)2 1 F(x, c 2 1)]p(x)dx

the one that computed the additional contribution of
the bin from x to y in the proof of proposition 2. We

5
c

mc #
m

0
[(m 2 x)2 1

2x2

c 1 1
]x c 21dx. must also still include the interaction terms between

intervals Ii21 and Ii and between Ii and Ii11, as before.
This reduces to m2 ((2c 1 2)/(c 1 1)(c 1 2)) 5 2m2/ We can assume that there are never consecutive

(c 1 2), as desired. framework intervals without breakpoints. Such intervals
could be combined into a larger single interval with noTo extend this to the case of multiple framework
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breakpoints, surrounded on both sides by nonempty consecutive breakpoints in the framework interval to be
less than B, we must find the minimum c such thatintervals. Hence, no further cases need be considered.
B . dj(log c 1 1⁄2/c) and attempt to place c breakpointsThe formula for F(M, C) is
into that framework interval.

One can easily find the optimal c for a given frame-F(M, C) 5 o
i51...n

2m2
i

ci 1 2
1 o

i51...n21

2mimi11

(ci 1 1)(ci11 1 1) work interval length dj and desired maximum length B
by, for example, Newton’s method. We have approxi-

1 o
i:1,i,n,ci50

2mi21mi11

(ci21 1 1)(ci11 1 1)
. mated c by 5dj/B 2 3, which is very close to the correct

value, is very quick to compute, and has given good
performance in our experiments. So our constraint for
this interval is RiPRj yi $ 5dj/B 2 3.

If the length of framework interval Ij is less than B,APPENDIX B: CHANGES TO THE LINEAR
we simply join consecutive intervals together, startingPROGRAMMING MODEL FOR THE CASE OF
with interval Ij, until we have a new interval of lengthINEXACTLY SPECIFIED BREAKPOINTS
B or longer. Call the resultant macrointerval Mj, with

This section considers the somewhat different linear length d 9j ; suppose it contains the intervals Ij through
program used for the experiments with data from real I9j . In this macrointerval, we analogously require that
populations. Here, as in appendix a, we do not know there are 5d 9j /B 2 3 breakpoints. The breakpoints in
the exact site of the breakpoints, but only the number these short intervals provide endpoints for the bins that
of breakpoints in a particular framework interval, so end in subsequent, possibly longer intervals, and the
our earlier linear program, which specified exactly how creation of these macrointervals allows us to incorporate
far each breakpoint was from its next neighbor, is no these breakpoints into the linear program; otherwise,
longer appropriate. the threshold would only be relevant for longer inter-

We again consider a threshold approach. We want to vals.
model this new problem with a family of linear pro- Our resultant linear program, for a given threshold
grams, where each linear program LP9

B is indexed by a B, is the following, which we call LP9B:
threshold value B. As before, we seek a modeling strat-

o
i

yi 5 k; (7)egy where LP9
B is feasible when there exists a sample S

with expected maximum bin length not much larger
o
iPRj

yi $ 5dj /B 2 3, for each interval Ij such that dj . B; (8)than B.
Again, we have decision variables yi for every popula-

o
k5j...j9

o
iPRk

yi $ 5d9j /B 2 3, for each macrointerval Mj; (9)tion member i 5 1, . . . n. Let Ij be the interval between
the jth framework marker and the ( j 1 1)st marker,

0 # yi # 1, for all i 5 1 . . . n. (10)with length dj. For each framework interval Ij, let Rj be
the set of all population members that have a breakpoint As before, there is a threshold B * for which LPB * is
in that interval. As before, we have a constraint Ri yi 5 feasible, but LPB is infeasible for any B , B *; with a very
k, which ensures that we choose only k population mem- small amount of computation, we can compute the value
bers. of B * to a high degree of accuracy.

Consider a given framework interval Ij of distance dj, However, a feasible solution to these constraints, even
and suppose dj . B. Suppose we want to bound the where all yi are 0 or 1, does not guarantee that there
expected length of the maximum bin inside Ij. A stan- exists a sample with expected objective function value
dard probability result shows that if there are c indepen- less than B. For example, while two consecutive intervals
dent, uniformly distributed breakpoints in this interval, may each have expected maximum bin length less than
then the expected maximum length between them is B, the global expectation may be greater than B. Still,
very close to dj(log c 1 1⁄2)/c (Feller 1957). Hence, feasible assignments to the decision variables do ulti-

mately perform well with randomized rounding.if we want the expected maximum distance between


