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Summary. In this paper we will solve a problem posed by Iglehart. In (1975) 
he conjectured that if Sn is a random walk with negative mean and finite 
variance then there is a constant c~ so that (St,.j/c~nl/2[N>n) converges 
weakly to a process which he called the Brownian excursion. It will be shown 
that his conjecture is false or, more precisely, that if ES~ = - a < 0 ,  ES~ < oo, 
and there is a slowly varying function L so that P(SI > x)~ x -q L(x) as x -~  oo 
then (SE,,.j/nlS,,>O) and (St,,jnlN>n) converge weakly to nondegenerate 
limits. The limit processes have sample paths which have a single jump (with 
d.f. (1 - (x /a ) -q )  +) and are otherwise linear with slope - a .  The jump occurs 
at a uniformly distributed time in the first case and at t = 0 in the second. 

Introduction 

Let X 1, X2, ... be independent and identically distributed random variables 
which have E X I = - a < O ,  EX~<oo, and a distribution which is regularly 
varying at o o -  that is, there is a slowly varying function L so that 
P(XI>X)-,~x-qL(x) a s  X ---~ oo. Let S n = X I + . . . + X  . and let N 
= i n f { m >  l : S m < 0  }. In this paper we will obtain limit theorems for the se- 
quences of stochastic processes defined by 

and 

Y~(t)=(Stnt~/nLSn>O ) O<--t<~ 1 

Z,(t)=(St,,~l/nlN>n ) 0_<t<_l 

(here [nt]  denotes the greatest integer <nt) .  The key to determining the limit 
behavior of these processes is the following asymptotic formula for P(S, > 0). 
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being supported by funds from NSF grant  MCS 77-02121 
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Theorem 2.1. A s  n ~ o o  

P (S n > O)/n P (S 1 > n a) ~ 1. 

From this result we get that n 2 P(S 1 > n a) 2 ~ 0  and see that if Sn > 0  then it is 
because there was one jump bigger than na in the first n steps. Since the 
distribution of (X 1 . . . .  X,  fS,>0)  is exchangeable the jump occurred at a uni- 
formly distributed time. Combining the last observation with the fact that 
P(S 1 > x) ~ x -q L(x) leads easily to 

Theorem 3.1. A s  n ~ o o  

(S[ml/n[Sn>O)~ Ja, q l ( e~ . ) - a .  

where Ja, q and U are independent random variables with 

P(Ja, q~x)=(x/a)-q for x > a  

and 
P ( U < t ) = t  for 0_<t< l .  

Using this result it is easy to guess what the limit theorem for (S[,.]/nrN> n) 
should be. The last result shows that S, > 0 only if there is a jump bigger than n a 
in the first n steps so if we have S k > 0  for all 1 _< k < n then there must have been 
a large jump which occurred very early, i.e. o00 in the sequence. The next result 
shows this reasoning is correct and in fact that the jump occurs at a time which 
is 0(1). 

Theorem 3.2. I f  U.=inf{ j :  S j _ 1 > h a }  then 

P ( U . = j r N  > n ) ~  P{S f>O 1 < i < j } / E N  

and (S[, .]~v,/nlN > n ) ~  J , , q - a ,  

The reader should note that the last result needs to be carefully formulated 
so that there is weak convergence 

lim (So/nlN > n) = 0 

while 

lim lira (S[ntjn [ N > n) = J,,  q > a > 0. 
t~.0 n~cx~ 

Since O ~ f = f ( t )  is continuous for t = 0  and for all but a countable number  of 
t~(0, 1) this means that (S[n.lOTlN>n) cannot converge weakly in D. This defect 
could be remedied by embedding D in the class of compact  subsets of R x [-0, l ]  
and using the topology which arises from Hausdor fs  metric on that space (see 
Kelley (1955) p. 131) but this would not improve the result. 

Finally we would like to comment  on the assumptions we have used. The proof  
of Theorem 2.1 relies on the assumed shape of P ( X  1 >x)  and uses the fact that 
E X  I < 0  and EX~ <oo.  The moment  assumptions can be weakened (by consider- 
ing convergence to stable laws) but the assumption that P ( X  1 > x ) ~  x - q  L(x) for 
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some qE(0, oo) is necessary for ( X a / n l X  1 >na)  to converge to a nondegenerate 
limit and hence is necessary for (SE,./nIS,>O) and (SE,.~/nLN>n) to converge to 
the limits indicated above. We believe that if E(X~)p=oo for some p < o o  and 
P { X I > x }  is not regularly varying as x--,oo then (SEn.1/n]S,>O) and 
(Srn.j/n]N>n) do not converge in distribution. This result would imply that 
Iglehart's conjecture is false when E ( X [ )  p = oo for some p < ~ ,  and suggest that 
the results of Kao (1976) and Durrett (1977), who verified the conjecture for 
distributions satisfying Cram6r's condition, are close to the best possible. 

Section 2 

In this section we will prove 

Theorem 2.1. I f  S n is a random walk with ES 1<0, ES21 <oo, and 
P(S 1 >x)~x-qg(x) then as n - .oo  

P(S,  > O)/n P ( S  1 > n a) ---4 1. 

In the next section, which may be read before this one, we will apply this 
result to obtain our conditioned limit theorems. 

The proof of Theorem 2.1 will be accomplished in two steps. We will first 
prove that the lira inf> 1 and then in Lemma 2.3 that the lim sup< 1. For the 
first step we need only assume that EISx] <oo. 

Lemma 2.1. Let  S n be a random walk with ES 1 =0. I f  a and ~ are positive then 

liminf P(S,, > n a) > 1. 
.~oo n P ( S i > n ( a + e ) ) -  

Proof. If we let b = a + e and let N 2b be the number of j < n with S j -  S j_ 1 > n b 
then 

P ( S , > n a ) >  ~ P ( S , > n a l  N~"b---- k) P(N~"b = k). (1) 
k = l  

It follows from the definition of N 2b that 

P(N~ - k ) =  ( l _ f ( n b ) ) k F ( n b ) ,  k 

where F ( x ) = P ( X  1 <x).  If we let 

and 

then 

G "b (x) = (F(x) - F(nb))/(1 - F(nb)) 

H "b (x) = (F(x)/x F(nb))/F(nb) 

P ( S . > n a l N 2 b = k ) = l -  ,b .b (Gk *H,_k)(na)  
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nb where G~ b and Hn_ k denote the kth and ( n - k ) t h  convolut ions of  G nb and H nb. 
N o w  a = b - ~ so 

1 - (G~ b * H~ b_ k) (n a) > (1 -- G~, b (n b)) (1 - H nb_ k ( --  n 8)). 

F r o m  the definition of  G nb we have G~b(nb)=O for all k-> 1 so the first term on 
the right hand  side is 1. To see that  the other one converges to 1 we observe that  
E X  1 = 0 so if we pick M large enough then ~ x dHM(x)> - e .  F r o m  the weak law 
of  large numbers  we have 1 - H ~ ( - n e ) ~ O .  F r o m  this it follows that  for each 
fixed k >  1 

liminf 1 - H~b_k(-- n E) > lira 1 -- H~_k( -- n ~) = 1. 

At this point  we have shown that  if k > 1 then P(Sn > nalX~b= k ) ~  1 so to 
complete the p roof  it suffices to observe that E l X l l < o o  so we have 
nP(X~ > n b ) ~ 0  and 

P ( N 2  b = 11 
_F(nb)~-i  ~ e  o = 1. 

n P ( X  1 > n b) 

The reader should observe that  

P(N2 b = I) 
~0 for k_->2 

nP(X,  > nb) 

so we cannot  get a better lower bound  by using more  than the first term in (1). 
L e m m a  2.1 shows that  the tim inf of  the expression in Theorem 2.1 is __> 1. To 

prove that  the lim s u p < l  we need an upper  bound  on P (S ,>0) .  This is 
furnished by the following result which is an easily proved extension of  a 
theorem of Nagaev  (1965). 

L e m m a  2.2. Let S~ be a random walk with mean zero and variance one. I f  p > 2 
and Cp E ( X [ ) P  < oo then there is a constant Kv < oo such that whenever x > 0  and 
y is sufficiently large (that is, y > p  log ) , > l o g  nKp) we have 

P(S .>x)<n(1  -F(y) )  

+ e x p  (I +(2 +Cp)n ( p l ~ 1 7 6  2) \Yv[nKp] ~/'.! 

If  we let x = n a  and y = n b  in L e m m a  2.2 then since 

exp (1 + (2  + c v ) n  (plog(nb)-log(nKP)nb ) ) ~ e 2  

we have that  if n is sufficiently large 

I nKp ~a/b 
1 - F~(n a) <= n ( 1  - F(n  b)) + 3 \n p bp ! . 
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! 
If  we let K v = 3 (Kp/bP) a/b then we have 

1 - F. (n a) _. n(1 -v) a/b 
l i m s u p -  _< 1 + ' l imsup (7) 
. ~  n(1 - F ( n b ) ) -  Kv . ~  n(1 -F(nb) )"  

With this inequality we can easily prove 

L e m m a  2.3. Let S. be a random walk with mean zero and finite variance. I f  there 
is a slowly varying function L so that P (X  1 > x ) ~ x  -q L(x) as x ~oo then 

P(S ,>na)  
lim sup nP(X 1 > n ( a -  ~)) < 1 

whenever a > ~ > O. 

Proof. Let a > e > 0 ,  a / ( a - e ) >  1 and q > 2  so we can pick p < q  so that  ( p - 1 ) a / ( a  
- e )  > q - 1 .  If  we do this then 

n(1--p}a/(a--e) = (1--p)a -(1--q) L ( n ) = 0  
l imsup n ( 1 - F ( n ( a - e ) ) )  l imsup n a-~ 
n~oo n~oo 

since L is slowly varying (see Feller (1971), p. 277). The desired result now 
follows from (7). 

Combining  Lemmas  1 and 3 proves Theorem 2.1. 

Section 3 

In this section we will apply the results of  the last section to obtain limit 
theorems for (St. . jnlS.>O) and (S~..~/n[N>n). The first result is an easy con- 
sequence of Theorem 2.1. 

Theorem 3.1. Let S n be a random walk with mean zero, finite variance and 
P(S 1 > x ) ~ x - q L ( x ) .  Then for all a > 0  

(SE..~/nIS.> n a ) ~  J ~, ~ l(v__<.) 

where 

and 

P(J~, q > x) = (x/a) -q for x > a 

P ( U < t ) = t  for 0_<t_< 1. 

Proof. We start by observing that  

nP {X 1 > n a } > P {  max S 2 - S j _  1 >na} 
l < = j < n  

n 2 

> n P { X  1 >na} - T  (P{X1 > na})2 

and nP {X 1 >na} ~ a  -1 E I X 1 ;  X 1 >na] ~ 0  so 

P {  max S j - S j _  1 >na} 
l < j < n  ~1. 

nP {X 1 >na} 
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F r o m  the computa t ions  above it also follows that 

P{N~"~=I}/P{ max S ~ - S j _ l > n a } - + l  
1 < = j < n  

SO 

P {N2~= I}/P{S,>na}--+ I. 

The next thing we want  to show is 

P {N"~ = 1, S, >na} /P {S, > n  a} --* 1. 

To do this we observe that  if M ,  = max S j - S  j_ ~ then for b > a 
l < = j < n  

P(M.>nblN."~= l ) = l _ F ( n a  ) 

and 

R, Durrett 

SO 

and consequently 

and 

t l a  _ _  n a  P(J~>nbIN~ = I ) - P ( J ,  > n b ) =  
1 - F ( n b )  
1 - F ( n a )  

U~' _,  N'"---1 ~(U,J~,q)  - - ~ ,  /~/ n 

) lw~a<=,.)[N~ a=l  ~ J , , q  1cv__<. ). 

P(S ,>  na] N~,"a __ l, M , >  nb)>= l - H,"b_ 1 (n(a-b))  

n b  where H , _  1 is the ( n - 1 ) t h  convolut ion  of  H'b(x)=(F(x)AF(nb))/F(nb).  F r o m  
the p roof  of  L e m m a  2.1 we have that  1 - H ~ b _ x ( n ( a - b ) ) ~ l  if a<b  so using the 
results above we have 

lim infP(S,  > n a]N~ a = 1) > (b/a) -q 

for all b > a. Since P {S, > n a}/P {N,"a = 1} ~ 1 the last result implies 

P(S n > n a, N, "~ = 1)/P(S, > n a) --+ 1. 

F r o m  this it follows that to prove Theorem 3.1 it suffices to show 

El n a  (S[,.j ]N~ = l )~J~,q  l(u=<.). 

n a  _ _  Let U,' - i n f { j :  S j - S j _ ~  >na}. 
n a _ _  Let J, -Sv~o Sv.~-l .  

Since Sk, k >  1 is a r a n d o m  walk, U~ a and J~" are independent.  It is easy to 
see that  

?la n a  _ _  P(U; = k] N; - l) = 1/n 
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To complete the proof we want to show that if we let 

n na R k - S k - J ~  l ( v ~ k )  

then 

283 

(RE~.]/nlN2 ~ = 1) ~ o. 

n h a _ _  this we observe that the process ( R k l ~ k ~ n I N  ~ --1) can be con- 

(S~,. 1 ~ v.o/n N > n) ~ d,  q - a. 

Proof. We will begin by showing that if c < a and c > a/2 

P(J~,~>n[N>n)~O.  

and 

To do 
structed by taking a random walk which takes steps with distribution H "a and 
deleting a step chosen at random. From this we see that if S~ a is a random walk 
which takes steps with distribution H na then on {N"~= 1} 

sup - t  ~ xH"~(dx) 
0_<t_<l 

s~~ !~ ~ 21~xH"~ 
< sup ~ - -  xHna(dx) q 

l < j < = n - - 1  n 

Now from Doob's inequality (see Chung (1974), p. 116) we have that 

P (ldj7 

n a = nF(na) 

Since ~ xH"~(dx )~O this implies 

(R~.j/nlN~ ~ = 1) ~ 0  

and completes the proof of Theorem 3.1. 
Our next goal is to compute the limiting behavior of (S~,.l/nlN>n). Our 

main result is 

Theorem 3.2. Let S, be a random walk with mean - a  and f ini te  variance and let 
U 2 ~ = m i n { j : S j > n a } .  I f  there is a slowly varying function L so that 
P(X 1 >x)~"x qg(x)  as x ~ c ~  then for all j>= 1 

P(U"~=j[ N > n) ~ P(S~ > O 1 <__i < j ) /EN,  

P ( N > n ) ~ P ( X I > n a  ) ~ P ( S i > 0 1 ~ i < k )  
k = l  
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To do this we observe that 

P(J~  > n, N > n) <~ P(J~  > n, S./z > O, S,>0)  

.c 2 = P(J .  > n~ , S./2 > O) 

�9 ~ P ( S . > O ] S . / z = n x  , J'~C>n) 
x 

�9 P(S./2 =nx[J~r S./z >0). 

To obtain an estimate for the right hand side we observe that from the proof 
of Theorem 2.1 we have that if a' =a/2  

P(J~[ > n/2, S./2 > 0) ~ 1 (1) 

P ( n c >  X 1 >na')  

and from the proof of Theorem 3.1 we have that e > 0  

P(J~C > n/2, n ( c - a '  + e) > S./2 >0) 
91. 

P(J~C > n/2, S./2 > O) 

n c  lq  N o w  P(Sn>O[Sn/2 = n x ,  Jn > ) is an increasing function of x so if e > 0  

P(S.>O[S./2 = nx ,  J ~ > n )  P(S./2 =nxlJ~C>n/2,  S./2 >0) 
x 

< P ( S , , > O l S . / 2 = n ( c - a '  + e), J ~ > n )  

+ P(S./z > n (c - a' + e) lJ~ c > n/2, S./2 > 0). 

From (1) and (2) above we have that if a - c - e < c  and e < c  

P(S./~ > - n ( c -  a' + e)lJ',',~/~ > n) 
.1 

n 
-~ P(nc  > X 1 > n ( a - c -  e)) 

lira P(S" / z>n(c -a '+e)]J~C>n/2 '  S"/z >0) =0. 
n ~ o o  n 

-~ P ( n c >  X 1 >ha' )  

(2) 

Letting ~ = ( a - c ) / 2  and using the formulas above gives 

lira sup - -  

p(j,~c > n, Sn/2 > O, S n > O) 
- < 1 .  

P ( n c >  X 1 >na')  2P(X1 >ne)  

From the proof of Lemma 2.1 We have that if b > a  

lira inf P ( N  > n) /P(X 1 > n b) > 1. 
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Combining this with previous inequalities gives that 

lira sup P(J~C > n lN > n) 
n ~ o o  

< lim sup 

t/ t /  
~ P(nc > X 1 >ha') ~ P(X 1 >n ~) 

, ~  P(X 1 >nb) 
/ a ' \ - q  n 2 

<limsup,~ (~ )  - ~ P ( X l > n e ) = O  

which proves the desired result. 
Having established the preliminary result we now begin the proof of the 

theorem. To prove the first statement we pick c < a and write 

P(U~ ~ =j, N > n) 

=P(S~C>0 1 <i<j ,  S j - S  j_ 1 >nc, Nj> n). 

Now P(U,~ ~ =j, N > n) < P(S i > 0 1 <_ i <j)  P(S]-  S j_ 1 > n c) and if b > a it is 

>P(S'i'c >0  1 < i < j) P ( S j -  S]_ i > nb) P( inf 
j<_k<_n 

Sk-S j>nb) .  

Since we have shown in the first part of the proof that 

P(U2~=j ,  N > n)/P(N > n) ~ I 
j = l  

it follows from the two estimates above that if M <oo 

liminf PtU"c-" " -J;' N>n)>- P(Sm>O 1 _<-i<j)(b/c) q (3) 

, ~  P(N>n)  - ~ p ( s i > O , l < i < k )  
k=l  

(the sum in the denominator is finite since we have from Theorem 2.1 that there 
is a C<oo so that 

P(s,>O,l<__i<k)<= P(S >Ot 
k=l  k=l 

< C  ~ kF(Xl>ka)<oo  since EX~<oo). 
k=l  

to 
Now if we let M'Foo, b+a, and c'~a then the right hand side of (10) converges 

Since ~ p ] = l  
j = l  

result. 

pj=P(Si>O l <=i<j P(Si>O, 1 < i<k) .  

this shows that P(U,'~a=jIN>n)~pj which proves the first 
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To obtain the asymptotic formula for P(N > n) which is given in the theorem 

and 

S O  

and it is clear that 

so we have 

P(N>n)  (c)q ~ p(s~>O, l <i<k)" 
lira inf P( X1 > n a) > 

n ~  = , b /  k =  1 - -  

To prove the last result we begin by observing that if h is a bounded 
measurable function from D to R 

E(h(St, .]vgJn)lN >n, U~" <n) 

a P~U"' N = E(h(St,qvj/n)[N>n, U~'" =if t , =J" >n,  U"~ ~n)  
j=i 

and from the previous section of the proof  we have that (U~aIN > n) converges in 
distribution so to compute the limit of the left hand side above it suffices to 
consider the limit of (St, .]vjn[N>n, U~"=j) for each fixed j. 

The first step in doing this is consider the distribution of (Sj/nIN >j, U~ "a =j). 
F rom previous results we have that if b > a 

P ( S j -  S j_ 1 > n b l U2" - j )  ~ (b/a) -q 

P (N>j ,  U' . 'a=j) /P(N>j-1,  U . ' " = j ) ~ I  

P ( S j -  S j_ ~ > n b l U,"" =j, N >j)  ~ (b/a)-q. 

To estimate the size of Sj_I/n we observe that 

P(S i_ ~ > x) 
P(Sj_ 1 > x l n > j ,  U,"a=j) < P(N>j)  

(Sj_I/nIN>j,  U~a =j)  ~ 0. 

Combining this with the previous result gives 

h a _ _  * (Sj/n[N>j, U~ - j )  Ja, q. 

we observe that 

P f U " ~  = 1 N>n)  
P ( N > n ) = ~ - '  

P(U~ = t i N > n )  

so if c < a < b  then it follows from (10) and a similar upper bound that 

l imsup p(x1  >na) <= P(Sj>0,  1 <i<k)  
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T o  c o m p l e t e  t h e  p r o o f  a t  t h i s  p o i n t  i t  suff ices  to  s h o w  t h a t  

P(N  >j, U,~ a = j ) /P (N  > n, U, "a = j )  ~ 1 

a n d  t h a t  if  x ,  ~ x > a t h e n  

(St,4v j /n lS j= xnn, Nj> n ) ~  x - a .  

T h e  s e c o n d  r e s u l t  fo l lows  f r o m  t h e  o b v i o u s  fac t  t h a t  if x , ~ x  >a  

(SL,.lv j /nISj= x , n ) ~  x - a  

a n d  

P(N~>nIS~= x , n ) ~  l. 

T o  p r o v e  P ( N > j ,  U , ~ = j ) ~ P ( N > n ,  U2"=j) we use  t h e  l a s t  t w o  

o b s e r v e  t h a t  for  al l  b > a 

P(Sj - S j_ t > n b l U,~ ~ = j )  ---' (b/a) -q 
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