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Stochastic Spatial Models∗

Rick Durrett†

Abstract. In the models we will consider, space is represented by a grid of sites that can be in one
of a finite number of states and that change at rates that depend on the states of a finite
number of sites. Our main aim here is to explain an idea of Durrett and Levin (1994): the
behavior of these models can be predicted from the properties of the mean field ODE, i.e.,
the equations for the densities of the various types that result from pretending that all
sites are always independent. We will illustrate this picture through a discussion of eight
families of examples from statistical mechanics, genetics, population biology, epidemiology,
and ecology. Some of our findings are only conjectures based on simulation, but in a
number of cases we are able to prove results for systems with “fast stirring” by exploiting
connections between the spatial model and an associated reaction diffusion equation.

Key words. interacting particle system, contact process, stepping stone model, epidemics, predator-
prey system, evolutionary games, reaction-diffusion equations

AMS subject classifications. Primary, 60K35; Secondary, 34C05, 92D40

PII. S0036144599354707

In the beginning of the theory of ecology, it was natural to consider interactions as
happening in a group of N individuals with no spatial structure in order to reduce
the system (in the N → ∞ limit) to an ordinary differential equation (ODE). This
approach, which we will call a mean field analysis, is adequate for many problems,
but in some situations the answers that it gives are different from those that come
from models with a collection of individuals that are distributed in space and interact
only with nearby neighbors. The notion that explicit spatial locations for individuals
may change the answers to some questions in biology led a number of individuals to
consider spatially explicit models of many different types.

With modern computers it is possible to simulate very complicated models that
keep track of an individual’s exact location in (continuous) space as well as a large
amount of information about that individual. One example of this approach is Pacala’s
forest model SORTIE; see Pacala, Canham, and Silander (1993) and Pacala et al.
(1996). In contrast, the models we discuss will follow a minimalist approach. First,
we will abandon continuous space for a grid, the d-dimensional integer lattice Zd.
Second, we declare that each site x can be in one of a small finite set of states S, and
that it changes its state at a rate that depends upon the states of a finite number of
neighboring sites. In symbols, the state of the system at time t is described by giving
the state of each site ξt(x), so the state of the system is a function ξt : Zd → S and
the rate at which the state at x changes to j at time t is cj(x, ξt).

The models we will discuss are too simple to be used for making quantitative pre-
dictions but have proved useful for answering the qualitative questions in a variety of

∗Received by the editors January 7, 1999; accepted for publication (in revised form) April 18,
1999; published electronically October 20, 1999.

http://www.siam.org/journals/sirev/41-4/35470.html
†Cornell University, Department of Mathematics, 523 Malott Hall, Ithaca, NY 14853 (rtd1@

cornell.edu).

677

D
ow

nl
oa

de
d 

06
/0

6/
15

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



678 RICK DURRETT

different settings. To illustrate the breadth of possible applications, we will introduce
eight examples from statistical mechanics, genetics, population biology, epidemiology,
and ecology. Our first example has the longest and most distinguished history.

Example 1. Ising model. In this model, we think of the sites in the three-dimen-
sional lattice as atoms in a piece of iron. To avoid the headaches of considering a
two-dimensional space of possible spin directions, we declare that each site is in states
+1 (spin up) or −1 (spin down). To prepare for our treatment of later models, we
will begin not with the Ising model but with the earlier “mean molecular field theory”
Weiss put forward in 1907 to explain ferromagnetism. In what would now be called a
metapopulation model (see, e.g., Hanski and Gilpin (1996) and Hanski (1998)), Weiss
had n sites without any spatial structure. Each spin interacted with the average of
the other spins resulting in the following equilibrium probability distribution:

(1) exp


β

n∑
i=1

ξ(i) · 1
n

n∑
j=1

ξ(j)


 · 1

Z(β, n)
,

where Z(β, n) is a constant chosen to make the sum over configurations equal to 1.
If we let N+ be the number of + spins and N− = n−N+ be the number of − spins,
the above is equal to

(2) exp
(
β

n
(N+N+ +N−N− − 2N+N−)

)
· 1
Z(β, n)

.

Calculations with the binomial distribution and Stirling’s formula show that if
β ≤ βc = 1/2 the exponential factor has very little effect, and in the limit the spins
are independent {−1,+1}-valued random variables with mean 0, a measure we will
denote by ν0. On the other hand, if β > βc the limiting spin distribution is a mixture
(1/2)νρ + (1/2)ν−ρ, where the “mean magnetization” ρ(β) is the solution of

(3) ρ = tanh(2βρ).

For more on this, see section IV.4 of Ellis (1985). A little calculus shows that as
β ↓ βc, ρ(β) ∼ C(β−βc)1/2, so the mean rises sharply from 0 at βc. It is unfortunate,
however, that real magnets have even steeper behavior in their magnetization near
their critical values.

The last observation and the desire to have a nontrivial joint distribution for
the spins are important motivations for the problem that Lenz gave to Ising as
a thesis project: consider the probability distribution on configurations of spins in
Λ = [−L,L]d defined by

(4) exp


β

∑
x∈Λ,|y−x|≤1

ξ(x)ξ(y)


 · 1

Z(β,Λ)
.

Here β is a constant times inverse temperature and Z(β,Λ) is the normalizing constant
to make this a probability distribution.

Our first task is to let L → ∞ to get a process defined on the infinite lattice. If
we let ∂Λ = {y : |y − x| ≤ 1 for some x ∈ Λ} and let η be ξ restricted to ∂Λ, we see
that the definition in (4) depends also on the boundary conditions η. The set of all
limits that can be obtained by letting Lk →∞ and choosing a sequence of boundary
conditions ηk is the set of Gibbs states, i.e., the possible equilibrium distributions of
the system.
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STOCHASTIC SPATIAL MODELS 679

Ising (1925) worked out the one-dimensional case of this model and proved that
there was a unique Gibbs state. Today this is a straightforward exercise in Markov
chain theory. If Ising had been right when he conjectured that the same result held
true in any dimension, his name would not be as famous as it is today. Peierls (1936)
was the first to demonstrate that at sufficiently low temperature (i.e., sufficiently large
β) the Ising model in two or more dimensions exhibits ferromagnetism. To be precise,
if we let L→∞ and use the all +1 boundary conditions we get a limit µ+ in which the
average value of the spins is positive. Of course, using −1 boundary conditions will
lead to a limit µ− with negative mean, so there are two Gibbs states corresponding
to the possibility of magnetization in the up and down states.

Peierls’ “contour argument” has become a basic tool in proving the existence of
phase transitions. However, in the case of the Ising model (and in most of its other
applications), it gives only a very crude upper bound on the critical value βc. The first
step toward the exact computation of the critical value for the two-dimensional Ising
model was the discovery by Kramers and Wannier (1941) of a high-temperature/low-
temperature duality that related the Ising models with parameters β and β∗, where

(5) sinh(2β) sinh(2β∗) = 1.

This suggested that the critical value βc was the fixed point sinh(2βc) = 1 or βc =
0.4407, a fact that was later confirmed by Onsager’s (1944) solution. Later, Yang
(1952) computed the spontaneous magnetization, i.e., the expected value of ξ(x) under
the distribution µ+:

(6) ρ(β) =
{
[1− (sinh(2β))−4]1/8, β > βc,
0, β ≤ βc.

Climbing our soapbox for the first time to proclaim “spatial models are better,” we
note that this quantity has ρ(β) ∼ C(β − βc)1/8, which is in closer agreement with
the properties of real magnets.

In the late 1960s, there was a resurgence of interest in the Ising model, sparked by
a program to prove rigorous results in statistical mechanics; see Dobrushin (1968) and
Ruelle (1969). At this point, several people followed up on earlier work of Glauber
(1963) and constructed stochastic spin flip models that had Gibbs states as stationary
distributions and proved more general existence results for infinite particle systems.
See Dobrushin (1971), Holley (1972), and Liggett (1972). There are many possible
choices for the rate at which a spin flips to the opposite value (see Liggett (1985),
section IV.2). A simple and commonly used one is exp(−2βnx), where nx is the
number of neighboring spins that agree with the one at x. Note that in this formulation
flips occur at rate 1 for sites that disagree with all of their neighbors but at rate
exp(−12β) for those that agree with all of their neighbors.

The Ising model is a special example, not only because of its connection with
physics but also because it has the property of reversibility. In words, a movie of the
system in equilibrium looks the same (in distribution) when seen forward or backward.
Mathematically, if we let ξx,i be the configuration ξ modified so that the value at x is
i, then reversibility for a distribution π is equivalent to the detailed balance condition

(7) π(ξx,i)cj(x, ξx,i) = π(ξx,j)ci(x, ξx,j).

In words, the rate of flow of probability mass from ξx,i to ξx,j is exactly balanced by
the flow from ξx,j to ξx,i. Using the identity

∑
y ξ(x)ξ(y) = 2nx−d it is easy to check

that Gibbs states in (4) are reversible measures for our rates. The converse question,
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680 RICK DURRETT

whether there are any non-Gibbsian stationary distributions, has been answered only
in dimensions d ≤ 2, where Holley and Stroock (1977) showed there were no others.
Their failure to prove the result in d ≥ 3 may be related to the fact that in those
dimensions there are a number of nontranslation invariant stationary distribution with
magnetization in each plane but different orientations in different groups of planes.
See Dobrushin (1972, 1973).

At this point much is known about the stochastic Ising model. See Chapter IV
of Liggett (1985) and references therein. Part of the reason for this rich theory is
the existence of a stochastic Lyapunov function called the free energy; see Holley
(1971). However, the most important key to the success of studying the Ising model
is property (7), which makes it easy to compute the stationary distribution by setting
π(ξ∗) = 1 for some configuration ξ∗ and then computing all the other values from (7).
A second system with this useful property is given in the following example.

Example 2.Simple exclusion process. The simple exclusion process is the special
case of a “lattice gas” of statistical mechanics when there is a hard-core potential be-
tween the particles. For easy visualization, consider the process on a two-dimensional
lattice. The states are 0 = vacant and 1 = occupied by a particle. Following Frank
Spitzer (1970), we view the system as one of independent random walks subject to
the exclusion rule of at most one particle per site. To be precise, a particle at x
attempts to jump at rate 1, and when it does so, tries to go to one of the four nearest
neighbors chosen at random. If the chosen neighbor is vacant, then the particle goes
there; otherwise no jump occurs.

It is somewhat surprising (to me at least) that even though the particles interfere
with each other, the random state in which adjacent sites are independent and occu-
pied with probability p is a stationary distribution. Though this may be surprising,
it is trivial to check this using the detailed balance condition (2). The reader should
note that in the simple exclusion process there is a one-parameter family of stationary
distributions, one for each 0 ≤ p ≤ 1. This is due to the fact that particles are con-
served and hence the density of occupied sites stays constant in time. There has been
a great deal of study by probabilists of the properties of the simple exclusion process
showing that (for the case we consider) convex combinations of the one-parameter
family above give all of the stationary distributions and proving associated conver-
gence theorems. See Liggett (1985, ChapterVII), and Liggett (1999). Here, we will
be interested primarily in the simple exclusion process as a mechanism for moving
particles around in more complicated models.

Our first two models were special since they were time reversible, as the physics
of the situation demands. Biological systems, in which birth does not look like death
going backward, do not have this property, so the study of these systems leads to the
more challenging class of irreversible models. Our first example with this property is
from genetics.

Example 3. Stepping stone model. As Sewall Wright (1943) was the first to
observe, if the size of a whole area is large compared with the migration distance
of an individual, then the species may not behave as a single panmictic unit, an
effect he called “isolation by distance.” In natural populations, individuals often are
distributed more or less discontinuously to form numerous colonies, and individuals
will migrate only between adjacent or nearby colonies. To analyze such a situation,
Kimura (1953) proposed a model he called the stepping stone model of population
structure. For simplicity, we will suppose that there is only one individual per site,
who has one genetic locus of interest with k alleles 1, 2, . . . , k, which give the state of
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STOCHASTIC SPATIAL MODELS 681

Fig. 1

the site. Thinking of overlapping generations, we declare that an individual at x dies
at rate 1 and then is replaced by the state of the site at y with probability p(y − x).

The first significant mathematical analysis of this model was carried out by
Kimura and Weiss (1964), who studied the decay of genetic correlations among sites as
the distances between the sites increase in the model in which p(y−x) = 1/2d when x
and y are nearest neighbors. Much theoretical work on the model and computer simu-
lation soon followed in the genetics literature; see Weiss and Kimura (1965); Rohlf and
Schnell (1971); Maruyama (1972a), (1972b); Malecott (1975); and Felsenstein (1975).
The main message of this work is that genetic characteristics of continuous popula-
tions depend on the size of the local breeding units or neighborhoods. In particular,
smaller neighborhoods result in high levels of inbreeding, homozygosity, and patchi-
ness in the spatial distribution of genotypes. For more on this, see Turner, Stephens,
and Anderson (1982), where a system of flowers with nearest-neighbor pollination was
simulated.

In the early 1970s, the Kimura–Weiss model was reinvented in the probability
literature by Clifford and Sudbury (1973) and Holley and Liggett (1975). The latter
pair of authors thought in terms of opinions or political parties rather than genotypes,
so they named their system the “voter model.” They concentrated on the model on
the infinite lattice and showed that the model converges to complete consensus in
d ≤ 2 but not in d > 2. Sawyer (1976), (1977a), (1977b) and Bramson and Griffeath
(1980a) studied the growth of clusters of sites with the same opinion in d ≤ 2. Cox and
Griffeath (1986) followed up on that work and developed a detailed understanding of
the structure of the typical configuration of the two-dimensional voter model at time t.
Instead of writing a thousand words about these results, we will instead give a picture
(see Figure 1) of the two-dimensional voter model starting with each site randomly
colored one of 16 colors and let you guess what you can from that.

D
ow

nl
oa

de
d 

06
/0

6/
15

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



682 RICK DURRETT

Most of the results in the previous paragraph were inspired by probabilists’
fascination with random walks and proved for their intrinsic interest. However, this
rich body of theoretical results makes the voter model useful for biological applica-
tions. Durrett and Levin (1996) and Bramson, Cox, and Durrett (1996), (1998) have
considered a voter model with mutation and have used it to understand species-area
curves and the abundance of species. Durrett, Buttel, and Harrison (1999) have used
biased voter models with spatially varying selection to model hybrid zones.

The first three models have been included primarily for historical reasons and to
give a broader view of the possible applications. Most of this paper will concentrate
on examples like the next five.

Example 4. Contact processes. Here we are thinking of the spread of a plant
species, so 1 = occupied and 0 = vacant. The dynamics are the simplest possible:
individuals die at rate δ and give birth at rate β, with a birth from x going to y with
probability p(y−x). If y is vacant, it becomes occupied. If y is occupied, then nothing
happens. By scaling time we can take δ = 1. If we do this, then there is a critical
value βc, which will depend on the displacement kernel p, so that if β < βc then the
system dies out (i.e., goes to the all-0s absorbing state), while if β > βc the system
survives (i.e., has a nontrivial stationary distribution).

This model was introduced by Harris (1974) and soon studied intensively in the
probability literature. See Harris (1976), Griffeath (1978), Durrett (1980), Griffeath
(1981), Durrett and Griffeath (1982), (1983), Durrett (1984), and other references
given in Chapter V of Liggett (1985). Later, this system was rediscovered in the
biology literature by Crawley and May (1987). The parallel evolution here is due
undoubtedly to the fact that the contact process is the simplest nontrivial spatial
growth model. Deaths occur at a constant rate, while births occur at a linear rate,
proportional to the number of occupied neighbors.

If we pretend that adjacent sites are independent, then the density of occupied
sites in the contact process will satisfy

(8)
du

dt
= −u+ βu(1− u) = βu

(
β − 1
β
− u

)
.

If we consider n sites and have births from x to y with probability 1/n, then in the limit
as n → ∞ the density of occupied sites will satisfy the same equation (see Example
1.1 below). So by analogy with Weiss’s study of magnetism, we will call (8) the mean
field equation. As the second equality shows, this is just a logistic growth model in
which the per particle growth rate is β and the carrying capacity is ρ = (β−1)/β. The
contact process is, in a sense, a stochastic version of the partial differential equation
(PDE)

(9)
∂u

∂t
=

σ2

2
∆u+ βu(ρ− u),

where ∆u = ∂2u/∂x2
1 + · · · + ∂2u/∂xd1. The stochasticity comes from the fact that

the model has discrete individuals rather than the infinite local populations implicit
in the PDE.

Based on this analogy and a knowledge of the properties of the PDE in (9) (see,
e.g., Fife and McLeod (1977) and Aronson and Weinberger (1978)), one can correctly
guess the two most important results for the supercritical contact process, β > βc:

(i) if the process survives starting from a finite initial state, then it grows linearly
and has an asymptotic shape;
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STOCHASTIC SPATIAL MODELS 683

Fig. 2

(ii) there is a unique nontrivial stationary distribution which describes the dis-
tribution away from the edge of the growing ball and that is the limit as t → ∞
whenever the process does not die out.

See Figure 2 for a picture of the result in (i). These results were proved in d = 1 by
Durrett (1980). The proof in d > 1 was considerably trickier and required a decade
of work by a variety of people: Durrett and Griffeath (1982), (1983), Durrett and
Schonmann (1987), Bezuidenhout and Grimmett (1990), (1991). For an explanation
of these and many of the other known results about the contact process, see Durrett
(1992) or Liggett (1999). The contact process is a very simple model of the growth of
one species and will be our basic ingredient for constructing the following example.

Example 5. Multispecies competition models. Most questions of interest in ecology
today involve the interaction of two or more species, so we will generalize from the
previous model to have states 0 = vacant and i = 1, 2, . . . , k to indicate that the site
is occupied by type i. In the first three models we consider

(i) Individuals of type i die at rate δi and give birth at rate βi, a birth from x
going to y with probability pi(y − x);

(ii) If y is vacant then y becomes occupied with type i.
There are, however, various things we can decide to do when y is occupied. The

simplest and most symmetric is that if y is occupied then the birth is suppressed. This
system, though natural, turns out to be disappointing: we can never have coexistence.
Biologists will recognize this as a consequence of Gause’s principle (see, e.g., Levin
(1970)). Since all the species are competing for the same resource, there can be only
one winner. Neuhauser (1992) has been able to show that this occurs in the stochastic
spatial model with two species and δ1 = δ2. Proving this in the general case δ1 = δ2
seems like a difficult problem.

Though the simplest symmetric rule is boring, the strict hierarchical version in
which individuals of type i can give birth onto sites of type j < i turns out to be quite
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684 RICK DURRETT

Fig. 3

interesting. Crawley and May (1987) considered a version of the model in which 2
= perennial plants and 1 = annuals. In Durrett and Swindle (1991), 0 = grass, 1 =
bushes, 2 = trees, while in the related model studied by Tilman (1994), the states are
different classes in a competitive hierarchy. In each of these three situations, there is
an open set of parameters in which all species coexist. The spatial patterns of the
equilibrium states are pretty boring, however. See Figure 3 for a simulation of the
model of Durrett and Swindle (1991) with β1 = β2 = 1, δ1 = 0.2, and δ2 = 0.575. We
will discuss this model further in Example 1.2.

The competition models in the last two paragraphs are special cases of one intro-
duced by Silvertown et al. (1992). In that system the general set-up is the same, but
when i tries to invade j there is success (i.e., the site changes to i) with probability
pi,j . As will be explained in Example 4.1, the two-species system is boring (showing
competitive exclusion), but a three-species version with a paper-scissors-stone intran-
sitive competition relationship leads to interesting pattern formation in the spatial
model.

A second type of modification that we can make to the basic two-species contact
process set-up is to preserve the exclusion rule (no births onto occupied sites) but
modify the death rates to be a linear function of the number of neighbors of the two
types. In symbols, we give the death rate for type i as δi +

∑
j γijfj , where fj is the

fraction of neighbors in state j. The colicin model in Durrett and Levin (1997a) is
one of the simplest cases of this: γ21 = γ > 0, but all the other γij = 0. In words,
the first type is an E. coli that produces colicin, while the second is sensitive to that
chemical and suffers an increased death rate due to the presence of nearby 1’s. We
will discuss this model further in Example 3.2.

Example 6. Epidemics. There is a large body of work that studies epidemics by
assuming that populations are homogeneously mixing and using differential equations.
Due to long-distance connections between people in a community, such models are
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STOCHASTIC SPATIAL MODELS 685

Fig. 4

fine for representing the spread of the latest variety of flu through a town. However,
in some situations, such as rabies in animals, the infection process is local and the
epidemics travel through the countryside as fronts that move a predictable number of
miles per year. To treat such situations where the spatial distribution of infectives is
important, we formulate a model with three states, 0 = susceptible, 1 = infected, and
2 = removed. The word “removed” will mean dead in the case of a fatal disease like
rabies. However, we prefer to think about measles, where the term means that the
individual has had the disease once and is immune to having it again. The dynamics
are again a simple combination of constant and linear rates. Susceptible individuals
become infected at a rate proportional to the fraction of neighbors infected, βf1.
Infected individuals become removed at a constant rate δ, which we set equal to 1.
Finally, removed individuals become susceptible at rate α. In formulating the last
transition we are thinking of removed individuals dying (or moving out of town) and
being replaced by new susceptible individuals.

In order to understand this model it is natural to begin with the case α = 0,
which occurs, for example, in modeling a flu epidemic where there is no perceptible
regrowth of susceptibles on the time scale of the epidemic. The first observation to
be made is that if the infection rate β is too small then the epidemic dies out, while if
β > βc there is a positive probability that the infection persists for all time. After one
gives up on the hopeless problem of computing the threshold βc, it is natural to ask:
what happens if we start the process with α = 0 with one infected individual in a sea
of susceptibles? The answer, after a lot of work by a number of people (see Mollison
(1975), Mollison and Kuulasmaa (1985), Cox and Durrett (1988), and Zhang (1990)),
is that if the epidemic were supercritical, i.e., β > βc, then the radius of the set of
removed individuals would grow linearly and have an asymptotic shape. See Figure 4
for a picture of this result. Later work of Durrett and Neuhauser (1991) showed that if

D
ow

nl
oa

de
d 

06
/0

6/
15

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



686 RICK DURRETT

Fig. 5

β > βc, then the system with any positive amount of regrowth α > 0 has a nontrivial
stationary distribution. For more on spatial epidemic models, see Bak, Chen, and
Tang (1990), Drossel and Schwabl (1992), Henley (1993), Durrett (1995c), or the
conference proceedings edited by Mollison (1995) and by Grenfell and Dobson (1995).

Example 7. Predator-prey systems. Huffaker (1958) was the first to construct
a spatial model of a predator-prey system. He investigated a system of two mites
and a predator on a network of oranges connected with wooden rods. He found that
while persistence was impossible in a homogeneously mixing system, it was greatly
prolonged on the spatial grid. Pimentel et al. (1963) complemented Huffaker’s classic
work, again demonstrating how space can lead to the persistence of predator-prey
systems. Hilborn (1975) provided the first theoretical examination of Huffaker’s ex-
perimental system, formulating a model in which there are N sites with no spatial
structure. Nachman (1987a), (1987b) seems to have been the first to simulate Huf-
faker’s system as a truly spatial model.

This pioneering work inspired others to study the impact of the spatial distribu-
tion of competitors on the behavior of predator-prey systems. See Hassell, Comins,
and May (1991), DeRoos, McCauley, and Wilson (1991), McCauley, Wilson, and
DeRoos (1993), Wilson, DeRoos, and McCauley (1993), Satulovsky and Tome (1994),
Rand, Keeling, and Wilson (1995), Neubert, Kot, and Lewis (1995), Wilson (1996),
Comins and Hassell (1996), Satulovsky (1996), and Pascual and Caswell (1997). Here,
we will keep to what we know best and discuss our own results. The simplest situa-
tion occurs in Durrett (1993), when all the rates are linear. See Example 2.1. More
recently, Durrett and Levin (1999) have considered a nonlinear model in which preda-
tors search q adjacent sites looking for food. As q is increased, the homogeneously
mixing version of the system develops periodic orbits, leading to interesting structures
in the spatial model. See Figure 5 for a simulation and Example 4.5 below for more
details.
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STOCHASTIC SPATIAL MODELS 687

Fig. 6

Example 8. Evolutionary games. Our final class of models is a spatial version of
a system introduced by Maynard Smith (1982), which we formulate following Brown
and Hansell (1987). At each site there can be any nonnegative number of each of two
types, i = 1, 2. At a site with mi individuals of type i and ni individuals of type i in
its neighborhood (which we take to include the site itself), each individual of type i
gives births to new individuals of type i located at that site at rate

(10) βi + ai1
n1

n1 + n2
+ ai2

n2

n1 + n2

and experiences deaths at rate δi + γi1m1 + γi2m2.
The bounded per particle birth rates versus the linearly growing per particle death

rates implies that the number of particles at each site does not grow without bound.
In some cases both species will die out. However, if the birth rates are large enough in
comparison to the death rates, then there will be a nontrivial stationary distribution
in which one or both types are present. Durrett and Levin (1994b) studied this model
and identified three cases based on the structure of the matrix aij . Those results were
the beginning of the classification scheme to be presented here. As we will see, the
“Prisoner’s Dilemma” case in which strategy 1 dominates strategy 2 (i.e., a1i > a2i
for i = 1, 2 but a11 < 0 < a12) is the most interesting. See Figure 6 for a simulation of
this situation. For another approach to this problem that makes prettier pictures, see
Nowak and May (1992), (1993), Nowak, Bonhoeffer, and May (1994), or the surveys
by May (1994), (1995), which give a number of other references

The examples described above only begin to illustrate the breadth of applications
of stochastic spatial models. Given that it took 15 years to come to grips with the
contact process, it is clear that the only way theory can keep up with the growing
number of applications is to formulate general principles to allow for the solution
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688 RICK DURRETT

of large classes of problems at once. Durrett and Levin (1994b) proposed that the
behavior of stochastic spatial models could be determined from the properties of the
mean field ODE, i.e., the equations for the densities of the species which result from
pretending that adjacent sites are always independent. In their scheme there are three
cases depending upon the properties of the ODE:

Case 1. One attracting fixed point with all components positive. The prediction
in this case is that there will be coexistence in the stochastic spatial model; i.e., there
is a stationary distribution in which each state has positive density.

Case 2. Two locally attracting fixed points. In the ODE, the limiting behavior
depends on the initial densities. However, in the stochastic spatial model, there is
one stronger equilibrium that is the winner starting from any positive initial den-
sity. To determine the stronger equilibrium, we can start with one half-plane in each
equilibrium and watch the direction of movement of the front.

Case 3. Periodic orbits in the ODE. In the spatial model, densities fluctuate
wildly on small scales, oscillate smoothly on moderate scales, and after an initial
transient are almost constant on large scales. That is, there is an equilibrium state
with an interesting spatial structure.

This classification scheme is a heuristic, designed to predict the behavior of the
many interacting particle systems that arise in biological applications. However, there
is a growing list of examples where the conclusions have been proved mathematically
or demonstrated by simulation. In this paper, we will explain some of the results that
have been obtained in support of this picture and list a number of the open questions
that remain.

As one can probably guess, many of the mathematical questions lie in probability
theory or in the study of ODEs. However, there are also a number of problems
concerning PDEs, specifically the asymptotic behavior of reaction-diffusion equations,
since those results are used to make the rigorous connection between properties of the
ODE and of the stochastic spatial model. In what follows we will concentrate on
mathematical results and problems. By following the references given above and in
the text, the reader can find many papers in the biology literature. For surveys of
the use of spatial models in ecology, see the books edited by Levin, Powell, and Steele
(1993) and Tilman and Kareiva (1997), or the articles of Czaran and Bartha (1992)
and Durrett and Levin (1994a).

1. Case 1. Attracting Fixed Point. To illustrate this case, we begin with a
simple but fundamentally important special case, which has already appeared in the
introduction as Example 4.

Example 1.1. Contact process. As described earlier, each site can be in state 0 =
vacant or 1 = occupied. The system evolves according to the following rules:

i. An occupied site becomes vacant at a rate δ.
ii. An occupied site gives birth at rate β. A particle born at x is sent to y with

probability p(y − x).
iii. If y is vacant, it becomes occupied. If y is occupied, nothing happens.
The contact process as formulated above has two parameters, but only needs one.

By scaling time we can, in contrast to the choice made in the introduction, suppose
that β = 1. In this case, particles die at rate δ and give birth at rate at most 1, since
births onto occupied sites are lost. From this it is easy to see that if we start with
a finite number of occupied sites and δ > 1, then the contact process will die out,
i.e., reach the all-0 configuration with probability 1. We define the critical value δf , forD
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STOCHASTIC SPATIAL MODELS 689

survival from finite sets, to be the supremum of all of the values of δ so that dying
out has a probability < 1 for some finite initial state.

There is a second, slightly more sophisticated notion of “survival” for the contact
and other processes: the existence of a stationary distribution for the Markov chain
that does not concentrate on the absorbing state in which all sites are vacant. To see
when such a stationary distribution will exist, we start with the observation that the
contact process is attractive: i.e., increasing the number of 1s increases the birth rate
and decreases the death rate. Then we give the following lemma.

Lemma 1.1. Let ξ1
t denote the process starting from all 1s. If the process ξt is

attractive, then as t→∞, ξ1
t ⇒ ξ1

∞, a stationary distribution.
Here ⇒ is short for converges in distribution, which means that for any sites

x1, . . . , xn and possible states i1, . . . , in we have convergence of the finite-dimensional
distributions

P (ξ1
t (x1) = i1, . . . , ξ

1
t (xn) = in)→ P (ξ1

∞(x1) = i1, . . . , ξ
1
∞(xn) = in).

This result and all the others we cite for the contact process can be found in
Liggett (1985), Griffeath (1979), Durrett (1988), (1995b).

Of course the limit in Lemma 1.1 could assign probability 1 to the all-0 config-
uration, and it will if δ is too large, for example, δ > 1. Let δe be the supremum of
the values of δ for which the limit is not all 0s. For the quadratic contact process,
Example 3.1, we will have

0 = δf < δe <∞.

However, for the contact process, these two critical values coincide. To explain why
this is true, we note that by using a variety of methods, one can show the following
duality relationship.

Lemma 1.2. Let pt(A,B) be the probability that some site in B is occupied at
time t when we start with 1s on A (and 0s elsewhere) at time 0. Then

pt(A,B) = pt(B,A).

Taking A = all sites and B = a single point, we see that the density of occupied
sites at time t is the same as the probability of surviving until time t starting from a
single occupied site. Thus δe = δf and we denote their common value by δc, where
the c stands for critical value.

Mean field theory. If we consider the contact process on a grid with n sites and
modify the rules so that all sites are neighbors, then the number of occupied sites at
time t is a Markov chain N(t) ∈ {0, 1, . . . , n} with transition rates

N(t)→ N(t)− 1 at rate δN(t),

N(t)→ N(t) + 1 at rate βN(t)
(
1− N(t)

n

)
.

If we let un(t) = N(t)/n be the fraction of occupied sites and let n→∞, then by
computing the variance, it is not hard to show that the un converge to the solution
of the “mean field” ODE

(1.1)
du

dt
= −δu+ βu(1− u) = βu

{
β − δ

β
− u

}
.
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690 RICK DURRETT

The term in quotes refers to the fact that each site only feels the average value of all
the other sites, i.e., the density of occupied sites. The mean field equation can also
be obtained from the spatial model by letting u(t) be the fraction of sites occupied
at time t and assuming that adjacent sites are independent. Since the second recipe
is simpler, we will use it for our later computations.

The mean field ODE for the contact process predicts that the critical value δc is
1, and for δ < δc the equilibrium density of occupied sites is 1 − δ. In the nearest
neighbor contact process there is a significant positive correlation between the states
of neighboring sites (see Harris (1977)) so δc < 1. Numerical results tell us that for the
two-dimensional nearest neighbor contact process, δc ≈ 0.607. See Brower, Furman,
and Moshe (1978) and Grassberger and de la Torre (1979). For rigorous bounds on
the critical value for the contact process, see Holley and Liggett (1978) and Liggett
(1995a), (1995b).

Although the nearest neighbor case has been the most studied, it turns out that
the contact process gets much simpler when we consider long-range limits. Bramson,
Durrett, and Swindle (1989) have shown the following.

Theorem 1.1. Let N = {z : ‖z‖∞ ≤ r}. As r →∞, δc(r)→ 1 and

P (ξ1
∞(x) = 1)→ 1− δ.

In words, as r →∞ the critical value and equilibrium densities converge to those
predicted by mean field theory.

A simple proof of Theorem 1.1 can be found in the expository article, Durrett
(1992). Bramson, Durrett, and Swindle (1989) went further by identifying the rate of
convergence. Let N = (2r + 1)d be the number of points in |N |. If r is large then

(1.2) βc(r)− 1 ≈




C/N2/3 in d = 1,
C(logN)/N in d = 2,
C/N in d ≥ 3,

where ≈ means that inserting a large enough value of C results in an upper bound
βc(r)−1 and a small enough positive value of c gives a lower bound. Recently, Durrett
and Perkins (1999) have sharpened this conclusion to

(1.3) βc(r)− 1 ∼
{
C2(logN)/N in d = 2,
Cd/N in d ≥ 3,

where C2 = 6/π, and in d ≥ 3,

Cd =
∞∑
n=1

P (Un ∈ [−1, 1]d),

with Un the discrete-time random walk that takes steps uniformly on [−1, 1]d. The
key to the proof of (1.3) is showing that a rescaled version of the long-range contact
process converges to super-Brownian motion plus drift. This conclusion is false in one
dimension, where Mueller and Tribe (1995) have shown that the limit is the stochastic
PDE (SPDE)

(1.4) du =
(
u′′

6
+ θu− u2

)
dt+

√
2u dW.

It is natural to conjecture as follows.
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STOCHASTIC SPATIAL MODELS 691

Conjecture 1.1. The sharp constant in (1.3) for one dimension is C1 = θc, the
critical value for the SPDE in (1.4).

See Mueller and Tribe (1994) for the definition and existence of the critical value
for the SPDE.

Example 1.2. Grass, bushes, trees. In our second model, the possible states are
0 = grass, 1 = bushes, 2 = trees. Zeros are thought of as vacant sites. Types 1 and
2 behave like contact processes subject to the rule that 2s can give birth onto sites
occupied by 1s but not vice versa. In formulating the dynamics, we are thinking of
the various types as species that are part of a successional sequence. With Tilman’s
(1994) work in mind, we define the model for an arbitrary number of species.

i. If i > 0, type i individuals die at a constant rate δi and give birth at rate βi.
ii. A particle of type i born at x is sent to y with probability pi(y − x).
iii. If the number of the invading type is larger than that of the resident type,

the invader takes over the site. Otherwise no change occurs.
Starting our analysis with the case of two types, we note that 2s don’t feel the

presence of 1s, so they are a contact process and will survive if δ2/β2 < δc. The main
question then is: when can the 1s survive in the space that is left to them?

To investigate this question Durrett and Swindle (1991) considered what happens
when long-range limits are taken. As in the case of the long-range contact process,
the motivation is that in this case the densities will behave like solutions to the mean
field ODE, which is derived by pretending that adjacent sites are always independent:

(1.5)
du1/dt = u1 {β1(1− u1 − u2)− δ1 − β2u2 } ,
du2/dt = u2 {β2(1− u2)− δ2 } .

For example, in the du1/dt equation the first term represents births of 1s onto sites
in state 0 (vacant), the second term represents constant deaths, and the third, births
of 2s onto sites occupied by 1s.

From the second equation in (1.5) the equilibrium density of 2s will be

ū2 =
β2 − δ2

β2
.

Inserting this into the first equation and solving, one finds that there is an equilibrium
with ū1 > 0 if

(1.6) β1 ·
δ2

β2
− δ1 − {β2 − δ2} > 0.

As written, this condition can be derived by asking the question: “Can the 1s invade
the 2s when they are in equilibrium?” That is, will u1 increase when it is small
enough?

The next two results say that when the range r is large enough the spatial model
behaves like the ODE. First we need to define the behaviors that we will observe.
We say that coexistence occurs if there is a stationary distribution that concentrates
on configurations with infinitely many sites in each of the possible states. We say
that 1s die out if whenever there are infinitely many 2s in the initial configuration,
P (ξt(x) = 1)→ 0 as t→∞.

Theorem 1.2. If (1.6) holds then coexistence occurs for large range.
Theorem 1.3. If we have < in (1.6) then the 1s die out for large range.
Theorem 1.2 is from Durrett and Swindle (1991) and Theorem 1.3 from Durrett

and Schinazi (1993). These results also apply to the Crawley and May (1987) model
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692 RICK DURRETT

of the competition between annuals and perennials. In this case the perennials are
a nearest neighbor contact process, but annuals have a long dispersal distance. For
other models that have been analyzed using long-range limits, see Neuhauser (1994),
Durrett and Neuhauser (1997), and Bramson and Neuhauser (1997).

2. Rapid Stirring Limits. In the previous section we saw that stochastic spatial
models simplify considerably when the range is large. Our next goal is to explain that
this also occurs when the particles are subject to fast stirring. Formally, a stirring
event involving x and y will change the state of the process from ξ to ξx,y, where

ξx,y(y) = ξ(x), ξx,y(x) = ξ(y), ξx,y(z) = ξ(z), z = x, y.

In words, we would say that stirring exchanges the values found at x and y.
The stirring mechanism has product measures as its stationary distributions. See

Griffeath (1979, section II.10). So when it acts at a rapid rate we expect that nearby
sites will be almost independent. To keep the particles from flying out of our field of
vision as the stirring rate is increased, we scale space by multiplying by ε = ν−1/2.
Since this is the usual diffusion scaling, it should not be surprising that the particle
system converges to the solution of a reaction-diffusion equation.

To state a general result, we consider processes ξεt : εZ
d → {0, 1, . . . , κ} that have

i. translation invariant finite-range flip rates; i.e., the rate at which site x flips to
state i when the configuration of the system is ξ has the form

ci(x, ξ) = hi

(
ξ(x), ξ(x+ εy1), . . . , ξ(x+ εyN )

)

for some neighbor set N = {y1, . . . , yn};
ii. rapid stirring: for each x, y ∈ εZd with |x− y| = ε, we exchange the values at

x and y at rate ε−2.
With these assumptions we get the following mean field limit theorem of De Masi,

Ferrari, and Lebowitz (1986). For the version given here, see Durrett and Neuhauser
(1994).

Theorem 2.1. Suppose ξε0(x) are independent and let uεi(t, x) = P (ξεt (x) = i). If
uεi(0, x) = gi(x) is continuous, then as ε→ 0, uεi(t, x)→ ui(t, x), the bounded solution
of

(2.1) ∂ui/∂t = ∆ui + fi(u), ui(0, x) = gi(x),

where

(2.2) fi(u) = 〈ci(0, ξ)1(ξ(0) 
=i)〉u −
∑
j 
=i
〈cj(0, ξ)1(ξ(0)=i)〉u

and 〈ϕ(ξ)〉u denotes the expected value of ϕ(ξ) under the product measure in which
state j has density uj, i.e., when ξ(x) are independently and identically distributed
(i.i.d.) with P (ξ(x) = j) = uj.

To explain the form of the reaction term, we note that when ε is small, stirring
operates at a fast rate and keeps the system close to a product measure. The rate
of change of the densities can then be computed assuming that adjacent sites are
independent. The reader should recognize

dui/dt = fi(u)

as the mean field ODE.
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STOCHASTIC SPATIAL MODELS 693

Theorem 2.1 only concerns expected values, but once it is established one can
easily demonstrate the next result, which says that in the limit of fast stirring the
particle system on the rescaled lattice becomes deterministic and looks like solutions
of the PDE.

Theorem 2.2. If h(t, x) is a continuous function with compact support in [0,∞)×
Rd, then as ε→ 0

εd
∑
x∈εZd

∫ ∞
0

h(t, x)1(ξεt (x)=i) dt→
∫∫ ∞

0
h(t, x)ui(t, x) dt dx in probability.

Our main interest in the PDE limit described in Theorems 2.1 and 2.2 is to obtain
information about the particle system with fast (but finite) stirring rate. To do this
we need one more result. The main assumption may look strange. Its form is dictated
by the “block construction” technique (see, e.g., Durrett (1995b)) that we use to prove
things. In words, the condition says that the PDE will make one pile of particles three
times as large and improve the bounds on the density.

(3) There are constants Ai < ai < bi < Bi, L, and T so that if ui(0, x) ∈ (Ai, Bi)
when x ∈ [−L,L]d, then ui(T, x) ∈ (ai, bi) when x ∈ [−3L, 3L]d.

Durrett and Neuhauser (1994) have shown the following.
Theorem 2.3. If (3) holds for the PDE, then there is coexistence for the particle

system with fast stirring.
At this point we have reduced the task of proving theorems for particle systems

to proving a specific type of result (3) for the associated PDE. Leaving the reader to
meditate on whether or not this is progress, we turn to the first of several concrete
examples that can be treated by this method.

Example 2.1. Predator-prey systems. Each site in εZd can be in state 0 = vacant,
1 = fish, or 2 = shark. If we let fi be the fraction of the nearest neighbors of x (i.e.,
y with ‖y − x‖1 = ε) that are in state i, then we can write the flip rates as follows:

0→ 1 β1f1, 1→ 2 β2f2,
1→ 0 δ1, 2→ 0 δ2 + γf2.

Here we have shifted our perspective from occupied sites giving birth to vacant sites
receiving particles from their neighbors. After this translation is made, the two rates
on the left say that in the absence of sharks, the fish are a contact process.

The third rate says that sharks can reproduce by giving birth onto sites occupied
by fish, an event that kills the fish. This transition is more than a little strange from
a biological point of view, but it has the desirable properties that (i) the density of
sharks will decrease when the density of fish is too small, and (ii) the mean field ODE
is a traditional predator-prey equation; see (2.4) below. The final rate in the table
says that sharks die at rate δ2 when they are isolated, and the rate increases linearly
with crowding.

To be able to use our results about rapid stirring limits we also have to suppose
that the sharks and fish swim around. That is, for each pair of nearest neighbors
x and y, stirring occurs at rate ε−2. Applying Theorem 2.1 we see that if ξε0(x),
x ∈ εZd, are independent and uεi(t, x) = P (ξεt (x) = i) for i = 1, 2, then as ε → 0,
uεi(t, x)→ ui(t, x) as ε→ 0, the bounded solution of

(2.3)

∂u1

∂t
= ∆u1 + β1u1(1− u1 − u2)− β2u1u2 − δ1u1,

∂u2

∂t
= ∆u2 + β2u1u2 − u2(δ2 + γu2)
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694 RICK DURRETT

with ui(0, x) = fi(x). To check the right-hand side, we note that if x is vacant and
neighbor y is occupied by a fish—an event of probability (1− u1 − u2)u1 when sites
are independent—births from y to x occur at rate β1/2d and there are 2d such pairs.
The −β2u1u2 in the first equation and the β2u1u2 in the second come from sharks
giving birth onto fish. The last term in each equation comes from the death events.

When the initial functions fi(x) do not depend on x, we have ui(t, x) = vi(t),
where the vi’s satisfy the ODE

(2.4)

dv1

dt
= v1{(β1 − δ1)− β1v1 − (β1 + β2)v2},

dv2

dt
= v2{−δ2 + β2v1 − γv2}.

Here we have rearranged the right-hand side to show that the system is an example
of the standard predator-prey equations for species with limited growth. See, e.g., p.
263 of Hirsch and Smale (1974).

The first step in understanding (2.3) is to look at (2.4) and ask, “What are the
fixed points, i.e., solutions of the form vi(t) ≡ ρi?” It is easy to solve for the ρi.
There is always the trivial solution ρ1 = ρ2 = 0. In the absence of sharks the fish are
a contact process, so if β1 > δ1 there is a solution ρ1 = (β1 − δ1)/β1, ρ2 = 0. Finally,
if we assume that the ρ1, ρ2 = 0, we can solve two equations in two unknowns to get

(2.5) ρ1 =
(β1 − δ1)γ + δ2(β1 + β2)

β1γ + β2(β1 + β2)
, ρ2 =

(β1 − δ1)β2 − δ2β1

β1γ + (β1 + β2)β2
,

which has ρ2 > 0 if

(2.6) (β1 − δ1)/β1 > δ2/β2.

To understand this condition we note that if the fish are in equilibrium and the sharks
have small density, then neglecting the −γv2 term and inserting the equilibrium value
for v1, the second equation in (2.4) becomes

(2.7)
dv2

dt
= v2

{
−δ2 + β2 ·

β1 − δ1

β1

}
.

The condition (2.6) says that the quantity in braces is positive, i.e., that the density
of sharks will increase when it is small.

Having found conditions that guarantee the existence of an interior fixed point,
the next step is to check that it is attracting. Figure 7 shows an example of the
ODE, which confirms this in the special case considered there. However, one does
not need to use a computer to see that this will occur. To prove that the fixed point
is attracting, one begins with the easy-to-check fact that if ρi are the equilibrium
densities given in (2.5),

H(v1, v2) = β2(v1 − ρ1 log v1) + (β1 + β2)(v2 − ρ2 log v2)

is a Lyapunov function for the ODE; i.e., it is decreasing along solutions of (2.4). A
simple argument by contradiction then shows that all orbits starting at points with
each density vi > 0 converge to (ρ1, ρ2). The presence of a globally attracting fixed
point leads us to guess the following theorem.

Theorem 2.4. Suppose that (β1 − δ1)/β1 > δ2/β2. If ε is small there is a
nontrivial translation-invariant stationary distribution in which the density of sites of
type i is close to ρi.
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STOCHASTIC SPATIAL MODELS 695

Fig. 7

In view of Theorem 2.3 it suffices to prove (3). For details see Durrett (1993).
The proof involves Brownian motion in a minor role, but is otherwise an analytic
proof built on results of Redheffer, Redlinger, and Walter (1988), who considered the
problem in a bounded domain with Neumann boundary conditions. Durrett (1993)
did not consider the problem of the converse to Theorem 2.4. Using ideas from Durrett
and Neuhauser (1994), (1997) one should be able to conjecture as follows.

Conjecture 2.1. Suppose that (β1 − δ1)/β1 < δ2/β2. If ε is small then the 2s
die out.

Example 2.2. Predator-mediated coexistence. Here the possible states of a site
are 0 = vacant, 1, 2 = two-prey species, 3 = predator. Types i = 1, 2 behave like a
contact process, dying at a constant rate δi and being born at vacant sites at rate βi
times the fraction of neighbors in state i. 3s die at a constant rate δ3, are born at
sites occupied by 1s at rate β3 times the fraction of neighbors in state 3, and are born
at sites occupied by 2s at rate β4 times the fraction of neighbors in state 3. Finally,
of course, there is stirring at rate ν: for each pair of nearest neighbors x and y we
exchange the values at x and at y at rate ν.

In the absence of predators, this system reduces to the following example.
Example 2.3. Multitype contact process. In this system 1s and 2s are two com-

peting species, but births are only allowed onto vacant sites:

0→ 1 β1f1, 0→ 2 β2f2,
1→ 0 δ1, 2→ 0 δ2.

Neuhauser (1992) has shown the following theorem.
Theorem 2.5. If δ1 = δ2 and β1 > β2 then the 2s die out.
It is natural to conjecture as follows.
Conjecture 2.2. If β1/δ1 > β2/δ2 then the 2s die out.
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696 RICK DURRETT

However, if we restrict our attention to the case in which the death rates are
equal, Neuhauser’s result implies that when β1 = β2 there is no coexistence in the
competing contact process. Predator-mediated coexistence is the phenomenon that if
the predator’s feeding rate on the stronger species is larger, its presence may stabilize
the competition between the two species. One way of seeing that this should be
possible is to consider the mean field ODE:

(2.8)
dv1/dt = v1 {β1(1− v1 − v2 − v3)− δ1 − β3v3 } ,
dv2/dt = v2 {β2(1− v1 − v2 − v3)− δ2 − β4v3 } ,
dv3/dt = v3 {β3v1 + β4v4 − δ3 } .

Here, one can solve three equations in three unknowns to find conditions for an interior
fixed point, but a more fruitful approach is to derive conditions from an invadability
analysis. Half of this may be described as follows. By results for predator-prey systems
in (2.6), 2s and 3s can coexist if

β2 − δ2

β2
>

δ3

β4
,

and when this holds their equilibrium densities given in (2.5) are given by (recall
γ = 0 here) v2 = δ3/β4 and

v3 =
(β2 − δ2)β4 − δ3β2

(β2 + β4)β4
.

Examining the behavior of the ODE near (0, v2, v3), we see that 1s can invade
the (2,3) equilibrium if

(2.9) β1 − δ1 − β1v2 − (β1 + β3)v3 > 0.

In a similar way, one can derive conditions for the 1s and 3s to coexist and for the
2s to be able to invade their equilibrium. When both sets of conditions hold, we say
there is mutual invadability. It is easy to prove that in this case the ODE has an
interior fixed point. By considerably extending the methods of Durrett (1993), Nikhil
Shah (1997) has shown the following theorem.

Theorem 2.6. If mutual invadability holds for the ODE, then coexistence occurs
for the stochastic spatial model with fast stirring.

To get a feel for the resulting phase diagram, set β3 = 4, β4 = 3/2, all the δi = 1,
and vary β1 and β2. The formulas above imply that 1 and 3 coexist if β1 > 4/3, 2 and
3 coexist if β2 > 3, and finally, all three species can coexist inside the region bounded
by the equations

β1 > β2, β2 <
17
32

β1 +
5
8
, β2 >

9
14

β1 +
15
14

.

The last few lines are summarized in Figure 8. Note that there is a region where all
three species can coexist but 2s and 3s cannot. Though we have not considered this
possibility in stating Theorem 2.6, it is covered by Nikhil Shah’s (1997) result. Upon
reflection, the existence of this possibility is not paradoxical. It simply says that the
2s are not a sufficiently good food source to sustain the predator by themselves.

3. Case 2. Two Locally Attracting Fixed Points. As in our consideration of
Case 1, we will begin with an example that has two states, 0 = vacant and 1 =
occupied. The rules are like the contact process, but now it takes two particles to
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STOCHASTIC SPATIAL MODELS 697

Fig. 8

make a new one. For this reason many of the early papers refer to this model as
the “sexual reproduction process.” However, to emphasize that here the birth rate is
simply quadratic instead of linear we will use the more modest name.

Example 3.1. Quadratic contact process. This system is also sometimes called
Schlögl’s second model. See Schlögl (1972) and Grassberger (1982).

i. An occupied site becomes vacant at a rate δ.
ii. A vacant site becomes occupied at a rate equal to k/4, where k is number of

diagonally adjacent pairs of occupied neighbors.
Note that, as in the contact process, we have scaled time to make the maximum

possible birth rate = 1.
The critical value for survival of this process starting from a finite set

(3.1) δf = 0.

To see this, note that if the initial configuration starts inside a rectangle it can never
give birth outside the rectangle and hence is doomed to die out whenever δ is positive.
Somewhat surprisingly, the critical value for the existence of a stationary distribution

(3.2) δe > 0.

Bramson and Gray (1991) have shown the following theorem.
Theorem 3.1. There is a δ0 > 0 so that if δ ≤ δ0 then the limit starting from

all 1s is a nontrivial stationary distribution.
The numerical value of δ0 produced in the proof of Theorem 3.1 is very small.

To obtain quantitative results we can turn to simulation to conclude that δe ≈ 0.1.
Here we will instead use Theorems 2.1 and 2.2 to conclude that with rapid stirring
the system behaves like the following PDE:

(3.3)
du

dt
= ∆u− δu+ (1− u)u2.
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698 RICK DURRETT

As in the study of the predator-prey model, we begin with the mean field ODE

(3.4)
dv

dt
= −δv + (1− v)v2.

When δ > 1/4, −δ + v(1− v) < 0 for all v ∈ (0, 1), so 0 is a globally attracting fixed
point. When δ ∈ (0, 1/4) the quadratic equation δ = v(1− v) has two roots

0 < ρ1 =
1−√1− 4δ

2
< ρ2 =

1 +
√
1− 4δ
2

< 1.

This might suggest that as stirring becomes more rapid the critical value for
a nontrivial equilibrium δe approaches 1/4. However, results of Noble (1992) and
Durrett and Neuhauser (1994) have shown the following theorem.

Theorem 3.2. As ε→ 0, the critical value δe(ε)→ 2/9. Furthermore, if δ < 2/9
then the equilibrium density P (ξ1

∞(x) = 1)→ ρ2.
To explain the value 2/9, we recall that in one dimension the limiting reaction-

diffusion equation has traveling wave solutions

(3.5) u(x, t) = w(x− ct)

that keep their shape but move at velocity c. This and the other PDE results we will
quote for this example can be found in Fife and McLeod (1977).

Setting f(u) = −δu+ (1− u)u2, since it will be clearer to do things for a general
reaction term, it is easy to check that the recipe in (3.5) will lead to a solution of
(3.3) if and only if

(3.6) −cw′(y) = w′′(y) + f(w(y)).

Suppose that to fix an orientation of the wave, w tends to ρ2 as y → −∞ and w → 0
as y →∞. Multiplying by w′(y) and integrating, we have

(3.7)
−c
∫

w′(y)2 dy =
∫

w′′(y)w′(y) dy +
∫

f(w(y))w′(y) dy

= 0−
∫ ρ2

0
f(z) dz.

Here, to get the 0, we observed that the antiderivative of w′′w′ is (w′)2/2, which
vanishes at infinity, and in the second integral we have changed variables z = w(y)
and reversed the order of the limits.

Equation (3.7) does not allow us to compute the value of c, but since
∫
w′(y)2 dy >

0 it does tell us that the sign of c is the same as that of
∫ ρ2

0 f(z) dz. A little calculus
now confirms that the speed is positive for δ < 2/9 and negative for δ > 2/9. To
check this easily, note that when δ = 2/9 the three roots of the cubic are 0, 1/3, and
2/3, so symmetry dictates that the positive and negative areas must cancel and that
the speed must be 0.

Sketch of the proof of Theorem 3.2. To prove that if δ < 2/9 coexistence occurs
for rapid stirring, it suffices to check (3) in section 2 and apply Theorem 2.3. This
can be done easily with the help of results in Fife and McLeod (1977), and was the
main result in Noble’s (1992) Ph.D. thesis.

The other direction is a little more tricky since one must show that if δ > 2/9 and
stirring is rapid, the 1s die out, not just that their density in equilibrium is close to 0.
Durrett and Neuhauser (1994) do this by using the PDE result to drive the density
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STOCHASTIC SPATIAL MODELS 699

of 1s to a low level and then use auxiliary arguments to check that the 1s will then
die out.

Up to this point we have concentrated only on the critical value for a nontrivial
equilibrium. From the proof of Theorem 3.2 one easily gets the following theorem.

Theorem 3.3. As ε→ 0, the critical value for survival from a finite set δf (ε)→
2/9.

It is known in a fair amount of generality that δf ≥ δe. See Bezuidenhout and
Gray (1994). Once there is stirring at a positive rate, δf > 0. In fact, we conjecture
as follows.

Conjecture 3.1. If the stirring rate ν > 0 then δf = δe.
Remark. The techniques described above have been used by Durrett and Swindle

(1994) to prove results for a model of a catalytic surface. Keeping to biological models,
we will continue with the following example.

Example 3.2. Colicin. The inspiration for this model came from work of Chao
(1979) and Chao and Levin (1981). Bacteria may produce toxic substances, known
collectively as bacteriocins, that kill or inhibit the growth of competing bacteria of
different genotypes. In general, bacteria that are capable of producing such chemicals
are immune to their action.

The colicins, the most extensively studied class of bacteriocins, are produced by
the bacterium Escherica coli and other members of the family Enterobacteriaceae. For
more about the biology, and an alternative approach based on differential equations,
see Frank (1994).

To model the competition we will use a system with three states: 0 = vacant, 1
= occupied by a colicin producer, 2 = occupied by a colicin-sensitive bacterium. If
we let fi be the fraction of the four nearest neighbors in state i, we can formulate the
transition rates as follows:

birth rate death rate
0→ 1 β1f1, 1→ 0 δ1,
0→ 2 β2f2, 2→ 0 δ2 + γf1.

In words, each type is born at empty sites at a rate proportional to the fraction of
neighbors of that type. The colicin-producing strain dies at a constant rate δ1, while
the colicin-sensitive strain experiences deaths at rate δ2 plus γ times the fraction of
colicin-producing neighbors.

To see what behavior to expect from the spatial model, we begin by writing down
the mean field ODE. Let u1 be the density of colicin-producing bacteria and let u2
be the density of the ordinary, colicin-sensitive bacteria. Assuming that all sites are
independent we have

(3.8)

du1

dt
= β1u1(1− u1 − u2)− δ1u1,

du2

dt
= β2u2(1− u1 − u2)− δ2u2 − γu1u2.

The system (3.8) has locally stable boundary equilibria at

(1− δ1/β1, 0) and (0, 1− δ2/β2),

provided

(3.9) δi < βi,
δ2

β2
<

δ1

β1
<

δ2 + γ

β2 + γ
.
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700 RICK DURRETT

Fig. 9

There is, moreover, an interior saddle point (ū1, ū2) in this case. See Figure 9 for
a picture of what happens when δ1 = δ2 = 1, β1 = 3, β2 = 4, and γ = 3. The
interpretation of the inequalities in order from left to right is:

i. the birth rate exceeds the death rate so either type can maintain a population
in isolation from the other;

ii. there is a cost to colicin production, metabolic or otherwise, reflected in a
lower carrying capacity in isolation;

iii. the competitive benefit of colicin production is sufficiently large so that an
established colicin-producing community can repel invasion by the wild type.

The implication of this analysis is that each of the strategies, “don’t produce
colicin” and “produce colicin,” are evolutionarily stable strategies. In other words,
if the density of the colicin-sensitive bacteria is near its equilibrium value, then the
colicin-producing bacteria cannot invade. Reversing roles, we also have that if the
density of the colicin-producing bacteria is near its equilibrium value, then the colicin-
sensitive bacteria cannot invade. Using the terminology of genetics, we can say that
selection will only favor genotypes when they are common, rare species cannot invade,
and genetic diversity will not be maintained. This situation is “disruptive frequency-
dependent selection” (see Levin (1988), Thoday (1959–1964)).

The last paragraph identifies the colicin system as belonging to Case 2, so we
expect that there is one stronger type that is the winner starting from configurations
in which there are infinitely many sites in each of the possible states. To be precise,
we conjecture as follows.

Conjecture 3.2. Fix δ1, δ2, and β2. For each fixed value of β1 there is a critical
value γc(β1) so that 1s die out when γ > γc(β1) while 2s die out when γ < γc(β1).

For simulation results in support of this, see Durrett and Levin (1997a).
In attacking this problem, the reader should feel free to introduce rapid stirring

or even long-range limits, even though neither of these is a natural assumption for
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STOCHASTIC SPATIAL MODELS 701

colicin. In the case of long-range limits, it suffices to check (3). Some help with the
PDE can be found in section 3 of Durrett and Swindle (1994). The major obstacle
is to prove the existence of a traveling wave connecting the two boundary equilibria.
The reader should note that even if this can be done, the integration-by-parts trick
in (3.7) fails for the system. So, as in Durrett and Swindle (1994), we will not emerge
with a formula for γc(β1).

Example 3.3. A three-species colicin system. In the two examples above, the ODE
and the spatial model sometimes disagreed on who would win the competition, but
both approaches agreed that one type would always competitively exclude the other.
We will now describe a system in which three species coexist in the spatial model,
but in the ODE, there is always only one winner.

To describe the system in words, we assume that 1s and 2s both produce colicin,
to which they are immune, and to which 3 is sensitive. The rates for this system are:

birth rate death rate
0→ 1 β1f1, 1→ 0 δ1,
0→ 2 β2f2, 2→ 0 δ2,
0→ 3 β3f3, 3→ 0 δ3 + γ1f1 + γ2f2.

Here, fi is the fraction of the four nearest neighbors in state i. In our concrete example
we will set all the δi = 1 and

β1 = 3, β2 = 3.2, β3 = 4, γ1 = 3, γ2 = 0.5.

Here we imagine that species 1 produces more colicin than 2 does but has the lowest
birth rate. The parameters are chosen so that 1s win against 3s while 3s win against
2s. When only 1s and 2s are present the system reduces to the multitype contact
process, Example 2.3. Since β2 > β1, the 2s win against the 1s in this case.

If we write ui for the fraction of sites in state i, then the mean field ODE is

(3.10)

du1

dt
= β1u1u0 − δ1u1,

du2

dt
= β2u2u0 − δ2u2,

du3

dt
= β3u3u0 − u3(δ3 + γ1u1 + γ2u2).

If we insert the values for the concrete example then the picture in Figure 10 results.
In the u1u3 and u2u3 planes, we see the colicin picture from Figure 9. In the u1u2
plane all trajectories starting with u1 and u2 positive are attracted to (0, û2, 0), where
ûi = (βi − δi)/βi. In the three-dimensional ODE, there is a surface that connects the
two separatrices in the u1u3 and u2u3 planes, so that above-the-surface trajectories
converge to (0, 0, û3) while those below converge to (0, û2, 0). These conclusions are
true whenever β1 < β2 and equilibria exist in the interior of the u1u3 and u2u3 planes.
(Conditions for this can be derived from (3.9).)

In contrast to the behavior of the ODE, the spatial model shows coexistence, at
least for a long time. See Figure 11 for a simulation of the process on a 200×200 grid
with periodic boundary conditions. Here we started in an initial product measure in
which the states i = 1, 2, 3 each have density 1/3 and plotted the observed density of
the three species every one thousand units of time out to time 50,000. The densities
fluctuate but none of them seems in danger of hitting 0 so we make the following
conjecture.

Conjecture 3.3. For suitably chosen values of the parameters βi and δi, there
is coexistence in the three-species colicin model.

D
ow

nl
oa

de
d 

06
/0

6/
15

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



702 RICK DURRETT

Fig. 10

Fig. 11

4. Case 3. Periodic Orbits. Our first example was introduced by Silvertown
et al. (1992) to investigate the competitive interaction of five grass species. We have
given it a new name to place it in context in the theory of interacting particle systems.

Example 4.1. The multitype biased voter model. Each site will always be occupied
by exactly one of the species 1, 2, . . . ,K. The process is described by declaring that:

i. An individual of species i produces new offspring of its type at rate βi.
ii. An offspring of type i produced at x is sent to y with probability pi(|y − x|),

where |y − x| is the distance from x to y. To avoid unnecessary complications, we
will suppose that pi(1) > 0 and that there is an R < ∞ so that ϕi(r) = 0 when the
distance r > R. In other words, there is a finite dispersal range, but nearest neighbors
are always accessible.

iii. If site y is occupied by type j, and type i disperses to that site, a successful
invasion occurs (i.e., the state of y changes from j to i) with probability pij ; if invasion
does not occur, the site y is unchanged.
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STOCHASTIC SPATIAL MODELS 703

To explain the name we note that if there are only two types, then the model
reduces to the biased voter model introduced by Williams and Bjerknes (1972) and
studied by Griffeath (1979) and Bramson and Griffeath (1980b), (1981). For a sum-
mary of their results, see Chapter 3 of Durrett (1988).

If we were to ignore space and assume that the states of the sites in the grid are
always independent, then the fraction of sites occupied by species i, ui, would satisfy

(4.1)
dui
dt

=
∑
j

uiuj {βipij − βjpij} .

In the stochastic spatial model (and of course also in the mean field ODE) only the
value of λij = βipij is important, so we can describe the concrete example investigated
by Silvertown et al. (1992) by giving the matrix λij :

i j → 1 2 3 4 5
1 Agrostis 0 0.09 0.32 0.23 0.37
2 Holcus 0.08 0 0.16 0.06 0.09
3 Poa 0.06 0.06 0 0.44 0.11
4 Lolium 0.02 0.06 0.05 0 0.03
5 Cynosurus 0.02 0.03 0.05 0.03 0

Simulations of this process from a randomly chosen initial state are not very
interesting to watch. As Silvertown et al. (1992) observed, “Three of the five species
went extinct very rapidly. The two survivors Agrostis and Holcus were the same as
the species that survived the longest in the aggregated models.” To explain why this
occurs, we say that species i dominates species j and we write i ≥ j if aij = λij−λji ≥
0. When the difference is > 0, we say that i strictly dominates j and write i > j. In
the concrete case given above, Agrostis strictly dominates all other species but beats
Holcus by 0.09 to 0.08, so it should not be surprising that Agrostis takes over the
system, with Holcus offering the most resistance. Indeed, Durrett and Levin (1997b)
have shown the following theorem.

Theorem 4.1. Assume that the dispersal distribution ϕi does not depend on i
and that type 1 is strictly dominant over type i for 2 ≤ i ≤ K. If we let A1

t denote
the event that type 1 is still alive at time t, then P (A1

t , ξt(x) = 1)→ 0 as t→∞.
This result says simply that if all species disperse equally, a competitive dominant

type will almost certainly drive the others to extinction. To explain the mathematical
statement, note that if we only start with finitely many 1s, then bad luck in the early
stages can wipe out all the 1s. Our result says that if this does not happen then the
1s will take over the system.

The outcome in Theorem 4.1 is the one we should expect. However, the reader
should note that the assumption that all the dispersal distributions are equal is crucial
for the result. Suppose for simplicity that there are only two species with p1,2 = p2,1 =
1. In this case we can have situations where β1 < β2, but the long-range disperser
1 outcompetes the nearest neighbor disperser 2. See Durrett and Levin (1997b) for
details.

Example 4.2. Cyclic biased voter model. In view of the discussion just completed,
the simplest system that can have interesting behavior is a three-species system with a
competitive loop: 1 < 2 < 3 < 1. Bramson and Griffeath (1989) have considered this
system with n ≥ 3 competitors in one dimension. Griffeath alone (1988) and with his
coworkers Fisch and Gravner (1991a), (1991b) has studied related cellular automata.
Tainaka (1993), (1994), (1995) has considered a variation on the model in which 1s
mutate into 3s with the paradoxical result that this enhances the density of 1s.
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704 RICK DURRETT

Fig. 12

In our situation, if we suppose 1 < 2 < 3 < 1 and let

β1 = λ13, β2 = λ21, β3 = λ32,

then the system (4.1) can be written as

(4.2)

du1

dt
= u1(β1u3 − β2u2),

du2

dt
= u2(β2u1 − β3u3),

du3

dt
= u3(β3u2 − β1u1).

If, for example, we take β1 = 0.3, β2 = 0.7, and β3 = 1.0, then the ODE behaves as
indicated in Figure 12. There is a family of periodic orbits around the fixed point
(0.5, 0.15, 0.35).

To show that in general we get pictures similar to the concrete example, we begin
by dividing each equation by the product of the betas that appear in it to conclude
that any fixed point ρ has

ρ3

β2
=

ρ2

β1
=

ρ1

β3
.

Recalling that the equilibrium densities must sum to 1, we conclude that

ρ1 =
β3

β1 + β2 + β3
, ρ2 =

β1

β1 + β2 + β3
, ρ3 =

β2

β1 + β2 + β3
.

To see that there is a family of periodic orbits surrounding the fixed point we write
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STOCHASTIC SPATIAL MODELS 705

Fig. 13

H(u) =
∑
i ρi log ui and note that

∂H

∂t
=
∑
i

ρi
ui

dui
dt

= c

(
u3

β2
− u2

β1

)
+ c

(
u1

β3
− u3

β2

)
+ c

(
u2

β1
− u1

β3

)
= 0,

where c = β1β2β3/(β1 + β2 + β3). Thus H is constant along solutions of the ODE.
The situation described above is similar to that of May and Leonard (1975) and

Gilpin (1975), who considered a system in which there were invariant sets of the form∑
i log ui = K. Gilpin (1975) observed that the “system is neutrally stable on the

plane u1+u2+u3 = 1, therefore stochastic effects (environmental noise) will cause it
to decay to a single species system.” This conclusion does not apply to the stochastic
spatial model. Well-separated regions oscillate out of phase, and the result is a stable
equilibrium in which each of the three types is present at a positive density.

Figure 13 gives the percentage of sites occupied by species 1 for the first 500 units
of time when we look at the system in windows of size 30×30 or 120×120, or average
over the whole 480× 480 system (which again has periodic boundary conditions). In
this case the densities oscillate on small length scales, but after an initial transient
are constant on large length scales. This leads to the following conjecture.

Conjecture 4.1. For any βi > 0 there is coexistence in the cyclic biased voter
model.

Rand and Wilson (1995) and Keeling et al. (1996) have considered the problem of
finding the “most interesting” scale on which to view the densities. This length scale
is what physicists would call the correlation length, so it should be surprising that its
rigorous definition is in terms of the variances of the empirical densities observed in
boxes of various sizes. To be precise, in two dimensions we would let ui(L) be the
number of sites in an L×L box in state i, and let vi(L) be the variance of ui(L). As
L→∞, vi(L)/L2 converges to a limit σ2

i . If one picks a constant δ > 0, for example,
1/5, then the correlation length can be defined as the last time vi(L)/L2 differs from
its limit by more than δσ2

i .
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706 RICK DURRETT

Example 4.3. Hawks and doves. Our next model is a spatial version of Maynard
Smith’s (1982) evolutionary games, called Hawks and Doves, whose interaction is
described by a game matrix. The three examples we will be interested in are given
by:

#1 H D
H .4 .8
D .6 .3

#2 H D
H .7 .4
D .4 .8

#3 H D
H −.6 .9
D −.9 .7.

Finally we list the general case, which serves to define notation we will use:

H D
H a b
D c d.

To explain the general game matrix we note that b is, for example, the payoff to a
hawk when interacting with a dove, while c is the payoff to a dove when interacting
with a hawk. When the population consists of a fraction p of hawks and 1 − p of
doves, then the payoff for hawks is ap + b(1 − p). We interpret ap + b(1 − p), which
may be positive or negative (see, e.g., game #3), as the net birth rate of hawks in
this situation.

Once we have decided on a game matrix, then following Brown and Hansell (1987),
the dynamics can be formulated as follows:

i. Migration. Each individual changes its spatial location at rate ν, and when it
moves, it moves to a randomly chosen nearest neighbor of x; i.e., it picks with equal
probability one of the four points x+ (1, 0), x− (1, 0), x+ (0, 1), x− (0, 1) that differ
from x by 1 in one of the coordinates.

ii. Deaths due to crowding. Each individual at x at time t dies at rate κ(ηt(x) +
ζt(x)).

iii. Game step. Let N = {z ∈ Z2 : |z1|, |z2| ≤ 2} be a 5 × 5 square centered at
(0,0). Let

η̂t(x) =
∑
z∈N

ηt(x+ z), ζ̂t(x) =
∑
z∈N

ζt(x+ z)

be the number of hawks and doves in the interaction neighborhood of x at time t, and
let

pt(x) = η̂t(x)/(η̂t(x) + ζ̂t(x))

be the fraction of hawks. Each hawk experiences a birth (or death) rate of apt(x) +
b(1−pt(x)), while each dove experiences a birth (or death) rate of cpt(x)+d(1−pt(x)).

If we assume that all sites remain independent, then we arrive at the following
mean field ODE for the densities of hawks (u) and doves (v):

(4.3)

du

dt
= u

{
a

u

u+ v
+ b

v

u+ v
− κ(u+ v)

}
,

dv

dt
= v

{
c

u

u+ v
+ d

v

u+ v
− κ(u+ v)

}
.

Note that a species-specific linear term in the net birth (death) rate, r, is easily
accommodated within this framework as part of a and b or c and d since u/(u+ v) +
v/(u+ v) = 1.
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STOCHASTIC SPATIAL MODELS 707

The hawks and doves model quite naturally divides itself into three cases, which
was the motivation for formulating the scheme announced at the beginning of this
paper. To motivate the division into cases, we change variables p = u/(u + v),
s = u+ v in the dynamical system to get

(4.4)

dp

dt
= (a− b− c+ d)p(1− p)(p− p0),

ds

dt
= s

{
αp2 + βp+ γ

}− κs2,

where

p0 =
b− d

b− d+ c− a
, α = a− b− c+ d, β = b+ c− 2d, γ = d− κs.

The equation for dp/dt is identical to the usual equation from population genetics for
weak selection with selection coefficient a−b−c+d. If the hawk strategy is never worse
than the dove strategy, i.e., if a ≥ c and b ≥ d, then p0 ≥ 1 or p0 ≤ 0 (ignoring the
trivial case a = c, b = d). The same conclusion holds if the dove strategy dominates
the hawk strategy; but if neither strategy dominates the other, p0 represents a mixed
strategy equilibrium. That is, if a fraction p0 of the players play the hawk strategy
and a fraction 1− p0 play the dove strategy, both strategies have the same payoff. To
check this note that

p0a+ (1− p0)b = p0c+ (1− p0)d if and only if p0 =
b− d

b− d+ c− a
.

When p0 ∈ (0, 1), it may be an attracting (Case 1) or a repelling (Case 2) fixed
point. Matrices #1 and #2 above are examples of Case 1 and Case 2, respectively.
Since we have discussed these situations at length, we turn now to the case in which
p0 = 1, i.e., when the hawk strategy always dominates the dove strategy. If a > 0 the
system is boring since the hawks will take over the system. However, if a < 0 and
d > 0, as in matrix #3, things are quite interesting. In this case, the hawks always do
better than the doves, but a population consisting purely of hawks dies out, so when
hawks are rare, the doves will regenerate.

This case is often called the prisoner’s dilemma after the two-person nonzero sum
game in which two individuals have a choice to cooperate (C) or defect (D). The
payoffs to the first and second players for their actions are given as follows:

C D
C (R,R) (S, T )
D (T, S) (P, P ).

Here T > R > P > S, so the defector strategy dominates cooperation, but double
defection leads to less happiness than the cooperation of each player. See Luce and
Raiffa (1957) or Owen (1968).

It is easy to see that in Case 3, both species die out in the ODE. Figure 14 gives
a picture of the ODE for matrix #3. From the picture it should be clear that the
fraction of individuals that are hawks increases in time. This observation leads easily
to the following theorem.

Theorem 4.2. If the initial condition for the dynamical system has u(0) > 0,
then (u(t), v(t))→ (0, 0).

Proof. From (4.4) it follows that p(t) = u(t)/(u(t)+v(t)) converges to 1 as t→∞.
Once p(t) gets close enough to 1, both growth rates are negative and the populations
decay to 0 exponentially fast.
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708 RICK DURRETT

Fig. 14

In contrast, we have the following conjecture.
Conjecture 4.2. In Case 3, hawks and doves coexist in our stochastic spatial

model, at least for fast migration.
A typical simulation of the interacting particle system in Case 3 begins with a

period in which the hawk population grows faster than the dove population until the
fraction of hawks is too large and both species start to die out. When the density gets
low we have a few doves who are completely isolated and give birth at rate d = 0.7.
These doves start colonies that grow and would fill up the space to the doves’ preferred
equilibrium density, except for the fact that along the way they encounter a few hawks
that managed to escape extinction. These hawks then reproduce faster than the doves,
the fraction of hawks grows, and the cycle begins again.

Figure 15 gives a graph of the density of hawks and doves vs. time for a simulation
on a 50× 50 grid, while Figure 16 shows the same statistics for a 150× 150 grid. As
the system size increases, the oscillations decrease. The explanation for this is simple:
if we look at a 150×150 grid, then the cycle of growth of the hawks fraction, decrease
of the population, and regrowth from isolated doves in any 50×50 subsquare is much
like that of the simulation on the 50×50 grid. However, the 150×150 system consists
of nine 50 × 50 subsquares which do not oscillate in a synchronized fashion, so the
cycles cancel each other out to some extent.

Example 4.4. Epidemics with regrowth of susceptibles. In this model the states
are 0 = susceptible, 1 = infected, and 2 = removed. Writing fi for the fraction of the
four nearest neighbors in state i, we can write the rates as

0→ 1 β1f1, 1→ 2 δ, 2→ 0 α.

Durrett and Neuhauser (1991) have shown the following theorem.
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STOCHASTIC SPATIAL MODELS 709

Fig. 15

Fig. 16

Theorem 4.3. If the epidemic without regrowth (i.e., when α = 0) does not die
out, then coexistence occurs whenever α > 0.

If α is small and we make the correspondence: infecteds = hawks, suceptibles
= doves, and removed = vacant, then the behavior of the model (when viewed in
windows of size 1/α) is much like the hawks–doves system.

i. Epidemics sweep through the system, wiping out most susceptibles.
ii. When susceptibles are scarce, the epidemic becomes subcritical and the density

of infecteds then drops to a low level.
iii. When infecteds are scarce, susceptibles increase. When the density of suscep-

tibles is large enough, one of the few surviving infecteds starts another epidemic.
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710 RICK DURRETT

For simulation results on this phenomenon, see Durrett (1995c). The conference
proceedings, Mollison (1995), in which that paper appears is an excellent source for
information on all sorts of epidemic models.

Example 4.5. WATOR. The name and the inspiration for the model comes from
A. K. Dewdney’s “Computer Recreations” column in Scientific American in December
1984. Each site can be in state 0 = vacant, 1 = occupied by a prey (fish), or 2 =
occupied by a predator (shark). The original model was defined in discrete time, but
we reformulate it in continuous time as follows:

i. Fish are born at vacant sites at rate β1 times the fraction of neighbors occupied
by fish.

ii. Each shark at rate 1 inspects q neighboring sites, chosen without replacement
from the neighbor set. It moves to the first fish it finds and eats it. A shark that
has just eaten gives birth with probability β2. A shark that finds no fish dies with
probability δ.

iii. There is stirring (also called swimming) at rate ν: for each pair of nearest
neighbor sites x and y we exchange the values at x and at y at rate ν.

The stirring mechanism automatically preserves the restriction of at most one
individual per site and has the mathematical advantage that the trajectory of any
single particle is just a continuous-time random walk. Of course, if one watches the
movements of two particles there is a (very small) correlation between their locations
due to the occasional stirring steps that affect both particles at the same time.

Letting ui(t) be the fraction of sites in state i at time t, and computing the rate
of change by supposing that adjacent sites are always independent,

(4.5)
du1/dt = β1u1(1− u1 − u2)− u2{1− (1− u1)q},
du2/dt = β2u2{1− (1− u1)q} − δu2(1− u1)q.

Here, the first term on the right represents the birth of fish onto vacant sites. To
explain the second and third terms, we note that u2{1− (1− u1)q} gives the fraction
of sites occupied by sharks times the probability a given shark will find at least one
fish when it inspects q neighbors, so β2 times this gives the rate at which new sharks
are produced. For similar reasons the fourth term represents the sharks who find no
fish to eat, got a bad coin flip, and were told to die.

To begin to understand the ODE we note that in the absence of fish, sharks can’t
breed and their density drops to 0. Conversely, in the absence of sharks, fish don’t
die and will fill up the space. The last two results give the direction of motion of
the ODE on two sides of the right triangle that we use for the possible states of the
system: Γ = {(u1, u2) : u1, u2 ≥ 0, u1 + u2 ≤ 1}.

Since fish do not die in the absence of sharks, there is a boundary equilibrium at
(1,0). Considering the second equation in (4.4) and setting u1 = 1− ε1 and u2 = ε2,
where the εi are small, shows that (1,0) is always a saddle point. This behavior
suggests the presence of a fixed point (ū1, ū2) with both components positive, a fact
which can easily be confirmed by algebraic manipulation. To do this neatly, and to
pave the way for later calculations, we will first rewrite the system in (4.5) as

(4.6)
du1/dt = A(u1)− u2B(u1),
du2/dt = u2C(u1),

where A(u1) = β1u1(1− u1),

B(u1) = β1u1 + {1− (1− u1)q},
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STOCHASTIC SPATIAL MODELS 711

Fig. 17

and C(u1) = β2 − (β2 + δ)(1− u1)q. In order for du2/dt = 0 we must have

(4.7) C(ū1) = 0 or ū1 = 1−
(

β2

β2 + δ

)1/q

.

Having found ū1 we can now set du1/dt = 0 in (4.5) to find that

(4.8) ū2 = A(ū1)/B(ū1).

To investigate the nature of the fixed point at (ū1, ū2) we let vi = ui − ūi be the
displacement from it in the ith component. Assuming the vi are small and using (4.7)
and (4.8) we arrive at the linearized equation

(4.9)
dv1/dt = Fv1 +Gv2,

dv2/dt = Hv1,

where F = A′(ū1) − ū2B
′(ū1), G = −B(ū1), and H = u2C

′(ū1). This ODE is
analyzed in Durrett and Levin (1999) with the following result.

Theorem 4.4. The interior fixed point is always locally attracting when q ≤ 3.
Conversely, if q > 3 and the values of β2 and δ are held constant, decreasing β1 leads
to a Hopf bifurcation that produces a limit cycle.

Figure 17 gives a picture of a case of the ODE with a limit cycle: β1 = 1/3
β2 = 0.1, δ = 1, and q = 4.

To make connections between our model and reaction-diffusion equations, we use
Theorems 2.1 and 2.2 to conclude that if we let the stirring rate ν →∞ and consider
our process on a scaled version of the square lattice in which the spacing between sites
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712 RICK DURRETT

Fig. 18

is reduced to ν−1/2, then the densities of fish and sharks converge to the solution of
the PDE:

(4.10)
∂u1/∂t = ∆u1 + g1(u1, u2),
∂u2/∂t = ∆u2 + g2(u1, u2),

where the gi are the right-hand sides of the equations in (4.5).
The next result, also proved in Durrett and Levin (1999), says that sharks and

fish coexist in the reaction-diffusion equation.
Theorem 4.5. Suppose that the initial conditions ui(x, 0) ≥ 0 are continuous

and satisfy u1 + u2 ≤ 1, and that each ui is not identically 0. Then there are positive
constants ρ, ε1, and ε2 so that for large t, ui(x, t) ≥ εi whenever |x| ≤ ρt.

In other words, the densities stay bounded away from zero on a linearly growing
set. Using (3) from section 2 then gives the following theorem.

Theorem 4.6. When the stirring rate is large there is coexistence.
The last result proves the existence of the stationary distribution but does not

yield much information about its spatial structure. To understand that, we turn to
simulation. Immediately, however, we run into the difficulty that while fast stirring is
convenient for making connections with reaction-diffusion equations, it is painful to
implement on the computer, since most of the computational effort is spent moving
the particles around.

To find a variant of the WATOR model that we can more easily simulate, we
note that at any moment, when a fish or shark at x inspects its neighbors, it sees a
set of sites that have been subject to stirring at rate ν since the previous time site
x decided to try to change. Since the flip rates stay constant as the stirring rate
ν →∞, this time is of order 1, and the neighbors will move a distance of order ν1/2.
With this in mind, we will replace stirring by choosing our neighbors at random (with
replacement) from a square of radius r = ν1/2 centered at the point of interest.

Figures 18 and 19 show results of computer simulations when r = 5, i.e., when
neighbors are chosen at random from an 11× 11 square centered at the point. Note
that densities oscillate when measured in a 50 × 50 window but are much smoother
in time in a 200 × 200 window. Again, this corresponds to our picture of Case 3
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Fig. 19

announced at the end of the introduction. Having mentioned long-range limits in the
simulation we should also close by stating the following conjecture.

Conjecture 4.3. When the range of interaction is large there is coexistence.
The problem here is stated for WATOR but also can be posed for predator-

mediated coexistence (Example 2.2).
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