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A B S T R A C T 

In (1994) Durrett and Levin proposed that the equilibrium behav
ior of stochastic spatial models could be determined from properties 
of the solution of the mean field ordinary differential equation (ODE) 
that is obtained by pretending that all sites are always independent. 
Here we prove a general result in support of that picture. We give a 
condition on an ordinary differential equation which implies that den
sities stay bounded away from 0 in the associated reaction-diffusion 
equation, and that coexistence occurs in the stochastic spatial model 
with fast stirring. Then using biologists' notion of invadabihty as a 
guide, we show how this condition can be checked in a wide variety of 
examples that involve two or three species: epidemics, diploid genetics 
models, predator-prey systems, and various competition models. 

Received by the editor July 2, 1999; and in revised form June 23, 2000 

Key words and phrases: stochastic spatial models, predator-prey sys
tems, competition models, epidemics, ecology, genetics 
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Introduct ion . In the stochastic spatial models we consider, space 
is represented by a grid of sites, Z d , the <i-dimensional integer lat
tice, each site can be in one of a finite set of states S and each site 
changes its state at a rate that depends on its state and the states 
of a few nearby sites. In the jargon of probability theory these mod
els are interacting particle systems. See Liggett (1985,1999), Durrett 
(1995,1999). As the reader will soon see, these models which arose 
from physics, are very useful for studying a variety of systems in ecol
ogy and genetics. 

The goal of this paper is to develop a methodology for proving 
coexistence of species in the presence of fast stirring, i.e., when the 
values at adjacent sites are exchanged at a large rate v. Here, coexis
tence means that there is a stationary distribution that concentrates 
on configurations that have infinitely many sites in each state s <E S. 
The assumption of fast stirring greatly simplifies proofs since, as we 
will explain in more detail later, systems with stirring at rate v on 
rescaled lattices u~1/2Zd in the limit as v —•* oc become deterministic 
and approximate solutions of partial differential equations. 

We will eventually apply our method to to more than ten families 
of examples. To explain have in mind, we will first consider one 
example in detail. 

E x a m p l e 1. A P r e d a t o r - P r e y S y s t e m . The states of the system 
are 0 = vacant site, 1 = fish (prey), 2 = shark (predator). For sim
plicity, restrict our attention to two dimensional space. Inspired by 
Durrett and Levin (2000), we define the system in continuous time as 
follows. 

(a) Fish die at rate Si. Sharks die at rate 82-

(b) Fish are born at vacant sites at rate /3i/ i , where f\ is the fraction 
of adjacent sites in state 1. 

(c) Each shark get hungry at rate 1. When hungry it inspects a 
random number Q of neighboring sites moving outward in a spiral 
pat tern from its current location. To describe the pat tern in symbols, 
let ||z||00 = max{|zi | , \z21}• Start at (1,0) and search the eight points 
with 1121 |oo = 1 in counterclockwise order ending at ( 1 , - 1 ) . Move to 
( 2 , - 1 ) and search the 16 points with ||^||oo = 2, again in counter
clockwise order ending at (2, —2). Move to (3, —2), etc. In a picture 
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2 Mutual Invadability Implies Coexistence 

the pattern is 

I T 

I I T T 
i I T 
I T 

(d) The shark stops at the first fish it finds and eats it. A shark that 
has just eaten gives birth with probability j32 to a new shark that is 
placed on the starting square. A shark that finds no fish returns to its 
starting square. These conventions about shark placement are needed 
to guarantee there is never more than one shark per site. 

Before moving on the the analysis, we will make an assumption 
that will be the default condition throughout the paper. 

Generic Parameters. If no assumptions are stated, then all transi
tion rates referred to in the definition of the model are positive. 

In some cases, we will want to set parameters to 0 in order to include 
some of the examples which were discussed earlier in the literature 
that had fewer parameters, and we will explicitly say so. In general, 
we can treat approximations of these by replacing the 0 parameters 
by a very small positive values. 

We will begin our analysis with the special case of the predator-
prey model in which Q = q is constant, a case that was considered by 
Durrett and Levin (2000). The first step in their analysis, and in ours, 
is to look at the mean field ODE which is obtained by pretending that 
the states of all sites are always indepedent. In this case the mean 
field ODE is: 

(i) f 
du2 

~dt 

= PiUi(l - ui - u2) - 8\U\ - u2{\ - (1 - u\)q} 

= (32u2{l - {I - Ul)q} - 52u2 

The first term on the right represents the birth of fish onto vacant 
sites, the second death of fish. The last term on the second line refers 
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Introduction 3 

to death of sharks. To explain the remaining terms, we note that 
^2(1 — (1 — ui)q} gives the fraction of sites occupied by sharks times 
the probability a given shark will find at least one fish when it inspects 
q neighbors, so (32 times this gives the rate at which new sharks are 
produced. 

The generalization to a random Q is straightforward. If we let 
g(u) — 1 — E(l — u)® be the probability a fish is found during the 
search then the mean field ODE becomes 

~ = Piui(l -ui -u2) -5ui -u2g{ui) 
(2) f 

— = P2u2g(u1) -S2u2 

The reason for interest in the general form is that by choosing suitable 
distributions we can generate other functional forms considered in 
ecology. It is interesting to note that two of the most commonly 
used examples in ecology come from two of the most commonly used 
examples in probability. 

I. Q has a geometric distribution: P(Q — n) — p(l — p ) n _ 1 for 
n > 1. In this case 

»(») = i - E r t i - r i - ( i - ) « = i-1_(f!~"1
)_,,) 

u Bu 
p + (1 — p)u A + u 

where B = 1/(1 — p) and A = p / ( l — p). This is a Holling Type 2 
functional response, see Holling (1959), or Chapter 3 of Hassell (1978). 

II. Q has a Poisson distribution: P(Q — n) = e_AAn/n!, for 
n > 0. In this case 

g{u) = 1-^2 e~ i t1 ~u)q = 1- e-xex^-u) = 1 
q=0 

which is the form introduced by Nicholson and Bailey (1935). 

The most important feature of the nonlinear terms in I and II is that 
the per capita birth rate for the predator tends to a positive limit as 
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4 Mutual Invadability Implies Coexistence 

the density of prey u\ —> oo, rather than increasing without bound as 
in the linear case. 

To prove coexistence for the linear case q = 1 of the predator 
prey model, Durrett (1992) used a Lyapunov function for the mean 
field ODE, i.e., a function that is decreasing along solutions. How
ever, in order to keep densities from hitting zero this is overkill. One 
only needs to know that solutions stay away from the boundary. To 
introduce the relevant generalization of Lyapunov function, consider 
the ODE 

dui 
—— — ti(u) 
dt J v ; 

defined for u G T = {u e R n : Ui > 0 ,^i + • • • + un < 1}, and to 
have a unique solution suppose that the fi are Lipshitz continuous. 
A continuous function cj) : T —> [0, oo] is said to be a repelling function 
for the closed set G in the ODE if 

(i) G = {u e r : c/)(u) = oc} 

(ii) for each S > 0 there is a cs > 0 so that 

d(j)(u(t)) jdt < -cs when M + S < (j) < oc 

Note that the constant in (ii) is uniform over (M + 5, oo). At first this 
may seem stronger than 

(ii7) for each 0 < S < K < oo there is a CS,K > 0 SO that 

dcf)(u(t))/dt < -CS,K when M + 5 < (p < M + K 

However, if we consider i[)((j){u)) where ip increases rapidly then the 
conclusion (ii7) can be improved to (ii). 

It should be clear from (i) and (ii) that we can replace (j) by 
max{0, M} and assume without loss of generality that (j) > M. With 
a little undergraduate analysis, see Section 9, one can show that 

Propos i t i on 0. Suppose (i) and (ii) hold. If c/)(u(0)) < oc then 

\imsup</)(ui(t)) < M 
t—+oo 

In view of (i) this implies that at large times Ui(t) stays bounded away 
from G. Let 

T+ = {u G r : m > 0 for all i} and T° = T - T + 
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Introduction 5 

be the points in T where at least one coordinate is equal to 0. When 
the conclusion of Proposition 0 holds for G = T0 , the ODE is said to 
be uniformly persistent or permanent. Hofbauer (1988) used repelling 
functions and a weaker concept called average Lyapunov functions to 
prove permanence for ODE in general and for Lotka-Volterra systems 
in particular. See Hofbauer and Sigmund (1998) for an account of 
this method and its application to a number of concrete examples. 
The reader will see this book cited numerous times in Section 2. We 
would like to thank Odo Diekmann for bringing Hofbauer's results to 
our attention. 

In order to prove coexistence of species in the stochastic spa
tial model using the methods of Durrett and Neuhauser (1994), we 
must prove a persistence results for the corresponding RDE (reaction 
diffusion equation), 

—-̂  = Am + fi(u) 
dt JlK J 

where A == d2ujdx\ + • • • + d2ujdx\. To do this, we let l o g - z = 
max{0, — log z} be the negative part of log z and add three more con
ditions: 

(hi) (j)(u) is convex 

(iv)^)<c(l + Etilog~^) 

(v) fi(u) > -OL%Ui 

A function satisfying (i)-(iv) is said to be a repelling function for G 
in the reaction diffusion equation (RDE). The last condition, (v), 
is a technicality concerning the ODE. In most examples, the rate at 
which the process can leave state i is bounded so (v) holds. Note that 
we did not assume fi{u) < CiUi, since this would for example rule out 
epidemic models where removed individuals arise only from infected 
individuals. 

Propos i t i on 1. Suppose a repelling function exists for the RDE, (v) 
holds, the initial condition tx(0, x) £ Y is continuous, and has 

Ui(0,x) > iji > 0 when x G [—5, S]2 

There are constants K > 0 and to < oc, which only depend on rji, 5, 
and e so that 

(f)(u(t, x)) < M + e when \x\ < nt, t > to 
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6 Mutual Invadabihty Implies Coexistence 

In words u(t,x) stays bounded away from G on a linearly growing 
set. Proposition 1 is essentially due to Durrett (1992). However, 
since the proof was given there only for a special case, and we will 
need its sharper conclusion in our more general setting, we will give 
a complete proof in Section 8. The proof for the new general result is 
shorter than the previous one for the special case. 

The conclusion of Proposition 1 is most informative when G — T0, 
in which case it implies that probabilities are bounded away from 0 
on a linearly growing set. However we will also use this result several 
times for smaller G C dT (see Examples 2.2, 2.3, and 2.5). The 
uniformity in Proposition 1 is needed so that we can use the methods 
of Durrett and Neuhauser (1994) in the form explained in Section 9 
of Durrett's (1995) St. Flour notes. If we make the assumption: 

(•) There are constants Ai < CLI < b{ < Bi, L, and T so that if 
Ui(0,x) G (Ai,Bi) when x G [—L,L]d then Ui(T,x) G (ai,bi) when 
xe [-3L,3L]d. 

then we can state Theorem 9.1 of Durrett (1995) as: 

Proposition 2. If (*) holds then there is coexistence for the stochas
tic spatial model with fast stirring. 

Combining Propositions 1 and 2, gives 

Proposition 3. If (i)-(v) hold then there is coexistence for the 
stochastic spatial model with fast stirring. 

As the reader can see from the citations, all of this was known 
in 1995. What is the new here, is the realization that the biologists 
notion of invadabihty leads to a systematic procedure for constructing 
such functions. To explain this type of reasoning, we will apply it to 
our predator prey model. To begin, we note that if u\ = 0 (no fish) 
then sharks cannot give birth so u2(t) j 0. On the other hand, if 
U2 = 0 (no sharks) then 

—j- = (3iui(l - ui) - 5ux = (3iui I -!——- - ui j 

so if (3i > 5 l5 and 1^(0) > 0 then m(t) -> (/3i - 5i)//?i. 
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Introduction 7 

The last observation implies that if U2 is small then u\ will equili
brate to a density o\ — (f3\ — Si)/Pi. When the l 's are in equilibrium, 
the 2's satisfy 

—^ =u2(f32g(vi) -52) 

and so they will increase if 

(3) Ma) > S2 

Abstracting from these observations we make the following defi
nitions. 

Definit ion 1. We say that 2's die out, and write 2 j 07 if 

du2Jdt < 0 when u\ — 0 and u2 > 0 

Definit ion 2. We say that l's equilibrate at density ai, and write 
1 - • tTi, if 

ui(t) —• <J\ as t —> oc when 2x2 = 0 and i£i(0) > 0. 

Definit ion 3. We say that species 2 can invade species 1 in equilib
rium, and write 2 >- 1, if as u —• (cri, 0) through T + we have 

l imml — > 0 
u2 dt 

To help the reader remember the notation, we remark that the TeX 
name for the symbol we have just defined is \succ which is short for 
"successor." In words, we could say 2 succeeds 1, but we will usually 
read this as 2 invades 1. 

For the sake of symmetry, it is natural to write "technical condi
tions" Pi > Si for the equilibrium distribution GI > 0 in invadability 
language as: 

Definit ion 4. We say that i y 0 if as u —> 0 inside T + we have 

lim inf -^ > 0 
ui dt 

As the example dui/dt = U\(CTI — u{) shows 1 —» <TI does not imply 
1 >- 0. Having introduced these definitions we can state our predator-
prey result abstractly as 
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8 Mutual Invadability Implies Coexistence 

Theorem 1. If 2 J. 0, 1 y 0, 1 -> <n, and 2 y 1 in the mean field 
ODE then there is coexistence in the stochastic spatial model with 
fast stirring. 

Proof. See Figure 1. We begin with the edge r ? = {u e T : u\ = 0}. 
A little calculus (see Proposition 1.2) shows that if we suppose (a) 
2 | 0 and (b) 1 ^ 0 , and positive constants Ai, ut, and 771 are chosen 
appropriately, then hi(ui,u2) = u2 - Xi logui has 

(5) dhi/dt < -v\ < 0 when 0 < ux < 771 (and ueT) 

In words, hi is a repelling function for T?. To prepare for the next 
step of the construction we have to tighten hi so that it is strictly 
decreasing in a strip near r ? . To do this, we first pick Mi large enough 
then the function hi = hxV Mi is only nontrivial when 0 < m < m, 
then we take 771 < 771 so that hi > Mi when 0 < ux < 771. 

I 

<^2_ 

Figure 1 

Moving to the other edge r£ = {u G T : u2 = 0}, we let <n = 
(Pi ~Si)//3i be the equilibrium and g(u) =u-<n logu. Since g'(u) = 
1 - ui/u and g"(u) = <Ji/u2, g{u) is convex and has a minimum at 
CTI. Since we have assumed 1 - • CTI, # is a convex Lyapunov function 
for the ODE on T% Let and ^2(«) = (e2 - w)+2. A little more 
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Introduction 9 

calculus (see Proposition 1.1) shows that if (a) 1 —> o\ and (b) 2 >~ 1, 
and positive constants 92l A2, r\2 < £2, ^2 < ^l? a n d 52 are chosen 
appropriately, then 

(6) h2(u1,u2) = #1(^1 + #2^2(^1)^2) - A 2 logu 2 

has (i) dh2/dt < —v2 < 0 when e2 < ui < 1 and 0 < u2 < r\2 

and (ii) dh\jdt < B2 when 0 < u\ < e2 and 0 < u2 < r]i. 

To see the reason for the form of ip2(u), note that when u\ > e2 

then h2{u) — gi{ui) — \ 2 logu 2 . In words h2 is a repelling function for 
{u G T : u2 = 0, u\ > e2} and does only a bounded amount of damage 
near the corner (0,0). The region in (ii) is not a problem because 
of (5). To finish up now, we truncate h2, that is, we pick M2 large 
enough so that the function h2 = h2 V M2 is only nontrivial when 
0 < u2 < r]2. Finally we pick K > 1 large enough so that Kh\ + h2 

is a repelling function for T0 , and the desired result then follows from 
Proposition 3. • 

The details of the proof may seem mysterious now, but as the 
reader will see through a dozen examples below, all proofs follow the 
same simple pattern. The construction is arranged so that when each 
stage is complete we have a repelling function for some set G C TQ. 
Here, hi is a repelling function for T® and then Kh\ +h2 is a repelling 
function for T0 . This proceduce dictates we start with the side T® 
where the perturbation result (Proposition 3.2) has no exceptional set, 
rather that with r[> where the fixed point at (0, 0) causes trouble for 
the perturbation in Proposition 3.1. We then use the good properties 
of the first function to cancel the trouble with the second one. 

One of the advantages of this style of argument is that it uses 
only qualitative features of the ODE and hence generalizes easily to 
other systems. For example from our analysis of the predator prey 
system, we can immediately get a result for 

E x a m p l e 2. Epidemic mode l s . Following Mollison (1972), (1977) 
we formulate a continuous time model on an infinite grid with three 
states, 0 = susceptible, 1 = infected, and 2 = removed. The word 
"removed" will mean dead in the case of a fatal disease like rabies, or 
in the case of measles, tha t the individual has had the disease once 
and is immune to having it again. 
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10 Mutual Invadability Implies Coexistence 

Letting fa be the fraction of neighbors in state z, we can write 
down the transition rates for our model as follows. 

1 - 2 / 3 2 / 2 2 - 0 52 0 - 1 Po + Pifi 

In words, susceptibles become infected a rate proportional to the num
ber of infected neighbors. Infecteds die after an exponential amount 
of time with mean 1/52, leaving an empty space which is colonized 
by nearby occupied sites at rate (3ifi or filled by an immigrant from 
outside the system at rate /3Q. 

The mean field differential equations in this case are simple: 

u>o(Po + Piu\) - P2U1U2 

(32uiu2 - S2u2 

From the equations and Definitions 1-4, it is easy to see that 

(8) If 52 > 0 then 2 j 0. 

(9) If P0 + Pi > 0 then 1 ^ 0 and 1 — cri where G\ — 1. 

(10) If/?2 >S2 then 2 ^ 1. 

Combining the last three conditions we have: 

T h e o r e m 2. If 82 > 0, p0 + Pi > 0, and p2 > 82 then there is 
coexistence for the epidemic with fast stirring. 

Proof. The conditions imply 2 j 0, 1 ^ 0 , 1 —> a i = 1, and 2 y 1 so 
the result follows from Theorem 1. • 

For the nearest neighbor model with no stirring and spontaneous 
regrowth (i.e., /3Q > 0, f3\ — 0) Durrett and Neuhauser (1991) showed 
in two dimensions that if the epidemic without regrowth (i.e., (3$ + 
Pi = 0) is supercritical, then the system with spontaneous regrowth 
has a nontrivial stationary distribution. By using results of Zhang 
(1990) instead of those in Cox and Durrett (1988) one should be able 
to extend Durrett and Neuhauser's result to finite range models with 
no stirring and spontaneous regrowth in dimensions d > 2. 

The result given in Theorem 2 is the first that we know of for 
epidemic models with contact regrowth (/?0 = 0, Pi > 0.) For more 

(7) 
If 
dU2 
~dT 
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Introduction 11 

on spatial epidemic models, see Mollison and Kuulasmaa (1985), Bak, 
Chen, and Tang (1990), Drossel and Schwabl (1992), Henley (1993), 
Durrett (1995b), Durrett and Levin (1996), Holmes (1997) or the 
conference proceedings edited by Mollison (1995), and by Grenfell 
and Dobson (1995). Closely related to epidemic models are host-
pathogen systems. See Rand, Keeling, and Wilson (1995), and Thrall 
and Burton (1997) for spatial models in this context. 

Overview of t h e rest of the paper . In Section 1 we will prove 
Propostions 1.1 and 1.2 which we have used in the proof of Theorem 1. 
In Section 2 we will state our results for the five two-species examples 
we will consider. In a few cases we emerge with something less than 
a repelling function (e.g., we can conclude only that u\ + 112 stays 
bounded away from 0 on a linearly growing set) so to complete the 
proof we need an auxiliary argument to conclude that the individual 
Ui stay bounded away from 0 in the RDE. This is done in Section 3 
with the help of the Feynman-Kac formula. 

In Section 4, we prove perturbation results for three dimensional 
systems that generalize those for the two dimensional case given in 
Section 1. In Section 5, we introduce the raw material tha t feeds into 
the machinery of the Section 4: Lyapunov functions for the two dimen
sional boundary systems, which we assume to be of the Lotka-Volterra 
form. In Section 6 and 7, we combine the results from Sections 4 and 
5 to prove coexistence results for linear competition models and for 
three species predator-prey systems. Section 8 ties up loose ends giv
ing the proofs of Propositions 0 and 1, and Theorem 6.3 
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1. Per turbat ion of one-d imens ional s y s t e m s . In this section 
we will prove Propositions 1.1 and 1.2 that were used in the proof 
of Theorem 1. More generally, we will prove a result that allows 
us to extend a Lyapunov function defined on a one-dimensional face 
-^l — {u £ r : U2 — 0 , . . . un — 0} to be a repelling function in 
a neighborhood of that face (in T). The reader should feel free to 
just read the statements of Propositions 1.1 and 1.2 (along with the 
relevant definitions) before moving on to the examples. 

We reduce the number of perturbation variables from n—1 to 1 by 
looking at a positive linear combination of the last n— 1 coordinates. 
Let 

n 
z — \_\ ^kUk where each of the Uk > 0 

k=2 

let ||a;|| = sup2</e<ncj/c, and note that z < \\CJ\\ for all u G T. In 
the other direction to extend vectors from 1 to n dimensions let 
0 n _i G R n _ 1 be a vector of all 0's, and for real numbers x we define 
( x , 0 n _ i ) G R n to be the vector with x in the first coordinate and 
then all 0's. 

Propos i t i on 1.1. Let a > 0 and g(u) = u — alogu. Suppose 

(a) a is an attracting fixed point on F^ = {u G F\ : u\ > 0} 

(b) Ifu-> (a, 0 n _ i ) from inside T + , then liminf \^g > 3a0 > 0. 

(c) dz/dt > —Ccz and du\/dt > —Ccu\ 

Let 0 < e < cr/(l + ||a;||) and let ij)(u) = (e — u)+2, i.e., the square of 
the positive part of e — u. If positive constants 6, X, r], v, and B are 
chosen appropriately with 8 < 1 and r\ < e then 

h(u) = g(u\ + 0ijj{ui)z) — A log z 

satisfies: (i) dh/dt < —v < 0 when e <u\ and 0 < z < r\. 

and (ii) dh/dt < B when 0 < u\ < e and 0 < z < rj. 

Remark . The conditions in (c) are implied by (v). The first condition 
is what we have called 1 —» o\ in the introduction. The second is more 
general than 2 y- 1 so we need a new definition. 
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Section 1. Perturbation of one-dimensional systems. 13 

Definit ion 5. We say that 2 , . . . n can invade 1 and write 2 , . . . n >- 1 
if (b) holds. 

Proof of Propos i t i on 1.1. Calculus tells us that 
( i . i ) 

dz \ X dz 
z dt 

ft = g'(Ul + e^Mz) ({i + e^'Mz}^ + W M § ) 

We begin by checking (ii) since it is only a few lines. Differentiating 
we find 

(1.2) g'(u) = l - - so \g'{u)\<— for 0 < u < 1 
u u 

When u\ < e and 6 < 1, (/(^i + ^(ui)z) < 0? s o using (1.2) and 
assumption (c) with the trivial bounds that hold for 0 < u < 1: 
^{u) < 1, il)'(u) < 2e: 

g'(Ul + e^(Ul)z) ({i + ^ > M ^ + WM^ 
(L3) / r \ 

\ui +0i/;(u1)zj 

for some Ce < oo. Using (c) again we have 

(1.4) - A ^ < XCcz 

Combining (1.1), (1.3) and (1.4) proves (ii) with B = Ce + XCC. 

Proof of ( i) . To begin, we note that (b) implies we can pick 771 < a/2 
so that if \ui — a\ < 771, and 0 < z < 771 then 

\ Ay 

(1.5) - § > 2 a 0 A > 0 
2 at 

Our first goal is the control the derivative dh/dt away from the fixed 
point. 

L e m m a 1.1. Given e and 771, there are cxi, 772, Ao > 0 so that if A < Ao 
then 

dh 
—- < - Q i < 0 
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14 Mutual Invadability Implies Coexistence 

when u\ > e, \ui — cr\ >Vi) and 0 < z < 7?2. 

P r o o f of L e m m a 1.1. When u\ > e, we have ip(u) = 0, so h{u) — 
g{u\) — Alogz and 

dh ,, N du\ A dz 
y J dt * v J dt z dt 

Property (a), implies that there is a constant OL\ > 0 so that 

(1.7) ^ i ) - ^ ( ^ i , 0 n _ i ) < - 3 a i 

when iii > e and \u\ — a\ > rji. Using the boundedness of gf(ui) for 
u\ > e which comes from (1.2), and the continuity of dui/dt it follows 
that if 772 is small then 

(1.8) g'(u1)^(u)<-2a1 

when u\ > e, \u± — a\ > 7/1, and 0 < z < 772- To bound the second 
term in (1.6), we use (1.4). Combining this with (1.8), it follows that 

dh _ A 
— < - 2 a i + CCX0 < - a i 
at 

if 772 and Ao are chosen small enough. • 

To complete the proof of (i) in Proposition 1.1, we have to con
sider the region near the fixed point. To do this, we will prove 

L e m m a 1.2. Given 771 and 7]2, if 773 < r]2 is chosen small enough 

(dh . , „ 1 
sup < — : |^i - a\ < 7/1, 0 < z < 7/3 > < -Xa0 

P r o o f of L e m m a 1.2. Again we use (1.6). By (a), the first term 
has 

(1.9) 0 > i ) ^ ( u i , O n _ i ) < O 

for all 0 < u\ < 1. Using the boundedness of g' near the fixed point 
(which follows from (1.2)) and the continuity of dui/dt, it follows that 
if 773 < 772 is small then 

(1-10) 0 > i ) ^ ( « ) < A a o 
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Section 1. Perturbation of one-dimensional systems. 15 

when \ui — a\ < rji and z < 773. Combining (1.10) with (1.6), and 
(1.5), we have 

dh A — < Xao — 2Xa$ < 0 
at 

when \u\ — a\ < 771, 0 < z < 7/3. From this the desired result follows. 
• 

In Proposition 1.1 we considered the case of a fixed point G\ > 0. 
The next case covers the case in which the fixed point on the edge is 
at 0. The new result is an improvement over Proposition 1.1 in that 
there is no need to exclude small values of u\, so the conclusion holds 
all the way along the edge. Here, again z = 0J2U2 + • • • + cjnun with 
uok > 0 for 2 < k < n. 

Proposition 1.2. Suppose that (a) 0 is an attracting fixed point on 
the edge Fi, i.e., du\/dt < 0 when u\ > 0, ^2 = 0 , . . . un = 0 

(b) lfu-^0n from inside T+? then liminf \^~ > 3a0 > 0. 

(c) dz/dt > -Ccz. 

If positive constants X, v and rj are chosen appropriately then h(u) — 
u\ — A log z has dh/dt < —v < 0 for 0 < u\ < 1 and 0 < z < r\. 

Proof. Calculus tells us 

dh du\ A dz 
(1.11) dt dt z dt 

which is a special case of (1.6). It follows from (b) that if we pick 771 
small then 

(1.12) - • % > 2a0 
z dt 

when 0 < ui,z < rji. Continuity of the right-hand side of the ODE 
allows us to extend the result to the points with u\ — 0, 0 < z < 771. 
Continuity also implies that if 0 < TXI, z < 772 and 772 is small 

/ . x dui 
(1.13) -± < A„ 

Combining (1.11)—(1.13), we have shown that 

dh/dt < —Xao when 0 < u\ < 772 and 0 < z < 772 
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16 Mutual Invadability Implies Coexistence 

To complete the proof, we need an upper bound on dh/dt when 
7/2 < u\ < 1 and 0 < z < rjs for some 0 < 773 < 772. To begin, note 
that (a) and continuity of the right-hand side of the ODE imply that 
there is are 773, a\ > 0 so that 

(1.14) ~ < - 2 a i < 0 

when 772 < u\ < 1 and 0 < z < 773. Using (1.11) and the inequality in 
(c), gives 

/1 tr\ dh du\ Xdz A ^ 
1.15 = _ L _ _ < _ 2 ^ + ACC < - a x 

at at z dt 
if A is small, and the proof of the lemma is complete. • 
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2. Two-Spec i e s E x a m p l e s . In this section we will describe our 
coexistence results for our two-species examples. By Proposition 3 it 
is enough to check (i)-(v). All of our processes have bounded rates 
and hence satisfy (v), so it is sufficient to prove the existence of a 
repelling function for T°. We begin with a fairly general competition 
model. 

E x a m p l e 2 .1 . Linear c o m p e t i t i o n w i t h exc lus ion . In this model 
each site can be in state 0, 1, or 2, where 0 is vacant while i — 
1,2 indicate sites occupied by types 1 or 2 respectively. The word 
"exclusion" here refers to the fact that the two types cannot occupy 
the same site at the same time. To formulate the dynamics of this 
and of many of our other models we will let Pi(z) be a probability 
distribution on Zd that represents the interaction kernel for species z, 
and let 

(2.1-1) fi = ^Pi(y ~ z)l{6(y)=i} 
y 

be the "fraction of neighbors in state z." For simplicity we will suppose 
that {z : Pi(z) > 0} is finite and Pi(z) = Pi(—z). It is a strength (and 
weakness) of our approach that it does not depend on the interaction 
kernels pi. Indeed, one could even use different kernels for each of the 
local densities fi in the table below. 

Writing i —> j for state i changes to j , we can now describe the 
jump rates for the model as follows: 

Pifi 1 - 2 (5l2f2 

Mi 2 - 1 /J2 1 / i 
h + 7 n / i +712/2 
S2 +721/1 +722/2 

In words, individuals of type i's give birth at rate f3i onto vacant sites, 
at rate fii^-i onto sites of the opposite type, and die at a rate that is 
a linear function of the number of l 's and 2's in their neighborhood. 

This model contains as a special case several others in the litera
ture. In the category of processes that cannot give birth onto occupied 
sites, i.e., j3\2 = /?2i = 0, Neuhauser (1992) studied the situation in 
which all 7^ = 0, while Durrett and Levin (1997) used a model with 
721 > 0 and all of the other 7^ = 0 in their study of allelopathy. To 
describe the second system in words, species 1 is a type of E. coli that 
produces colicin, a chemical that increases the death rate of species 

0 ^ 1 
0 ^ 2 
1 ^ 0 
2 ^ 0 
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18 Mutual Invadability Implies Coexistence 

2. More recently Neuhauser and Pacala (1999) have considered this 
model with general competition coefficients to study the effect of local 
competitive interactions between species on the outcome of competi
tion. 

If we set /?i2 = fi2) #2i = 0, and all the 7^ = 0 then we get 
a process studied by Crawley and May (1987), Durrett and Swindle 
(1991), Durrett and Schinazi (1993), and in an n-speeies form by 
Tilman (1994). In Tilman's generalization type i is allowed to give 
birth onto sites occupied by types j < i. Silvertown et al. (1992) and 
Durrett and Levin (1998) generalized Tilman's strictly hierarchical 
model by setting /3^ = PiCij. In words, species i gives birth at rate 
Pi and successfully displaces j with probability c^. 

If we let U{ denote the fraction of sites in state i then the mean 
field ODE for the linear competition with exclusion can be written as: 

= Piuxuo - u1(51 + 711^1 + 712^2) - #12^1^2 + P21U1U2 
dt 

du2 

~dt 
= P2U2U0 - U2(S2 + 721^1 + 722^2) - #21^1^2 + #12^1^2 

The first term in the first equation comes from sites changing from 0 
to 1 at rate /? i / i , which if we assume adjacent sites are independent, 
results in new l 's being produced at rate UQ • j3\Ui. The second term 
comes from the death mechanism in a similar way. The third and 
fourth terms arise from l 's turning into 2's and from 2's turning into 
l 's , respectively. 

To begin to analyze the mean field ODE, we let uo = 1 — u\ — u2 

and rearrange to get 

du 1 

(2.1.2) 

dt 

d,U2 

~dT 

u\{(0i - <*i) - (Pi + 7n)wi 

- (Pi + 712 + /5l2 - 02l)u2} 

U2{(02 -fa) -(02+ 722 )«2 

- (02 + 721 + #21 - 012)ui} 

This differential equation has the Lotka- Volterra form 

( 
to 1 o\ dUi 

(2.1.3) — = u. 
Ti / j aijUj 

\ 
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Section 2. Two-Species Examples. 19 

In ecological terms, Ti is the intrinsic growth rate of species i, an 
measures intraspecific competition for species i, and when j ^ i, a^ 
measures interspecific competition between species i and j . 

In the case of two species, one can easily solve for the coordinates 
of the only possible equilibrium state (pi,p2) with both components 
non-zero: 

(2.1.4) p1 = p2 
& 2 2 a l l ~~ &12&21 a 2 2 & l l — &12&21 

Plugging in the values for r^ and a^ we have 

(#2 + 722)(/5i - 5i) - (A + 7 l 2 + /3i2 - £21) (A* - S2) 
pi = -f> 

( 2 , 1 ' 5 ) ( A + 7 l l ) ( ^ 2 - ^ 2 ) - ( ^ 2 + 7 2 1 + / ? 2 1 - MJPl-Sx) 
p2 = D 

where D = (fa + 711XA2 + 722) - (#2 + 721 + #21 - £12) (£1 + 712 + 
0 1 2 - 0 2 1 ) . 

With the brute force approach of solving the equations for the 
equilibrium distribution, it is hard to understand what the conditions 
Pi > 0 mean, or what is more important, how to use them in a proof. 
As we will now show the condition becomes transparent and useful 
for proofs if we approach the question from the viewpoint of mutual 
invadability. To show the generality of the calculation, and to have 
simpler notation, we will carry it out for the Lotka-Volterra system in 
(2.1.3) assuming only that all of the constants r^ and a^ are positive. 

The first step is to note that if Ti > 0 then species i in the absence 
of the other, will have equilibrium densities given by 

(2.1.6) (Ji = Tijai% 

Using Definitions 2 and 4 from the introduction we can say that if 
Ti > 0 then 1 >~ 0 and 1 —> a\. From equation (2.1.3) and Definition 
3, it is easy to see that 

1 y 2 if n — a\2a2 > 0 
2.1.7 

2 y 1 if r2 - a2i<Ji > 0 

In the concrete situation of Example 2.1, 

&-Si 
(2.1.8) ri = /3i-5i <n = 

Pi + H 
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20 Mutual Invadability Implies Coexistence 

so recalling the definition of the a^ we have 

1 ^ 2 if ft- fr - ( / ? ! + 7 1 2 + /?12- / ?2 l ) f 2 " ^ > 0 
(2.1.9) ^ 2 + 7 2 2 

2^1 if 02-32-032+721+1321-012) « \ * >0 

To make the connection between the last two conditions and the exis
tence of an interior fixed point, note that (2.1.9) clearly implies that 
the numerators of the pi given in (2.1.5) are positive. To see that the 
denominator D will also be positive, note that the two conditions in 
(2.1.9) imply 

0i + 712 + /?i2 - /?2i 0i -Si 0i+ 7n 
02 + 722 02 -82 02+ 721 + #21 ~ #12 

Combining the calculations above, we expect coexistence in a 
Lotka-Volterra system if r\ > 0, T2 > 0, T2 — Q>i\G\ > 0, and r\ — 
a 12 0*2 > 0. The next result confirms this. 

T h e o r e m 2 .1 . Suppose that (a) 1 y 0, 2 y 0; (b) 1 -> <ri, 2 >- 1; 
and (c) 2 —* o*2 and 1 >~ 2 in t i e mean field ODE. Then there is 
coexistence in the stochastic spatial model with fast stirring. 

P r o o f of T h e o r e m 2 .1 . For a picture see Figure 2.1. The three sets 
of assumptions correspond to the three steps in the proof. We start 
at the corner and work our way out. Since we have assumed 1 >- 0 
and 2 >- 0, we can pick a, TJQ > 0 so that if u\ + U2 < 3 % then 

— > a[ui + u2) 

Letting / loC^i?^) = log~((t/,i + U2)/STJQ) and using calculus we have 

(2.1.10) —— = • < —a when u\ + u2 < 3r/0 
at u\ + U2 dt 
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Section 2. Two-Species Examples. 21 

Figure 2.1. 

Edge T2. Let G{ — (Pi — Si)/(Pi + ju) be the equilibrium density of 
type i in the absence of its competitor, and let Qi(u) = u — c^logiz. 
&i is an attracting point for u with Ui > 0 and Uj = 0, j ^ i so 
(a) of Proposition 1.1 is satisfied. The invadability condition 2 y 1 
implies that (b) holds. Applying Proposition 1.1 now, with ei < 770, 
it follows that if 0i, Ai, 7/1 < ei, v\ and Bi are chosen appropriately, 
and ipi(u) = (ei — tx)+2 then 

(2.1.11) /ii(1/1,1/2) = P i ( ^ i + 0 i ^ i ( ^ 1 ) ^ 2 ) - Ailogi/2 

has (i) dhi/dt < —v\ < 0 when e\ < u\ < 1 and 0 < 7x2 < Vi a n d 
(ii) dhi/dt < Bi when 0 < ui < ei and 0 < u2 < r\\. If we pick Mi 
large enough then the function hi = /ii V Mi is only nontrivial when 
0 < u2 < rji. 

Edge r ° . Interchanging the roles of the axes and applying Proposition 
1.1 now, with €2 < r/i, it follows that if 92, \ 2 , % < e2, ^2 and B 2 are 
chosen appropriately, and ^2(u) = (€2 — ix)+2 then 

(2.1.12) h2(ui,u2) = #2(^2 + #2^2(^2)^1) ~ A 2 log^i 
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22 Mutual Invadability Implies Coexistence 

with (i) dh^jdt < — V2 < 0 when 62 < u<i < 1 and 0 < u\ < r\2 and (ii) 
dh2/dt < B2 when 0 < 1/2 < 2̂ and 0 < u\ < 772. Again if we pick M2 
large enough then the function J12 — ^2 V M2 is only nontrivial when 
0 < ui < 772- In each case (ii) is not a problem because of (2.1.10). 
Adding our three functions, we see that if K > 1 is chosen large 
enough then Kho + hi + J12 is a repelling function for TQ, completing 
the proof of Theorem 2.1. • 

In Example 2.1 there is a positive fixed point on each boundary 
edge. In Examples 1 and 2 in the introduction, there is a positive 
fixed point on F® but not on T®. Somewhat surprisingly two species 
can coexist when there is no positive fixed point on either boundary 
segment F®. 

E x a m p l e 2.2. T w o s tage contact process . Following Krone 
(1999) we consider a variation of the contact process in which indi
viduals have two life stages, 1 = young and 2 = adult. In keeping 
with this interpretation, we declare that only adults can give birth 
and each new offspring is young. Taking 0 = vacant and letting fa be 
the fraction of neighbors in state i we can write the transition rates 
for our model as follows. 

0 - 1 /? / 2 1 — 2 7 i — 0 <J* 

Recall that under our generic paremeters assumption, we are assuming 
that all four parameters /?, 7, 5i, #2 > 0. 

In this case the mean field differential equation is 

— = - ( 7 + Si)ui + /3u2(l - u i - u2) 
(2.2.1) f 

du2 r 
— - = -fUi - d2u2 dt 

From the ODE it is clear that du2Jdt > 0 when u\ > (£2/7)^2, while 
dui/dt > 0 when 

ui < c(u2)u2 where c{u2) = —, x , \— 
7 + Oi + pu2 

The coefficient c(u2) decreases as U2 increases, so drawing a picture 
(Figure 2.2) we see that there will be an intersection (and hence a 
nontrivial fixed point) if and only if 

(2.2.2) c(0) = —^r - > -
J w 7 + ^i 7 
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Section 2. Two-Species Examples. 

Near the equilibrium (0,0) we can ignore f3u2{—u\ — U2) so 

(2.2.3) - ^ « - ( 7 + 5i)ui +(3u2 - ^ « 7^1 - ^ 2 

23 

dt dt 

so d(ai/i +U2)/dt « (7 — a(7 + ^i))ui + (a/3 —£2)^2- Both coefficients 
will be positive if we choose 

82 ^ ^ 7 
/5 7 + ^i 

This is possible if (2.2.2) holds. A little calculus shows that if 

(2.2.4) h0(ui,u2) =\og~((aui +u2)/rj) 

au\ + U2 < r] then 

dho — 1 / du\ du2 
a-rF- + < -a0 < 0 

dt au\ + U2 \ dt dt 

if 77 is small enough. In words ho is a repelling function for (0,0). 

Mr 

Figure 2.2. 

Theorem 2.2. If (2.2.2) holds then there is coexistence in the two 
stage contact process with fast stirring. 
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24 Mutual Invadability Implies Coexistence 

P r o o f of T h e o r e m 2.2. Applying Proposition 1 to 0 = ho shows 
that if u(0,x) G T is continuous, and has i^(0,x) > r/i > 0 when 
x e [—5, 5]2, there are constants K > 0, 7 > 0, and to < °°5 which 
only depend on rji and 5, so that 

(2.2.5) aui{t,x) +U2(t,x) > 7 > 0 when \x\ < nt and t>to 

Using the dynamics of the model, it is not hard to improve the last 
conclusion to: there are constants ê  > 0 so that 

(2.2.6) ui(t, x) > €i when \x\ < n(t — 3) — 1 and t > to + 3 

Once (2.2.6) is established, the result follows from Proposition 2. Ex
amples 2.3 and 2.5 will require similar patches, so we delay the proof 
of (2.2.6) to Section 3, where it will be Lemma 3.1. • 

In the previous example we wanted (^1,^2) to avoid (0,0). In 
the next we have two points (1, 0) and (0,1) to stay away from. 

E x a m p l e 2 .3 . Dip lo id genet ics . Our next model is a slight gener
alization of one in Cox and Durrett (1995) and Durrett , Buttel, and 
Harrison (1999). It is a spatial version of the Moran model for diploid 
individuals with one locus having two alleles that are under selection. 
Each site can have state AA, Aa, or aa. To formulate the dynamics, 
we let I±AA  ̂ I^Aa, Haa £ [0,1] be the relative fitnesses of the three 
genotypes. At times of a rate 1 Poisson process, the individual at 
x is subject to replacement by a new individual. To make the pro
posed new individual, we choose two parents y\ ^ 2/2 according to 
a joint distribution q(yi — x,jj2 — x). Then one letter is selected at 
random from each parent to produce the proposed new type ij. With 
probability / i ^ , the new individual is accepted and replaces the one 
currently at x. With probability 1 —//^, the new individual is rejected 
and no change occurs. 

To calculate the mean-field ODE, we observe that if all sites are 
independent and are type ij with probability uij then the probability 
of picking an A allele is VA — VLAA + ^Aa/2 and the probability of 
picking an a allele is va = 1 — VA , so the rate at which new individuals 
are born is given by 

PAA(U) = flAA ' v\ = VAA ' {uAA + UAa/2)2 

PAa(u) = 11 Aa ' 2vAVa = V>Aa ' ^{uAA + UAa/^)(uaa + UAa/^) 
Paa(u) = fJLaa • V2

a = jlaa • (uaa + U A a / 2 ) 2 
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Section 2. Two-Species Examples. 25 

The total rate at which replacements occur is 8(u) — PAA(U) + 
PAa(u) + Paa(u), SO 

dui 
~dt 

(2.3.1) —ĵ - — flij(u) — 8{u)uij for ij — AA, Aa, aa 

Since UAA + ^Aa + uaa — 1, we can reduce to two variables, 
which for maximum symmetry we choose to be u\ = UAA and 112 — 
uaa. In contrast to previous examples, we don't have to worry about 
the equilibrium point u\ — 0, U2 — 0, since a population consisting 
entirely of Aa^s immediately starts to generate AA's and aa 's . Thus 
our main concern is to keep the ODE away from the all A state (1,0) 
and the all a state (0,1). To do this we will generalize the approach 
in the previous example and use two corner functions. To study the 
ODE near (1,0) we begin by noting that when (UAA, uaa) is near (1,0), 
V"AA ~ 

1 and va is small, we have 
PAA(U) ~ UAA • 1 

(2.3.2) f3Aa(u) ~ iiAa • 2va 

Paa(u) ^ Uaa • v\ « 0 

and hence 5{u) ~ \XAA- Using this with (2.3.2) we can write 

d,Va 1 duAa , duaa 1 Q , , , Q , N <•, s 

1 
« - • HAa ' 2va - HAAVa 

so a's can invade the all AA state if /iAa > I^AA> By symmetry A1 s can 
invade aa if \iAa > Uaa- Combining the last two inequalities we see 
that coexistence should occur when heterozygotes have an advantage: 

(2.3.3) HAa > V aai I^AA 

T h e o r e m 2.3. If (2.3.3) holds then there is coexistence in the diploid 
genetics model with fast stirring. 

Proof. It follows from our calculations that if (2.3.3) holds and r\ is 
small and 

(2.3.4) h0(uAA,uaa) = log~(va/r)) + l o g _ ( ^ A / r / ) 
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26 Mutual Invadability Implies Coexistence 

then ho is repelling function for {(1,0), (0,1)}. Writing u\ — UAA, 
U2 — uaa and applying Proposition 1 to 0 = ho shows that if i/(0, x) G 
r is continuous, and has ^ ( 0 , x) > r\i > 0 when x G [—5, 5]2, there are 
constants K, > 0, 7^ > 0, and to < 00, which only depend on rji and 5, 
so that if 'UQ = 1 ~ ^1 — ^2 = ^Aa then 

(2.3.5) t^(£, x) + uo(t,x)/2 > ji > 0 when |x| < nt and t > to 

Using the dynamics of the model, it is not hard to improve the last 
conclusion to: there are constants ei > 0 so that 

(2.3.6) ui(t, x) > €i when \x\ < n(t — 3) — 1 and t > to + 3 

Once (2.3.6) is established, which will be done in Lemma 3.2, the 
result follows from Proposition 2. • 

E x a m p l e 2.4. One-dimens ional s y s t e m s . Cox and Schinazi 
(1998) examined a special case of the diploid genetics model in which 
Haa — 0. Their motivation came from sickle cell anemia where aa 's 
have sickle cell anemia but Aa's have no disease and increased im
munity to malaria (see Haldane 1949). They used a slightly different 
reproduction scheme, which I call 

Good News/Bad News Mating. At times of a rate 1 Poisson process 
the individual gets the good news that he has been chosen to mate 
with a randomly chosen neighbor, but also the bad news that if the 
offspring is viable it will replace him. 

Introducing states 0 = AA and 1 = Aa, setting relative fitnesses 
I^Aa — 1, Haa = /̂  < 1, and introducing a fudge factor q that we will 
explain in a minute, we can write jump rates as: 

0 - > l at rate / i / 2 

1 - • 0 at rate « ( / 0 / 2 + qfi) 

To explain the rates, note that when 0 picks a neighbor, it will pick 
a 1 with probability f\ and in this case will only make a new 1 with 
probability 1/2. Since Aa has higher fitness the new 1 is always 
accepted. In the second situation, we have generalized the genetics 
to allow the mating of two l 's to produce a 0 with probability q. 
Due to selection the 0 will only be accepted with probability K. Our 
motivation for this is that in some situations (e.g., t-haplotypes in 
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Section 2. Two-Species Examples. 27 

mice) the distribution of genotypes produced is far from a random 
combination. 

A second reason for introducing q is tha t it allowed Cox and 
Schinazi (1998) to prove that for any K < 1 there is a qc so tha t if 
q < qc then the l 's survive. To convert our model into the one given 
in Cox and Schinazi (1998), multiply the rates above by A = 1/K, 
and set q = pX. An alternative approach to proving persistence is to 
introduce fast stirring. The mean field ODE for the density of l 's is 

(2.4.1) — - = UQVLI/2 - KUI(U0/2 + qu{) 
at 

Using UQ — 1 — u\ and rearranging we have 

(2.4.2) ^ = ^ { ( 1 - U l ) ( l " «) " 2 ^ ! } = ^ i - txi) 

where (3 = [(1 — K) + 2qn] and a = (1 — K)//3. From this it follows 
easily that we have 

T h e o r e m 2.4. If K < 1 and 0 < q < oc there is coexistence in the 
Cox-Schinazi model with fast stirring. 

Proof. g(ui) — u\— G\ logi/i is a repelling function for {0} and (v) 
holds, so the result follows from Proposition 3. • 

Of course this reasoning applies in general to one species sys
tems in which the mean field ODE has an attractive positive fixed 
point. For example we could consider the one species linear competi
tion model (a generalized contact process) in which 

0 —• 1 at rate f3f\ 1 —» 0 at rate 8 + 7/1 

In this case the mean field ODE is 

-£ = f3u(l - u) - u{5 + ju) = (P + j)u ( — • u 

so we will have survival under fast stirring if (3 > 5. 

Our next example leads to a three-dimensional ODE. However, 
as the proof will make clear, this example is better classified with the 
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28 Mutual Invadability Implies Coexistence 

two-species systems considered in this section rather than with the 
three-species systems considered in Sections 6 and 7. 

Example 2.5. Linear competition without exclusion. In this 
model, each site can be in a state 0, 1, 2, or 3 where 0 is vacant, i — 1, 2 
indicate sites occupied by types 1 or 2, and 3 = 1 + 2 indicates a site 
occupied by both types. To have a general but manageable model 
we will have proportional birth rates, but restrict our attention to 
constant death rates. Letting fi be the fraction of neighbors in state 
i, we can write the transition rates of the model as follows: 

0 - > l 
0 ^ 2 
2 ^ 3 
l - * 3 

Pnfi+Pisfs 
^22/2 + #23/3 
/ W 1 + & 3 / 3 
^42/2 + ^43/3 

l - > 0 
2 - + 0 
3 - + 2 
3 - > l 

Si 
S2 
S3 
SA 

Apart from a change of notation this is the general model introduced 
on page 12 of Durrett and Neuhauser (1997) for the competition of 
two strains of the barley yellow dwarf virus. Caswell and Etter (1992) 
have earlier formulated a similar model in discrete time. 

Schinazi (1996) and (1998) has considered special cases of our 
model in which the presence of the other type on the source or target 
site does not change the birth rate of the species. In symbols: 

#11 = #13 = #31 = #33 — # b #22 = #23 = #12 = #43 = #2 

In his (1996) predator-prey paper, the death rates are 

Si = 0, 52 = #2, £3 = 0, h = 0 

In words, a predator on a site not occupied by a prey dies at rate 62, 
while a prey is eaten by a predator on the same site at rate 0. In his 
(1998) competition model 

Si = Su $2 = S2, £3 = P0, <J4 = (1 - P)0 

In words, at each doubly occupied site a competition occurs which 
lasts an exponential amount of time with mean 1/0. At the end of 
the fight, 2 is the victor with probability p and 1 wins with probability 
1-P. 
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Returning to the general model, we can write the mean field ODE 
as 

—— = finUoU! + Pi3U0U3 - P42U1U2 - P43U1U3 
dt 

- uiSi +^3^4 

, n c -, x -TT = P22U0U2 + f323U0U3 - 031^2^1 - j333U2U3 
(2.5.1) at 

- u252 + u3S3 

—rr = fi3\u2ux + f333u2u3 + 042^1^2 + 043^1^3 

- ^ 3 ( ^ 3 + 84) 

To help check this note that a term flkjUiUj corresponds to sites of 
type j giving birth onto those of type i resulting in a site with state 
k A 3. Note that we cannot factor ui out of the equation for dui/dt so 
this does not have the Lotka-Volterra form. 

To begin to analyze this system we look at the invadability con
ditions. If /?n > 51 then in the absence of individuals of type 2, there 
are no sites in states 2 or 3 and the l ' s reach an equilibrium density 
of 

0 i i - <5i 

Using Definitions 4 and 2 we can write this conclusion as 1 >- 0 and 
1 —> a\. To investigate the stability of this fixed point we note that if 
u\ — <j\ and 0 < u2, u3 < e then UQ ~ 1 — G\ SO dropping u2u3 « e2 

gives 

— « 022(1 - ai)u2 + 023(1 ~ °l)U3 - 031^1^2 

(2.5.2) - u2S2 + u353 

— « 031^1^2 + 042^1^2 + 043^1^3 ~ ^ 3 ^ 3 + <54) 

This is a linear system of the form 

3 

dt ~~ (2.5.3) -ir = J2b^kUk «? = 2>3 

k=2 

with matrix bij given by: 
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30 Mutual Invadability Implies Coexistence 

b22 = #22(1 - en) - A n ^ i - h b23 = #23(1 - crx) + 53 > 0 
632 = #31^1 + #42^1 > 0 633 = /343<7i - 5 3 - h 

Using Definition 5 from Section 1, we say that species 2 and 3 can 
invade species 1 in equilibrium, and write 2, 3 >~ 1 if there is a linear 
combination z = UJ2U2 + u3u3 with UJI > 0 so that if u —> (a i ,0 ,0 ) 
through T + then 

lim mi —— > 0 
2 at 

To see what the definition says in this problem, we note that by scaling 
one can without loss of generality consider LJ2 = 0, ^3 = (1 — 9) where 
9 £ (0,1). From the form of the differential equation in (2.5.3) we 
have 

d{9u2 + (1 - 9)u3) 
(2.5.4) It = {%22 + ( 1 " 6)bs2} U2 

+ {9b2s + (l-0)b33}u3 

The off-diagonal entries b23 and b32 are strictly positive, so if b22 > 0 
then we can pick 6 close to 1 and have the coefficients of u2 and u3 

on the right-hand side of (2.5.4) both positive, thus ensuring that 
9u2 + (1 — 9)u3 is increasing in the original system (2.5.1) when 0 < 
u2,u3 < e and \u\ — o\ \ < e. If b33 > 0 then we can do this by picking 
6 close to 0. To deal with the case in which 622, ^33 < 0 we note that 

(1 - 9)b32 + 9b22 goes from + to - at B\ = b32/(b32 - b22) 

(l-9)b33 + 9b23 goes from - to + at 92 = -b33/(b23 - b33) 

Thus we can pick 9 to make both coefficients positive if and only if 
91 > 92. Cross multiplying we see that this is equivalent to 

632(^23 ~ b33) > -633(632 - 622) 

or that the determinant, b33b22 — b32b23 < 0. 
Combining the results in the previous paragraph, we see that for 

2, 3 >- 1 it is sufficient that 

(2.5.5) 622 > 0, or b33 > 0, or 633622 - 632623 < 0 

To see that this is also necessary, recall that the trace of 6 is the sum 
of the eigenvalues, Ai + A2 while the determinant is the product A1A2. 
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From this we see that if 622 < 0, 633 < 0, and 633622 — 632̂ 23 > 0, 
then the real parts of the two eigenvalues are negative, so the origin 
is attracting and hence 0 ^ 2 + ^3^3 cannot be increasing. 

To get a mental picture of the linearization when invadability 
occurs, note that the invariance of T implies that the eigenvalues will 
be real. Consider the case in which the trace and the determinant 
are both negative. In this case there is one positive eigenvalue and 
one negative eigenvalue, so (0,0) is a saddle point with the unstable 
direction pointing into the positive quadrant and the stable direction 
(which is perpendicular) having exactly one negative component. On 
the other hand if 622 and 633 are both large enough then the trace and 
determinant will both be positive, so both eigenvalues will be positive. 

Interchanging the roles of 2's and l's we see that if there are no 
individuals of type 1, then there are no sites in states 1 and 3, so the 
equilibrium density of type 2 is 

#22 ~ $2 
^ = — s 

P22 
assuming, of course, that ^22 > $2. Repeating the calculations from 
the first case we can derive conditions for 1,3 >- 2 from (2.5.5). 

Figure 2.3. 
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32 Mutual Invadability Implies Coexistence 

T h e o r e m 2.5. Suppose that flu > Si, j322 > $2, 2,3 >- 1, and 1,3 >-
2. Til en with fast stirring there is coexistence for linear competition 
without exclusion. 

P r o o f of T h e o r e m 2.5. The details of the proof are very similar 
to those for Theorem 1.1. We begin at the origin and work our way 
out. See Figure 2.3. To handle this region near (0,0,0) we look at the 
linearization which results from ignoring all terms of the form muj 
with ij >1 in (2.5.1) 

~~dt 
du2 

~dt 
du3 

dt 

(#LI - h)ui + (/3i3 + 54)u3 

($22 ~S2)u2 + (#23 + 53)^3 

-^3(^3 + h) 

Summing the three equations gets rid of the negative term in the third 
one producing 

— (ui + u2 + u3) « (fin - bx)ux + ((322 ~ S2)u2 + (#13 + #23)^3 

which has all coefficients positive on the right-hand side. Let 

h0(uuu2,u3) = log"{(i/i +u2 + u3)/4r]o} 

If a — min{/?n — <5i, f322 — 82, fli3 + P23} and TJQ is chosen small enough 

(2.5.6) —— = < when v < AT/Q 
dt u\ + u2 + u3 dt 2 

i.e., ho is a repelling function for {(0 ,0 ,0)} . 

Having covered the corner, we move to 

Edge T ^ . In the absence of other species l ' s reach an equilibrium 
density of o\, so (a) of Proposition 1.1 holds. The invadability con
dition 2,3 y 1 furnishes us with constants UJ\ and UJ3 which we can 
use to define z\ = u2u2 + UJIU3 SO that (b) holds. Applying Propo
sition 1.1 now with ei < 770, and letting g\(u) — u — G\ logix, we see 
that if 0i < 1, Ai, 771 < ei, v\ and B\ are chosen appropriately and 
ifti(u) = (61 — u)+2 then 

/ i i ( ^ i , ^ 2 , i i 3 ) = #1(^1 +01ip1(ui)z1) - Ailog^i 
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has (i) dhi/dt < —v\ < 0 when e\ < u\ < 1 and 0 < z\ < 771, and (ii) 
dhi/dt < B\ when 0 < u\ < c\ and 0 < z\ < 771. If we pick Mi large 
enough then hi = hi V Mi is only nontrivial when 0 < z\ < 771. 

A similar construction can be done on the 

Edge Y\z. In the absence of other species 2's reach an equilibrium 
density of a2, so (a) of Proposition 1.1 holds. The invadability condi
tion 1, 3 ^ 2 furnishes us with constants uo\ and cjf, which we can use 
to define Z2 = uo\ui + UJ3U3 so that (b) holds. Applying Proposition 
1.1 again and letting g2(u) — u — o^logiA, we see that if #2 < 1, A2, 
V2 < ^2, V2 and S2 are chosen appropriately and /ip2(u) = (£2 — u)+2 

then 
h2(uuU2,us) = g2{u2 + 02ip(u2)z2) - A 2 logz 2 

has (i) dh2/dt < —z/2 < 0 when €2 < U2 < 1 and 0 < Z2 < 772, and 
(ii) dh2Jdt < B2 when 0 < U2 < £2 and 0 < Z2 < 772. If we pick M2 
large enough then the function /12 = ^2 V M2 is only nontrivial when 
0 < z2 < r?2-

Denouement, (ii) is not a problem in either case because of (2.5.6). 
Thus if Ki > 1 is chosen large <\> — Kiho + hi + J12 is a repelling 
function for two edges T^ 3 U ^ 3 . Applying Proposition 1 to 0 
shows that if the initial condition IA(0, X) G Y is continuous, and has 
Ui(0,x) > rji > 0 when x G [—<5, 5]2 . There are constants /s > 0, 
7^ > 0, and to < 00, which only depend on iji and 5, so that 
(2.5.7) 

uj\u2{t,x) + c c ^ ^ ^ x ) > 71 > 0 uj^uiit.x) + cj|ix3(t,x) > 72 > 0 

when |x| < fti and £ > to- Using the dynamics of the model, it is not 
hard to improve the last conclusion to: there are constants ^ > 0 so 
that 

(2.5.8) Ui(t, x) > €i when \x\ < K,(t — 3) — 1 and t > to + 3 

Once (2.5.8) is established, which will be done in Lemma 3.3, the 
result follows from Proposition 2. • 
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3 . Lower bound ing l e m m a s for P D E . Here we will be concerned 
with completing the three unfinished proofs from Section 2. This will 
be done with the help of Lemmas 3.1-3.4. In this section we will often 
be working with cubes, so we will use the "box" norm \\x\\ — max; \xi\ 
for x e R d . Referring to (2.2.5) and (2.2.6) we see that to finish the 
proof of Theorem 2.2 it is enough to show 

L e m m a 3 . 1 . Given a, 7 > 0 there are constants ei > 0 so that if 

au1(0Jy)+u2{0,y)>-f forye[-l,l]d 

then for i = 1, 2, Ui(t, x) > a for x e [1, l]d and 3 < t < 4. 

Proof. Since (v) holds, each coordinate has a lower bound of the 
form 

(3.1.1) - ^ > Aui - otiUi 

From (3.1.1) we see that if pt(x,y) is the transition probability for 
Brownian motion (run at rate 2 since we have A instead of A/2) then 

(3.1.2) Ui(t,x) > e~^ [pt(x,y)ui(0,y)dy 

Since pt(x,t) = (47r£)~~d//2 exp(—\y — x\2/4t) it is easy to see that there 
is a constant c\A so that 

(3.1.3) Pt(x,y) > c M 

if \\x\\, \\y\\ < 1 and 1 < t < 4. From this follows that if ||x|| < 1 and 
1 < t < 4 then 

(3.1.4) Ui(t, x) > e~4a* [ ci>4 Ui(0, y) dy 
J [-1,1]* 

If aui(0,y) + ^2(0,?/) > r] whenever ||y|| < 1 then either 

A. u1(0,y)dy>2dr]/2a or B.I u2(0,y) dy > 2drj/2 
J[-i,i}d ^[-i,i]d 

for otherwise, we would have a contradiction. In Case A, (3.1.4) 
implies that for all 1 < t < 4 and ||x|| < 1, 

(3.1.5) U!(t,x) > €1 = e ~ 3 a * c M • 2dr]/2a 
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Section 3. Lower bounding lemmas for PDE. 35 

which is more than we promised to show for the first coordinate. To 
get a lower bound for u2 we will use the second equation from (2.2.1) 

(3.1.6) du2/dt = Au2 — S2u2 + 7^1 

and its probabilistic solution: 

L e m m a 3 .1 .1 . The equation du/dt — Au{t, x) — c(t, x)u(t, x)+g(t, x) 
is solved by 

u(t, x) = Exl exp(-c*)?x(0, Bt) + / exp(-c* )#(* - r, Br) ds J 

where Bs is Brownian motion run at rate 2, Ex denotes expected value 
starting from BQ = x, and cf

r — J0 c(t — s, Bs) ds. 

Proof. This is a straightforward combination of the ideas in Sections 
4.2 and 4.3 of Durrett (1996). It suffices to show that if u satisfies the 
P D E then 

(*) Ms = exp(-cl)u(t - s, Bs) + / exp(4)flr(£ - r, Br) dr 

is a martingale. For then taking ExMt gives the desired formula. To 
prove (•) we let Xs — c*, Yt — t — s, Zs = Bs and use Ito's formula 
on e~Xsu(Ys, Zs) to conclude that 

0 
s 

exp(-cl)u(t - s, B8) - u(t, B0) 

exp(—(^r)u{t — r, Br) • (—c(t — r, Br)) dr 

+ / e x p ( - 4 ) w t ( t - r , 5 r ) - ( - l ) d r 
Jo 

+ martingale + / exp(—cl)Au(t — r, S r ) dr 

The PDE implies that -c(t-r,Br)u(t-r,Br)-ut(t-r,Br) + Au(t-
r,Br) = g(t — r,Br), from which the desired result follows. • 

Our main interest in Lemma 3.1.1 is to prove the next comparison 
theorem, which is an immediate consequence. 
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36 Mutual Invadability Implies Coexistence 

L e m m a 3.1.2 . Suppose du/dt — Au — 5(t,x)u(t,x) + g{t,x) where 
S(t,x) < S and 0 < g(t,x) < g(t,x) then 

u(t, x) > Ex (e-Stu(0, Bt) + / e~Ssg(t - s, Bs) dsj 

P r o o f of L e m m a 3 .1 . Using Lemma 3.1.2 on (3.1.6) and with 
the lower bounds in (3.1.5), we have that for 3 < t < 4 and ||x|| < 1. 

f2 

u2(t, x)>Ex e ~ 5 ^ • 7 e i • l { B t - r e [ - 1 , l]d} dr 

> e ~ 3 ( 5 - 7 e i - 2 d c i , 4 >e2 

Combining this inequality with (3.1.5) gives the result in case A. In 
Case B, (3.1.4) implies that 

(3.1.7) ix2(t, x) > e2 = e " 4 a i c i , 4 • 2 V 2 

for all 1 < t < 4 and ||x|| < 1. To get a lower bound for u\ we rewrite 
the first equation in (1.2.1) and then use the inequality 

dui/dt = Aui + (3u2(l - u2) - (7 + Si + (3u2)ui 
(3.1. o) 

> Aui + (3u2(l — u2) — KUI 

where n — 7 + Si + j3. To make this useful we have to have an upper 
bound on u2. Using the inequality 

du2(t,x) A . 
^ } < Au2 + 7(1 - u2) - Su2 

and comparing with the solution of the ODE: 

dv2{t)/dt = 7(1 - u2) - Su2 v2(0) = 1 

which is decreasing in t, we conclude that u2(t,x) < v2(t) and hence 
that if t > 1 then 

(3.1.9) u2(t,x) <v2(l) 

Using Lemma 3.1.2 on (3.1.8), with the bounds in (3.1.9) and (3.1.7) 
now we have that when 3 < t < 4 and ||#|| < 1. 

wi(<, x)>Exf eT^* - ' ) • /32e2(l - v2(l)) • \{Bt.r G [-2, 2}d} dr > h 
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Section 3. Lower bounding lemmas for PDE. 37 

This completes case B and hence the proof of Lemma 3.1. • 

To complete the proof of Theorem 2.3, we let 

vA(t, x) = uAA(0, x) + uAa{0, x)/2 
vA(t, x) = uaa(0, x) + uAa(0, x)/2 

By (2.3.5) and (2.3.6) it is enough to show 

Lemma 3.2. Given 7̂  > 0 there are constants ei > 0 so that if 
vA(0,x) > 71 and va(0,x) > 72 for x G [—1, l]d and 0 < t < 1 then 
v>i(t, x) > et for x G [1, l}d and 2 < t < 3. 

Remark. The result is different here and the proof simpler than for 
Lemma 3.1. The quantities bounded in Proposition 1 can be used to 
give lower bounds on the right hand side of the ODE, so we do not 
need the initial bootstrapping or a division into cases. 

Proof. We begin by recalling the mean-field ODE given in (4.3.1): 

I^AA • v\ - ip(u)uAA 
duAA 2 

dt 

(3.2.1) ——^ = iiAa • 2vAva - %j)(u)uAa 

—7T- = l*>aa ' Va ~ lp{u)Uaa 

where t/;(u) = Ylij Pij(u) < VAa < 1- If we let 

a = min{^AA7^, 2/iAa7i72, Haall) 

then each coordinate has a lower bound of the form 

(3.2.2) - ^ > AuZJ + g(t, x) - ul3 

where g(t,x) = a i f O < £ < l and x G [—1, l]d. Using Lemma 3.1.2 
now, we have 

Uij(t,x)>Ex e~{t-r)g(r,Bt„r)dr 
Jo 

> ae~3 J Px{Bt„r G [-1, l}d) dr > ae~3 • 2dc1A 
Jo 

Purchased from American Mathematical Society for the exclusive use of Richard Durrett (DRRCTJ)
Copyright 2002 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



38 Mutual Invadability Implies Coexistence 

for 2 < t < 3 and \\x\\ < 1, which proves the desired conclusion. • 

In view of (2.5.7) and (2.5.8) we can complete the proof of The
orem 2.5 by showing 

L e m m a 3.3 . Given <^!-,7i > 0 there are constants 6i > 0 so that if 

uulu2(0,x) + (^3^3(0,x) > 71 and a ; ^ i ( 0 , x ) + u ^ i ^ O , x ) > 72 

for x G [ - l , l ] d then for i = 1,2,3, ux(t,x) > e; for x G [ l , l ] d and 
3 < t < 4. 

Proof. Condition (v) implies that each coordinate has a lower bound 
of the form 

(3.3.1) —^ > Aui - otiUi 

Using (3.1.2) and (3.1.3), we see that if ||x|| < 1 and 1 < t < 4 then 

(3.3.2) Ui(t, x) > e~4a* / c i > 4 ^(0 , y) dy 
J[-i,i]d 

Pick v small enough so that 71 — UJ\V > 0 and 72 — u\v > 0. Either 

A. [ 1/3(0, y) dy > 2dv or B. f u3(0, y) % < 2di/ 
J[-i,i]d ^[ - i , i ] d 

In Case A, (3.3.2) implies that 

(3.3.3) ix3(t, x) > e3 = c i , 4 e - 4 a i • 2dv 

for all 1 < t < 4 and ||x|| < 1. To get a lower bound for u\ and u2 we 
will use the inequalities 

dui/dt > Aui — CL\UI + 5AUS 
(3.3.4) ' ~ 

du2/dt > Au2 - OL2U2 + S3U3 

which improve (3.3.1) by keeping one positive term. Using Lemma 
3.1.2 on (3.3.4) with the bound in (3.3.3) we have that when ||x|| < 1, 
3 < t < 4 , a n d i = 1,2 

r2 

Ui(t,x) >EX e-a^-r^ • <55-,e3 • l { B t - r G [ - 1 , l]d}dr > ez 
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Section 3. Lower bounding lemmas for PDE. 39 

In Case B, by our assumption and choice of v we have 

/ u2(0,y)dy > 2\11-u\v)/u\ > 0 

(3.3.5) YlY 

J[-i,i}« 

Using (3.3.2) now gives lower bounds for i = 1, 2 

(3.3.6) Ui(t,x)>£i for ||x|| < 1 and 1 < t < 4 

To get a lower bound for u^ we will use the inequality 

(3.3.7) du3/dt > Au3 - a3u3 + ((331 + P42)uiu2 

which again comes from improving (3.3.1) by keeping positive terms. 
Using Lemma 3.1.2 on (3.3.7) with the lower bound in (3.3.6), we see 
that or ||x|| < 1 and 3 < t < 4, 

u3(t,x) >EXJ e-a 3( t-^-(/33i+/342)eie2-l{5 i_ r e {-l,l]d} dr > e3 

This completes case B and hence the proof of Lemma 3.3. • 
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4. Per turbat ion of higher d imens ional s y s t e m s . In order to 
prove results for three-species we need perturbation results that gen
eralize those in Section 1. In this section we will prove three results 
tha t allows us to extend a Lyapunov function g defined on an m di
mensional face 

F m = {u G r : um+1 = 0 , . . . un = 0} 

to be a repelling function in a neighborhood of that face (in T). We 
need three results because in the case m = 2, the boundary fixed 
point may have 2, 1, or 0 positive components. 

To set up for our first theorem we need some notation. It is 
natural to separate the variables in the face Fm from those in the 
perturbation. Let w — ( i / a , . . . , um) be the first m coordinates. As in 
Section 1, the perturbation will involve a positive linear combination 
of the last n — m coordinates 

n 

z = 2_\ ^kUk where each of the ujk > 0 
k=mJ

rl 

In our new setting, z is a number while w is a vector in R m with m > 
1. To bridge this gap let 1^ be the vector in Hk with all components 
equal to 1 and let 0& be the vector of k 0's. We will use the norm 
\\z\\ — sup^ \zi\ throughout and in particular, when we define Lipschitz 
continuity. 

In dimension m = 1 we can always take g{u) — u — o\ log u when 
a\ > 0 and g(u) = u when o\ — 0. In dimensions m > 1 we cannot 
always use simple explicit Lyapunov functions, so we need to introduce 
assumptions (a), (d), and (e) to control their behavior. Assumption 
(b) gives the invadability condition as it did in Section 1. Finally, 
in (c) we take the luxury of imposing bounds on the absolute value 
of the derivatives, since they will be satisfied in all of the examples 
we consider. In dimension m = 1 the problem region was only near 
0 < u\ < e. Here, it is much larger, 0 < m i n ^ < e, and there are 
more derivatives dg/dwm to worry about. 

P r o p o s i t i o n 4 .1 . Suppose that (a) g(w) is decreasing on the face 
Fm and strictly decreasing for w with strictly positive coordinates and 
w ^ a. 

(b) If'u —> (<r, 0 n _ m ) from inside T + 7 then liminf - ^ > 3ao > 0. 
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Section 4. Perturbation of higher dimensional systems. 41 

(c) \dz/dt\ < Ccz and for each 1 < i < m, \dui/dt\ < CcUi 

(d) For each 1 < i < m, \dg/dwi\ < Cd/wi 

(e) dg/dwi is Lipschitz continuous on {w e T m : min^ wi > e} with 
constant CL^ 

Let 0 < e < min^ai /2 . If positive constants 6, \, r], v, and B are 
chosen appropriately with 6 < 1 and r\ < e then 

h(u) = g(w + 9zlm) — A log z 

satisfies: (i) dh/dt < — v < 0 when e < min^ wi and 0 < z < 77. 

and (ii) dh/dt < B when 0 < min^ Wi < e and 0 < z < r]. 

P r o o f of Propos i t i on 4 .1 . Calculus tells us that 

,AI\ dh ^ \ dg / . ^ x /'dui dz\ Xdz 

We begin by checking (ii) since it is only two lines. Using assumptions 
(d) and (c), it follows that if 1 < i < m then 

(4.2) 

Using (c) again we have 

(4.3) 

do , „ . ^ ( dui dz 
< CdPc 

dz 
dt 

<CrZ 

Combining (4.1)-(4.3) proves (ii) with B = CdCc + XCC. • 
P r o o f of ( i) . To begin, we note that (b) implies we can pick 

?7i < mhij (Tj/2 so that if \\u — er|| < rji, and 0 < z < rji then 

(4.4) 
A dz 
z dt 

> 2a0X > 0 

Our first goal is the control the derivative dh/dt away from the fixed 
point. 
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42 Mutual Invadability Implies Coexistence 

L e m m a 4 .1 .1 . Given e and r\\1 there are ai,772,Ao > 0 so that if 
0 < 9 < 1 and A < A0 then 

dh 
-77 < - < * i < 0 
dt 

when minu^ > e, \\w — cr\\ > r)\, and 0 < z < 772. 

P r o o f of L e m m a 4 .1 .1 . We begin by writing the term inside the 
sum in (4.1) as 

(4.5) 

dg dui ( dg dg \ du{ 

oxj dt 

By the strict decreasing property in (a) we can define a constant a\ 
so that 

(4.6) E dg dui ^-H-;rK0n-m)<-3ai 
2 = 1 

when min^ Wi > e and ||IL> —<J|| > 7/1. Using the boundedness oidg/dxi 
when min^ Wi > e, which comes from (d), and the continuity of dui/dt 
it follows that if 772 is small then 

(4.7) ±&W>)±-*» 
1=1 

when min^ wi > e, \\w — <J\\ > 771, and 0 < U3 < r/2-
Using the Lipschitz continuity assumed in (e) it follows that if 

min^ Wi > e, and 0 < z < 772, then 

(4.8) 
dg , Q , dg \dui < cLl€cce7i2 

With the proof of Lemma 4.2 in mind, note that for (4.8) (and for 
(4.9) below) we do not need to exclude the region near the fixed point. 

For the last term in (4.5) we note that using (d) and (4.3) it 
follows that when min^ wi > e and 0 < z < 772 we have that 

(4.9) dg ( , 0 , s Qdz 
—{w + 9zim).e-

^ Cd ^ n . CdCc 
< — • Cc6z < #772 

e e 
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Section 4. Perturbation of higher dimensional systems. 43 

Combining (4.7)-(4.9) with (4.5) and (4.4) we see that if 6 < 1 then 
the right hand side of (4.1) is 

< -2<*i + m [CL,eCc + 9*Q\ m + CCX0 < - a x 

when 0 < z < r]2 ii r/2 and Ao are chosen small enough. D 

To complete the proof of (i) in Proposition 4.1, we have to con
sider the region near the fixed point. To do this, we will prove 

L e m m a 4.1 .2 . Given rji and 772, if Vs < V2 is chosen small enough 

1 ( \dh ,. ., 1A 
hm I sup < — : \\w — a|| < 771,0 < z < 773 > I < — Aa0 

Proof of L e m m a 4.1 .2 . Again we use (4.5). By (a), the first term 
has 

(4.10) E|rH^ ( w '0 n-m }-° 

for all w G A + . Using the boundedness of dg/dxi near the fixed 
point (which follows from (d)) and continuity of dui/dt it follows tha t 
if 773 < 772 is small then 

when \\w — a\\ < rji and z < 773. Combining (4.11) with (4.8) and 
(4.9), then using (4.5), and (4.4), we have the right hand side of (4.1) 
is 

CdCc < Xa0 + m f CL^CC + ^ ^ 1 6r]3 - 2Xa0 

when ||TX — c r | | < 7 / i , 0 < z < 7 7 3 and the desired result follows. • 

For some our examples we will need extensions of Proposition 4.1 
where one or both of the coordinates of our boundary equilibrium are 
0. For simplicity we restrict our attention to m = 2. Note that the 
conditions on the derivatives in (d) and (e) have gotten stronger but 
the conclusion in (i) requires only that w\ > e not w\ A W2 > e 
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44 Mutual Invadability Implies Coexistence 

P r o p o s i t i o n 4 .2 . Suppose that m — 2 with G\ > 0 and a2 = 0. 

(a) g(w) is decreasing on the face Fm, strictly decreasing when 
w\> Qj w ^ a. 

(b) Ifu—> (<Ji,0n_i) from inside T+J then liminf \ ^ > 3a 0 > 0. 

(c) \dz/dt\ < Ccz and for each 1 < i < m7 \dui/dt\ < CcUi 

(d) \dgi/dwi\ < Cd/wi and \dg2/dwi\ < Cd/{w\ + w2) 

(e) dg/dwi is Lipschitz continuous on {w G T m : w\ > e} with 
constant CL,C 

Let 0 < e < <Ti/2. If positive constants 9, \, r}7 V, and B are chosen 
appropriately with 9 < 1 and r] < e then 

h(u) = g(w + 9zlrn) — A log z 

satisfies: (i) dh/dt < —v < 0 when w\ > e and 0 < z < r\. 

and (ii) dh/dt < B when w\ < e and 0 < z < r\. 

Proof. We will follow the outline of Proposition 4.1. (c) is the same as 
in Proposition 4.1 but (d) is stronger, so repeating (4.1)-(4.3) proves 
(ii). (4.4) works as before and brings us to the proof of 

L e m m a 4 .2 .1 . Given e and r\\, there are cei,^2,Ao > 0 so that if 
0 < 9 < 1 and A < A0 then 

dh 
— < - a i < 0 
dt 

when w\ > e7 \\w — a|| > ?7i7 and 0 < z < 772. 

Proof. (4.5) is as before, but using the new condition (a) in (4.6) 
gives a constant a\ SO that 

2 

(4.6') E | ^ H ^ ( W ' 0 " } - - 3 a i 
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Section 4. Perturbation of higher dimensional systems. 45 

when w\ > e and \\w — a\\ > 771. Using the boundedness of dg/dxi 
when w\ > e, which comes from (d), and the continuity of dui/dt it 
follows that if 772 is small then 

(4-7') E dq , x du4 , x 

dxi dt 
-2ai 

when w\ > e, \\w — cr\\ > 771, and 0 < z < 772-
At this point we have proved the conclusion of (4.7) for w\ > e 

rather than min^ wi > e. Thanks to our new assumptions, this pat tern 
continues throughout the rest of the proof of Lemma 4.2.1. Using the 
Lipschitz continuity assumed in (e) it follows that if w\ > e, and 
0 < z < rj2, then 

(4.8') 
dg_ 
dxi 

(w + 9zlm) dg_ 
dxi 

(w) 
dui 
~dt < CL,€CcOm 

Again for (4.8;) (and for (4.9;) below) we do not need to exclude the 
region near the fixed point. For the last term in (4.5) we note tha t 
using (d) and (4.3) it follows that when w\ > e and 0 < z < rj2 we 
have that 

(4.9') dg , , Q 1 s Q
dz 

— (w + 0zlm).0- <^em 

Combining (4.7 /)-(4.9 /) with (4.5) and (4.4) we can complete the proof 
as before. • 

To complete the proof of (i) of Proposition 4.2, we have to con
sider the region near the fixed point. Our new (a) and the bounded
ness of dg/dxi near the fixed point allows us to conclude (4.11) holds 
when \\w — cr\\ < r\ and z < 7/3, and the rest of the proof is the same 
as before. • 

For Example 2.3 we will need the special case when the fixed 
point is at the origin. The assumptions in (d) and (e) get stronger 
once again, but now there is no exceptional set in the conclusion. 

Propos i t i on 4 .3 . Suppose that m = 2 and G\ — 02 — 0. 

(a) g(w) is decreasing on the face Fm and strictly decreasing when 
wi + w2 > 0 
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46 Mutual Invadability Implies Coexistence 

(b) Ifu^On from inside r + , then liminf ^^f > 3a0 > 0 

(c) \dz/dt\ < Ccz and for each 1 < i < m, \dui/dt\ < CCU{ 

(d) For each 1 < i < m, \dg/dwi\ < Cd 

(e) dg/dwi is Lipschitz continuous with constant CL 

Let 0 < e < a i /2 . If positive constants 6, A, r], v, and B are chosen 
appropriately with 6 < 1 and r] < e then 

h(u) = g(w + 9zlm) — A log z 

satisfies dh/dt < —v < 0 when 0 < z < r/. 

Proof. We will follow the proof of Proposition 4.2, but the strong 
assumptions in (d) and (e) will make things easier. (4.2/) becomes 

(4.2") 
dg 
dx 

Turning to the proof of 

^ . x I dui „dz\ < Cd • Cc{Ui + 9z) < CdCc 

Lemma 4.3.1. Given e and rji, there are cxi,r]2,\o > 0 so that if 
0 < 9 < 1 and A < A0 then 

dh 
-jr < -on < 0 at 

when \\w — a\\ > r/i, and 0 < z < r/2-

Proof. (4.5) is as before, but using the new condition (a) in (4.6) 
gives a constant «i so that 

(4.6") E^H^K°—) < -3«i 

when \w — cr|| > r\\. Using the boundedness of dg/dxi from (d), and 
the continuity of dui/dt it follows that if 772 is small then 

(«-n Ei^<)f(«)<-2ai 
i—1 
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Section 4. Perturbation of higher dimensional systems. 47 

when, \\w — a\\ > 7/1, and 0 < z < 772. 
At this point we have proved the conclusion of (4.7) for all w 

rather than w\ > e. Thanks to our assumptions this pattern will con
tinue throughout the rest of the proof. Using the Lipschitz continuity 
assumed in (e) it follows that if 0 < z < 772, then 

(4.8") 
d9 ( , n 1 N dg \dui < CreCc9V2 

For the last term in (4.5) we note that using (d) and (4.3) it follows 
that when 0 < z < 772 we have that 

(4.9") -—(w + 9zlm) -6--
OXJ at < cdcceV2 

Combining (4.7")-(4.9") together give Lemma 4.3.1. • 

It remains to consider the region near the fixed point. Our new (a) 
and the boundedness of dg/dxi allows us to conclude (4.11) holds 
when 11 w — a \ \ < 77 and z < 773 and the rest of the proof of Lemma 4.2 
goes as before. • 
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5. Lyapunov funct ions for Lotka-Volterra s y s t e m s . In order 
to use the results in Section 4 to construct repelling functions for 
three-species systems, we need convex Lyapunov functions for each of 
the three two-dimensional systems on the faces that make up r ° . In 
this section we study the question when the mean field ODE has the 
Lotka-Volterra form 

(5.1) - ^ =UJ [r3-^a3kuk\ j = 1,2 

For our needs, it is sufficient to consider two cases. 

I. competition, all a^ > 0. 

II. exploiter-victim. CL21 < 0, the other a^- > 0. 

Case II is simpler so we consider it first. 

L e m m a 5.0. In Case II if the Lotka-Volterra system (5.1) has a fixed 
point (pi,p2) with each component pi > 0 then 

(5.2) h(uuu2) = -a2i{ui - pi logizi} + a12{u2 - p2\ogu2} 

is a convex Lyapunov function. 

Proof. Since the pi > 0, a2\ < 0 and a\2 > 0, h is convex. A little 
calculus shows that 

-77 = - a 2 i (u i ~ Pi) i r i ~ a n ^ i ~ ^12^2} 

+ ^12(^2 - P2) {r2 - a2iui - a22u2} 

Using the fact that the pi are equilibrium probabilities and hence 
fi = on pi + Oi2p2 we can rewrite this as 

— = ana2i(ui - pi)2 - ai2a22(u2 - p2)2 < 0. 

For the last step, note that the cross terms {ui — pi){u2 — p2) cancel 
due to our choice of constants in the definition of /i, while the assumed 
signs of the a^ make each coefficient negative. • 
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Section 5. Lyapunov functions for Lotka-Volterra systems. 49 

We turn now to case I. In order for both species to have a pos
sibility to survive we must have r\,r<i > 0. In the absence of the 
other species, type i will reach an equilibrium level Oi = Tijan. In 
the {u\, U2) plane the derivative dui/dt — 0 when anU\ + a ^ 2 — ^%, 
i.e., on a straight line connecting (r^/aa,0) to ( 0 , ^ / ^ 2 ) . There are 
several situations to consider. 

Case 1. r i / a n > r 2 / a 2 i and r2/a22 > ^1/^12-

These inequalities guarantee the lines dui/dt — 0 intersect at a point 
(Pi>P2) in the first quadrant. Rearranged they say T2 < &2\®\ and 
r\ < ai2<r2 or using (2.1.7), they become 2 ^ 1 and 1 ^ 2 . In words, 
neither species can invade the other. 

To argue geometrically, note that the boundary fixed point (<TI, 0) 
is above the line du2Jdt = 0, see Figure 5.1, so U2 will be decreasing 
in a neighborhood and (0*1,0) will be locally attracting. Reversing 
roles, the boundary fixed point (0,(12) is above the line du\/dt — 0, 
so again (0,(72) will be locally attracting. Once there are two locally 
attracting fixed points, there can be no convex Lyapunov function. 
This disappointing fact kills our interest in this case, so we leave it as 
an exercise to the reader to show that the interior fixed point (pi,P2) 
is always a saddle point. 

Figure 5.1. 
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50 Mutual Invadability Implies Coexistence 

Case 2. r i / a n < r 2 / a 2 i and r2/a22 < ^1/^12-

These inequalities also guarantee the lines dui/dt = 0 intersect at a 
point (pi,p2) in the first quadrant. Rearranged they say r2 > a2\<J\ 
and ri > ai2cr2 or using (2.1.7), 2 >~ 1 and 1 >~ 2. In words, each 
species can invade the other. 

To argue geometrically, note that the boundary fixed point (cii, 0) 
is below the line du2/dt = 0, see Figure 5.2, so u2 will be increasing 
in a neighborhood of the fixed point and 2 will be able to invade 
1. Reversing roles, the boundary fixed point (0,<r2) is below the line 
dui/dt — 0 so 1 will be able to invade 2. 

Figure 5.2. 

Our goal is to prove that the interior fixed point (pi,p2) is at
tracting by showing 

Lemma 5.1. Let K = a\2ja2\. In Case 2 

(5.3) h(uuu2) = (ixi - Pilogui) + K(U2 - p2logu2) 

is a convex Lyapunov function. 

Remarks . (5.3) bears a striking similarity to the Lyapunov function 
for the predator-prey case given in (5.2). However this time all the 
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Section 5. Lyapunov functions for Lotka-Volterra systems. 51 

dij > 0, so we can't hope to cancel the off diagonal terms. In order 
to use this function with the result in Proposition 4.1, we will need 
bounds on the derivatives, so we note that 

dh 
dui 

= |c(l - pi/Ui)\ < — 
Ui 

for w G T + and dh/dui is Lipschitz continuous on {u G T + : u\ A112 > 

*}• 

Proof. Since K > 0, h is convex. A little calculus shows that 

— = {ui - pi) {n - dnui - a12u2} 

+ K(U2 - P2) {r2 ~ a2iui - CL22U2} 

Using the fact that the pi are equilibrium probabilities and hence 
^i = anPi + CH2P2 we can rewrite this as 

(5 4) ~dt=~ ail(Ul " P l ^ 2 " ai2(Ul ~ ^ ) ( ^ 2 ~ ^2) 

- Ka2\{u2 - p<i){u\ - pi) - Ka22(u2 - P2)2 

To check that the right-hand side is < 0 except at the fixed point we 
want to prove that the matrix 

KCL21 KCL22) 

is positive definite. Multiplying the matrix by the vector (0,1) on 
each side, what we want to establish is 

(5.5) a\i02 + (ai2 + ^a2i)9 + na22 > 0 

Since a n > 0 this will be true if and only if there are no real roots 
for this quadratic equation, i.e., 

(5.6) (a12 + KCL21)2 - 4ana22ft < 0 

Taking n = 0*12/0,21 to simplify the square converts the last condition 
into 

2 ^12 
4a1 2 - 4ana 2 2 • — < 0 

^21 
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52 Mutual Invadability Implies Coexistence 

or simply that the determinant a\\a22 — &12&21 > 0. To check this, 
we have to use the inequalities that define case 2. Rearranged they 
say 

an r i r1 a12 
> — and — > 

021 r2 r2 a 2 2 

Combining the two inequalities and cross multiplying shows a\\a22 — 
&12&21 > 0, completing the proof of Lemma 5.1. • 

Our first two cases for the competition model have considered 
the two possible ways that the lines dui/dt — 0 can intersect in the 
positive quadrant. There are also two ways that the lines can fail to 
intersect there. We will consider here "Case 3a" in which du\jdt = 0 
lies above du2/dt = 0 inside I \ Since (o"i,0) lies above du2/dt — 0, it 
is locally attracting. Conversely, (0,0*2) lies below du\jdt — 0, so l 's 
can invade the 2's. In this case we expect that the l 's will drive the 
2's to extinction. The next result constructs a Lyapunov function to 
prove this for the ODE. 

L e m m a 5.2. In Case 3a, if 0 < e, K, K < oc are chosen appropriately 
and we define vi = anU\ + ai2u2 then 

h(ui,u2) = u\ - G\ log^i + KU2 + Klog~(v2/(r2 + e)) 

is a convex Lyapunov function. In the degenerate case <J2 — 0, it is 
possible to take 

h(ui, u2) = u\ - G\ log u\ + nu2 

Remark . In order to use these functions with the results in Propo
sition 4.2, we need bounds on the derivatives. Consulting (d) and (e) 
of that result, the desired bounds are 

dh cd 
< —-

Ui 

dh 
du2 

for w E T + and dh/dui is Lipschitz continuous on {u G T + : u\ > e}. 
It is easy to see that these conditions are satisfied by the functions in 
Lemma 5.2. 

Purchased from American Mathematical Society for the exclusive use of Richard Durrett (DRRCTJ)
Copyright 2002 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



Section 5. Lyapunov functions for Lotka-Volterra systems. 53 

Figure 5.3 

Proof. It is clear that h is convex. Letting hi = u\ — (J\ log u\ and 
h2 = u2, 

(5.7) ~dt 
dh2 

~~dT 

= («i - cn){n - anwi - 012^2} 

= u2{r2 - a2iwi - 022^2} 

Now dh2/dt < 0 when v2 > r2 i.e., above du2/dt = 0. On the other 
hand, using r\ = a\\a\ 

(5.8) 
dhi 
~dt~ -aniui - ai)2 - (ui ~ o-1)a12u2 

From this formula we can see that dh\/dt < 0 if u\ > o\. Using (5.7), 
we see that dh\/dt < 0 if u\ < <J\ and T\ > v\. Combining the two 
results gives us four regions to look at. See Figure 5.3. Here and in 
what follows all points we consider are assumed to lie in T. 

Ri. ui ><7i: dhi/dt < 0, dh2/dt < 0 

i?2- u\ < (Ji, v\ > r±: dh\/dt > 0, dh2Jdt < 0 
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54 Mutual Invadability Implies Coexistence 

i?3. r\ > vi, V2 > T2'. dhi/dt < 0, dh2Jdt < 0 

R4. v2 < r2: dhi/dt < 0, dh2/dt > 0. 

In regions R\ and R% we have dh/dt < 0. To deal with i?2, we 
will choose K large. To see that this will succeed despite the fact 
that dh2i'dt vanishes when U2 = 0, note that (i) the only point on 
the boundary of J?2 with U2 = 0 is (o"i,0), and (ii) if we near that 
point inside i?2 we have \u\ — &\\ < Cu2, so dh\jdt = 0(1x1) versus 
dh2Jdt r>j CU2-

When <J2 = 0, i?4 = 0 and we are done with the proof. To control 
the behavior in R4 when 02 > 0, we will add a corner function. To do 
this, we observe that dv2Jdt > 0 on R4 = {V2 < r2J, so we can find 
an e > 0 so that this this holds for ^2 ^ ^2 + -̂ Letting 

^3(^1,^2) = log~ ( — — J \r2 + ej 

calculus tells us that 

dh3 _ - 1 dv2 

dt V2 dt 

when V2 < T2 + e. As V2 —> 0, 

1 dv2 — -> a2ir1 + a22T2 > 0 
V2 dt 

so dhs/dt is bounded away from 0 on i?4. Since dh2Jdt is bounded 
there, if K is chosen large enough, hi+nh2+hs is a Lyapunov function. 
• 

The previous result takes care of the competition case when the 
fixed point has one positive component, so we turn now to this case 
for the exploiter-victim system. The set {du2/dt = 0} is a line with 
positive slope 

T2 « 2 1 
u2 = ui 

&22 &22 

There are two ways this can fail to intersect the line {dui/dt = 0} 
inside the positive quadrant: (a) 2's are a predator (r2 < 0) but the 
prey are not nutritious enough to sustain the predator: 

(5.9) T2 — CL21C1 < 0 where CF\ — r\ja\\ 
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Section 5. Lyapunov functions for Lotka-Volterra systems. 55 

or (b) 2's can survive on their own (72 > 0) and cannot be invaded 
by the l's 

(5.10) ri — ai2cr2 < 0 where a2 = r2l&22 

Lemma 5.3. Consider case (a) described in (5.9). If 0 < a, ft, K < oc 
are chosen appropriately, and y+2 denotes the square of the positive 
part ofy then 

h{u\,U2) — u\ — o\ logiii + KU2 + K(ui — a) +2 

is a convex Lyapunov function. In the degenerate case o\ — 0, we can 
take 

h(u\, 112) = u\ + KU2 + K{u\ — a ) + 2 

Figure 5.4. 

Remark. In order to use these functions with the results in Proposi
tion 4.2 and 4.3. we need bounds on the derivatives. In the first case 
the boundary equilibirum is (<7i,0), SO the desired bounds (which are 
satisfied here) are 

dh 
< 

Cd \ dh 
\duo 

< 
Cd 

U\ + U2 
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56 Mutual Invadability Implies Coexistence 

for u G T + and dh/dui is Lipschitz continuous on {u G T + : u\ > e}. 
In the second case the boundary equilibirum is (0,0), so the desired 
bounds from (d) and (e) of Proposition 4.3 (which are satisfied here) 
are \dh/dui\ < Cd for u G T + and dh/dui is Lipschitz continuous on 
r+. 

Proof. It is clear that h is convex. Letting hi = u\ — o\ log u\ and 
h2 = u2, (5.7) implies that dh/dt — dh\jdt + Kdh2jdt where 

(ui - (Ji){ri - auui - a12u2} 

u2{r2 - a2iui - a22u2} 

Now dh2/dt < 0 when a22u2 > r2 — a2\U\ i.e., above the line du2/dt = 
0, which now has positive slope and by (5.9) crosses the x-axis at 
^2/^21 > 0"i- On the other hand, using r\ — a\\0\ 

(5.12) — = -an(ui - cJi)2 - (m - (Ji)ai2u2 

In this form we can see that dh\/dt < 0 if u\ > a\. Using (5.11), 
we see that dh\/dt < 0 if u\ < a\ and r\ > v\. Combining the two 
results gives us four regions to look at. See Figure 5.4. Here, and in 
what follows, all points we consider are assumed to lie in I \ 

R\. r\ > vx: dhi/dt < 0, dh2/dt < 0 

R2. u\ < ax, vi > ri\ dhi/dt > 0, dh2/dt < 0 

i?3. a22^2 > r2 — a2\U\, u\ > a\\ dhi/dt < 0, dh2/dt < 0 

R4. a22u2 < r2 — a2\U\\ dh\jdt < 0, dh2/dt > 0. 

Note that the regions have been numbered in parallel to those in 
Lemma 5.3. In R\ and R3 we have dh/dt < 0. To deal with R2, 
we will choose n large. To see that this will succeed despite the fact 
that dh2/dt vanishes when u2 = 0, note that (i) the only point on 
the boundary of R3 with u2 = 0 is (<7i,0), and (ii) if we near that 
point inside R2 we have \u\ — (J\\ < Cu2, so dh\jdt — 0{vi%) versus 
dh2/dt rsj cu2. 

(5.11) 

dh\ 

~dT 
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Section 5. Lyapunov functions for Lotka-Volterra systems. 57 

To control the behavior in i?4, we will add a corner function. 
Pick a G (o"i,r2/a>2i) a n d let ^3(^1,^2) = (^1 — <^)+2. Calculus tells 
us that when u\> a 

dhs du\ 
dt dt < 0 

since a > o\. Our other choice a < T2Jci2\ implies that dh^/dt is 
bounded away from 0 on R4. Since (U12/dt is bounded there, if K is 
chosen large enough, h\ + ft/12 + Khs is a Lyapunov function. 

This proves the result when o\ > 0. If G\ — 0 (i.e., T\ = 0) there 
are only regions R\ and i?2- Changing now to h\{u\) — u\ we still 
have dhi/dt < 0 in R\ and i?2- To control the behavior in i?i, we add 
the corner function hs as before. D 

We now consider the case in which T2 > 0 and the boundary 
equilibrium is (0,0*2) cannot be invaded by l 's . 

L e m m a 5.4. Consider case (b) described in (5.10). If 0 < OL^K.K < 
00 are chosen appropriately, and we let y+2 indicate the square of the 
positive part of y then 

h{uuu2) = u2 - a 2 l o g ^ 2 + KUI + K{a - u2 
t + 2 

is a convex Lyapunov function. In the degenerate case <j\ — 0 we can 
take 

h(ui, u2) = u2 - 02 log u2 + KUI 

Remark. In order to use these functions with the results in Proposi
tion 4.2 we need bounds on the derivatives. In each case the boundary 
equilibirum is (0,0*2), so interchanging the roles of the coordinates the 
desired bounds (which are satisfied here) are 

dh 
duo 

< 
Cd 

U2 

dh 
dui 

< 
Cd 

ui + u2 

for u 6 T + and dh/dui is Lipschitz continuous on {u G T + : u\ > e}. 
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58 Mutual Invadability Implies Coexistence 

<Tt 

Figure 5.5. 

Proof. As you can see by comparing the conclusions with those of the 
two previous lemmas, this proof is very similar to the proof of Lemma 
5.2, but now the fixed point is on the other axis. It is clear that h is 
convex. Letting h2 = u2 - a2logu2 and hi = uu (5.7) implies that 
dh/dt = dh2/dt + ndh\/dt where 

(5.13) 

dh2 

~dt 
dh 

= (u2 - cr2){r2 - a-2iui - a22u2) 

dt 
- = «i{ri - a n « i - a12u2} 

Now dhi/dt < 0 when a\2u2 > rx —an«i i.e., above the line dui/dt 
0. On the other hand, using r2 — a22a2 

(5.14) dh2 

~dt = -^22(^2 - V2)2 - (u2 - cr2)a21ui 

In this form we can see that dh2/dt < 0 if u2 < a2. Using (5.13), 
we see that dh2/dt < 0 if u2 > a2 and r2 < v2. Combining the two 
results gives us four regions to look at. See Figure 5.5. Here, and in 
what follows, all points we consider are assumed to lie in T. 
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Section 5. Lyapunov functions for Lotka-Volterra systems. 59 

Ri> r2 < v2: dh2/dt < 0, dhi/dt < 0. 

R2- r2 < V2> ^2 > (T2' dh2/dt > 0, dh\jdt < 0 

#3- U2 < (Ji, vi > r\\ dh2Jdt < 0, dhi/dt < 0 

i?4- r i > vi\ dh2/dt < 0, dhi/dt > 0 

The numbering of the regions parallels that in Lemmas 5.3 and 5.4. 
In regions R\ and R% we have dh/dt < 0. To deal with i?2, we 
will choose K large. To see that this will succeed despite the fact 
that dhi/dt vanishes when u\ = 0, note that (i) the only point on 
the boundary of R3 with u\ = 0 is (0,<72), and (ii) if we near that 
point inside R2 we have \u2 — <̂ 21 < Cu\, so dfi2/dt — 0{u\) versus 
dhi/dt rsj cu\. 

When a i = 0, i?4 = 0 and we are done with the proof. To control 
the behavior in R^ when G\ > 0, we will add a corner function. Pick 
a G (<J2,ri/ai2) and let ^3 (1x1,1/2) = (a~^2)+2. Calculus tells us tha t 
when u\ > a dhs/dt = du\/dt < 0 since a > o\. Our other choice 
a < r 2/(^21 implies that dhs/dt is bounded away from 0 on i?4 . Since 
dh2Jdt is bounded there, if K is chosen large enough, h\ + ft/12 + Khs 
is a Lyapunov function. • 

The final degenerate case to consider is when the origin is an 
attracting fixed point. The exploiter victim special case is covered by 
Lemma 5.3. This leaves us with only the competition case where the 
result is trivial. 

L e m m a 5.5. Suppose r^ < 0 and ctij > 0. In this case u\ + U2 is a 
convex Lyapunov function. 

Proof. Clearly d{u\+U2)/dt = J2i Ui(ri — ̂  . ctijUj) < 0 when ui > 0, 
u\ +u2 > 0. • 
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6. Three spec ies l inear c o m p e t i t i o n mode l s . In this section, 
we will consider the following generalization of Example 2.1 to three 
species. Each site can be in state 0, 1, 2, or 3, where 0 is vacant, while 
i = 1, 2, 3 indicate sites occupied by type i. Letting fi be the fraction 
of neighbors in state i, we can write the transition rates of the model 
as follows: 

i —* j at rate ftijfj 

j -> 0 at rate Sj + ] P jjkfk 
k 

The mean field ODE for this system is: 

duj 
~dT = J2^ " Pji)uiuJ ~ UJ \5i + Yl ^kUk ) 

Letting j3j — fioj, noting j3jo = 0, and substituting uo = 1 — U\ — U2 — 
U3, the equations above can be rewritten as 

du- 3 

(6.1) —± = (P3 - Sj) Uj - Uj J^^J + 15* + Pi* ~ Muk 
k=i 

which has the Lotka-Volterra form 

(6.2) - ^ = Uj f Tj - Y^ a3kUk 

It follows from the definition of the ajk and our generic parameters 
assumption that (i) CLJJ = /3j + jjj > 0 and (ii) if ajk < 0 /3kj > (3jk 
and hence akj > 0. 

We begin with the special case in which each species can survive 
on its own. That is, we will suppose that 

(6.3) ri = Pi-5i>0 for i = 1, 2, 3 

conditions that we can write in invadabihty notation as i >- 0 using 
Definition 4. If we let 

_ Pi ~ ^ 
A + iii 

and define the two indices j < k complementary to i by the require
ment {1,2,3} = {i,J, k} then the point Ui = o^, Uj — Uk — 0 is an 
attracting fixed point on the edge Y°-k — {u : Uj — Uk = 0}. In the 
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Section 6. Three species linear competition models. 61 

notation of Definition 2 we have i —> &{. From Definition 3, we see 
that i can invade j in equilibrium, or i y j , if 

(6.4) Ti - CLijGj > 0 

Since we have supposed that r̂  > 0, this will always hold when a^ < 
0. Results in Example 1.1 imply that if i y j and j y i and k — 
{1, 2,3} — {z, j} then there is a fixed point t^ = G\, UJ = ok-, Uk = 0. 
To treat this fixed point we need 

(6.5) Definition 6. We say that k can invade i,j in equilibrium and 
write k y i,j if as u —> crk inside r + 

l i m i n f ^ ^ > 0 
Uk dt 

In the current situation it is easy to see that this holds if 

(6.6) rk - akio>k - akjaj > 0 

The simplest possible situation occurs when all of the invadability 
conditions hold. 

Theorem 6.1. Suppose that for all distinct i,j,k we have (a) i y 0? 

(b) i y j , and (c) k y i,j. Then there is coexistence in the three 
species linear competition model with fast stirring. 

Figure 6.1. 
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62 Mutual Invadability Implies Coexistence 

Proof. See Figure 6.1 for a picture. Since 1 >- 0, 2 >- 0, and 3 >̂  0 
we can pick positive 770 and z/0, so that ho = log~((^i +112 + u3)/4:rio) 
has 

(6.7) dho/dt < —VQ when 0 < (u\ + U2 + u3) < 4?7o 

From the corner we move to the 

Edges T°- k. Let &i — Vi/au be the equilibrium density of type i in 
the absence of competitors, and let gi(u) — u — o^logix. Each Oi is 
an attracting fixed point, so (a) of Proposition 1.1 is satisfied. Let 
zi — Uj + Uk where j < k are the elements of {1,2,3} — {i}. Since 
j >- i and k >- i, (b) holds. Applying Proposition 1.1, with Ci < 770, 
we see that if Oi < 1, A ,̂ r\i < rji-i, v% < ^ - 1 , and Bi are chosen 
appropriately for i — 1, 2, 3 and i/)i(u) — (e^ — u)+2 then 

M ^ ) = 9i(ui + 9iipi(ui)zi) - Xi log zi 

has (i) dhi/dt < —Vi when i^ > ê  and 0 < Zi < r]i and (ii) dhi/dt < Bi 
when 0 < Ui < €i and 0 < Zi < rji. If we pick M^ large enough then the 
function hi = hi A M^ is only nontrivial when 0 < Zi < rji. If we take 
V3 < % small enough then we will have hi > Mi when 0 < Zi < 7/3. 
Region (ii) is not a problem because of (6.7), so if we pick K\ > 1 
large then 

(a Qx dKxho + hi + h2 + h3 
(6.8) < -u3 

when 0 < Zi < fjs for some 1 < i < 3. In words, j \ = Kiho + hi + 
Ji2 + h3 is a repelling function for Y — F® 3 U T® 3 U T® 2 . We can now 
add the Lyapunov functions for the 

Faces T®. Here we have competitive systems that fall into Case 2 of 
Section 5, so Lemma 5.1 implies the existence of a Lyapunov function 
fi tha t satisfies (a), (d), and (e) of Proposition 4.1. The condition 
i >- j,k implies that (b) holds. Applying Proposition 4.1, with e < 773, 
we see that if 93+i < 1, A3+z , 773+, < 772+;, ^3+; < ^2+;, and B3+i are 
chosen appropriately for i = 1, 2, 3 then 

h3+i{u) = fi(Uj + 63+iUi,Uk + 03+iU3) - X3+i log Zi 

has (i) dh3+i/dt < —v3+i when Uj f\Uk > e and 0 < Ui < rj3+i and 
(ii) dh3+i/dt < B3+i when 0 < Uj Auk < e and 0 < Ui < 773+2. If we 
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Section 6. Three species linear competition models. 63 

pick Ms+i large enough then the function hs+i = /13+i A M$+i is only 
nontrivial when 0 < ui < r]s+i. Region (ii) is not a problem because 
of (6.8). Thus if we pick K2 > 1 large then K2J1 + ^4 + ^5 + HQ is a 
repelling function for T° and the proof of Theorem 6.1 is complete. • 

Concrete Example . To show that it is possible to satisfy all 
of the conditions in Theorem 2.1, we consider the following numerical 
example: 

dui/dt = ui{l — 8u\ — 2u2 — 2^3} 

du2Jdt — 1/2(1 — 2ui — 8U2 — 2^3} 

dus/dt = 1x3(1 — 2ui — 2u2 — 8^3} 

which corresponds to the system with fy = 2, Si = 1, 7^ = 6, the other 
7ij and fyj are equal to 0. In this case, &i — 1/8 so Vi—a^aj = 3/4 > 0 
and i y j . When Uk = 0 the boundary equilibrium, is af = a* = 
1/10. To check k y i,j, we note that r^ — a^iG^ — a^a^ — 1 — 4/10 > 0 
• 

It is natural to ask if all three species can coexist when some 
pair cannot. There are six invadability conditions in (b) of Theorem 
2.1. We will break things down according to the number of these 
conditions that fail, starting with the situation in which there is only 
one. The reader who tires of the large number of cases can skip ahead 
to Section 7 where we consider three-species predator-prey examples. 

ONE. Without loss of generality we can suppose that 3 ^ 2 . In this 
case Lemma 5.2 implies that 2 » 3 where 

(6.9) Def init ion 7. 2 » 3 means there is a convex Lyapunov func
tion on the face T® that is decreasing whenever 112 > 0. 

Note that in general (a) 2 » 3 is stronger than the pair of conditions 
(b) 2 >- 3 and 3 ^ 2 , however, our calculations in Section 5 show that 
for Lotka-Volterra systems (a) and (b) are equivalent. 

T h e o r e m 6.2. Suppose that (a) 1 >- 0, 2 >- 0, 3 >- 0, 

(b) 2 y l, 1 y 2, 3 y 1, 1 y 3, 2 » 3 

(c) 3 y 1,2, and 2 y 1,3. 
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64 Mutual Invadability Implies Coexistence 

Then there is coexistence in the three species linear competition model 
with fast stirring. 

Figure 6.2 

Proof. Again we start at the corner and work our way out. See Figure 
6.2. The structure of the proof is dictated by our greedy algorithm: 
at each step we extend the domain of our repelling function by as 
much as possible. Schematically the proof is 

{(o,o,o)}^r°i3ur?i2^r?ur°->r0 

Since 1 >- 0, 2 >- 0, and 3 >- 0 we can pick positive 770 and ẑ o, so 
that ho = log"((ui + u2 + u3)/4:r]o) has 

(6.10) dho/dt < —UQ when 0 < (u\ + u2 + 1/3) < 4ry0 

From the corner we move to the 

Edges T® 3 and r ? 2 - We must leave out T^ 3 since 3 ^ 2 . Let 
&i — ri/au be the equilibrium density of type i in the absence of 
competitors, and let gi(u) — u — ailogu. Each 0̂  is an attracting 
fixed point, so (a) of Proposition 1.1 is satisfied. Let Zi = Uj + Uk 
where j < k are the elements of {1, 2, 3} — {i}. When i = 1 and i — 3 
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Section 6. Three species linear competition models. 65 

(but not when i — 2), we have j >- i and k >- i, so (b) holds. Apply
ing Proposition 1.1, with e\ < 770, we see that if Q\ < 1, Ai, 771 < e, 
v\ < VQ, and B\ are chosen appropriately and ^ i ( ^ ) = (ei — ^ ) + 2 then 

ftiW = #1(^1 + #1^1(^1)^1) - Ailog^i 

has (i) dh\/dt < — V\ when u\ > e\ and 0 < Z\ < r/i and (ii) dh\/dt < 
B\ when 0 < u\ < e\ and 0 < z\ < 771. If we pick M\ large enough 
then the function hi = hi A Mi is only nontrivial when 0 < zi < 771. 
If we take f/i < 771 then we will have hi > Mi when 0 < zi < fji. 

Applying Proposition 1.1 again, with €2 < 771, we see that if 
#2 < 17 A2, 772 < e, 7/2 < ^ 1 , and £?2 are chosen appropriately and 
^ ( ^ O = (f2 — ̂ ) + 2 t h e n 

M ^ ) = #3(^3 + #2^2(^3)^3) - A 2 logz 3 

has (i) dh2/dt < —V2 when u<$ > €2 and 0 < z% < 772 and (ii) dh2Jdt < 
B% when 0 < ^3 < 62 and 0 < Z3 < 772- If we pick M2 large enough 
then the function J12 — h2 A M2 is only nontrivial when 0 < z% < 7/2 • 
If we take 772 < 7/2 then we will have /12 > M2 when 0 < z% < 772. 
Region (ii) is not a problem in either case because of (6.10), so if we 
pick Ki > 1 large then 

(a -,-n dKiho + hi + h2 (6.11) < - , 2 

when 0 < zi < f/2 or 0 < Z3 < f/2- In words, ji = Kiho + hi + J12 is a 
repelling function for F® 3 U T\ 2 . We are now ready to add 

Faces T^ and Y\. On the face T®, the fixed point has both components 
positive, so Lemma 5.1 implies the existence of a Lyapunov function 
f2 that satisfies (a), (d), and (e) of Proposition 4.1. The condition 
2 x 1 , 3 implies that (b) holds. Applying Proposition 4.1, with e < fJ2, 
we see tha t if #3 < 1, A3, 773 < 772, ^3 < ^2, and B3 are chosen 
appropriately then 

hz(u) = f2(ui +03u2,u3 + 93U2) - A 3 log u2 

has (i) dhs/dt < — v3 when ui A u3 > e and 0 < u2 < r/s and (ii) 
dhs/dt < Bs when 0 < Ui A 7x3 < e and 0 < U2 < 773. Region (ii) is 
not a problem because of (6.11). If we pick M3 large enough then the 
function K3 = /13 A M3 is only nontrivial when 0 < 7x2 < Vs- If we take 
Vs < V3 then we will have /13 > M3 when 0 < u2 < %. 
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66 Mutual Invadability Implies Coexistence 

On the face 1^, the fixed point has o\ > 0 and cr\ = 0, so Lemma 
5.2 implies the existence of a Lyapunov function f\ that satisfies (a), 
(d), and (e) of Proposition 4.2. The condition 1 y 2 implies that (b) 
holds. Applying Proposition 4.2, with e < 773, we see that if #4 < 1, 
A4, 774 < e, z/4 < 1/3, and ^4 are chosen appropriately then 

/i4 (^) = /1 {u2 + ^4^1, ^3 + O4U1) - A4 log u\ 

has (i) dh^/dt < —V4 when U2> e and 0 < 7/1 < 774 and (ii) dh^/dt < 
B4 when 0 < 112 < e and 0 < 771 < 774. Region (ii) is not a problem 
because of (6.11). If we pick M4 large enough then the function J14 = 
/14 A M4 is only nontrivial when 0 < u\ < 774. If we take 7/4 < 774 then 
we will have /14 > M4 when 0 < TXI < 774. If we pick i^2 > 1 large 
then 

(6.12) < - i , 4 

when 0 < 7i2 < ?̂4 or 0 < 7x1 < 7)4. In words, J2 — K2J1 + ^3 + hi is a 
repelling function for T^ U T^. We are now ready to finish with the 

Face T®. Here, the fixed point has both components positive, so 
Lemma 5.1 implies the existence of a Lyapunov function f3 that sat
isfies (a), (d), and (e) of Proposition 4.1. The condition 3 >- 1,2 
implies that (b) holds. Applying the Proposition 4.1, with e < 774, we 
see that if 6$ < 1, A5,775 < e, 1/5 < ^4, and B4 are chosen appropriately 
then 

h${u) = h(ui +65u3,u2 +05u3) - A5log7i3 

has (i) dh^/dt < — 1/5 when 771 A u2 > e and 0 < 77,3 < 775 and (ii) 
dh$/dt < £5 when 0 < ui A U2 < e and 0 < 7/3 < 775. If we pick M 5 

large enough then the function h^ = h§ A Ms is only nontrivial when 
0 < 7x3 < 775. It follows from (6.12) that if we pick K3 > 1 large then 
K3J2 + /15 is a repelling function for TQ and the proof of Theorem 6.2 
is complete. • 

Remark . Mimura and Fife (1986) considered a three species Lotka-
Volterra system satisfying the conditions of Theorem 6.2 and showed 
that if the diffusion rates for the 2's and 37s are small then the reaction-
diffusion equation has non-constant equilibrium state. 

Ti lman's (1994) Mode l . To illustrate that the situation in 
Theorem 6.2 can occur we will consider a special case of (6.1) that 
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Section 6. Three species linear competition models. 67 

is of considerable interest in its own right. We set ftj = ft Hi < j , 
(3ij = 0 otherwise, and for simplicity take 7^ = 0. The mean field 
ODE for the three species system is 

- = ft«i(l -ui) -61U1 
dt 

du2 

~dT 
du3 

= (32u2(l — u\- u2) - S2u2 - u2[3iui 

= /33i/3(l -U1-U2- 1/3) - S3u3 - u3((3iui + ftw2) dt 

which has the Lotka-Volterra form with a lower-triangular matrix a^-: 

du\ 
dt wi{(/5i -Si) - f t « i } 

(6.13) ^ = « 2 {( f t - <52) - ( A + (32)Ul - (32u2} 

~ = u3{((33 - S3) - (ft + # , ) « ! - ( f t + ft)«2 - / W 

It is clear that 1 >- 0 (and \ >- 2 and 1 >~ 3) if Pi > Si. Letting 
&i — (Pi — &i)lPi we will have 2 >- 1 if 

P2-S2-(P1+P2)a1>0 

and in this case there will be an equilibrium with 

3 3 fo ~ 62 - (Pi + fo)*! 
crl =ai a2 = 

P2 

We will have 3 >- 1, 2 if /?3 - 53 - (pi + 03)af - (p2 + p3)a% > 0. In 
contrast we have 3 >- 2 if 

ft-<53-(ft + ftV2>0 

To give a numerical example we set ft = 1 for all i. In this case 
<7j = 1 — Si and <J\ = &2 — 2u\ SO the invadability conditions are 

1 ^ 0 ox > 0 
2 >- 1 a2 > 2«7i 

3 ^ 1 , 2 (73 > 2(7i + 2((72 - 2(7i) = 2(<T2 - O-i) 
3 ^ 2 a3 > 2(72 
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It should be clear from this that in the special case fy = 1, 3 >- 2 
implies 3 >~ 1,2 but not conversely. To better understand the invad
ability conditions 2 >- 1 and 3 >- 1,2, we consider 8% < 82 < Si as 
points in (0,1) and rewrite the two desired conditions as 

(6.14) 52 < Si - Gi S3 <S2~ (cr2 - 2(7i) 

In words, species 1 casts a shadow of length equal to its frequency 
in equilibrium pi = G\ , where species 2 is not allowed to fall. Similarly, 
species 2 casts a shadow of length equal to its frequency in equilibrium 
92 — ^2 — 2tf"i where species 3 is not allowed to fall. This observation 
leads to a simple algorithm for computing the equilibrium. Start with 
your pen at (1,0). Go to the left and up at a 45 degree angle until 
you reach the first species at S\. The height on the y axis (in this case 
1 — Si) is its equilibrium density. Continue to the left but now down at 
a 45 degree angle until you hit x axis. Any species passed over in the 
phase will have density 0 in equilibrium. Now go up at a 45 degree 
angle until you hit the next species and repeat the procedure. For 
more about this procedure, and properties that can be derived from 
it see May and Nowak (1994). Having determined the conditions for 
a positive equilibrium to exist, the rest is easy. 

T h e o r e m 6.3. Consider the n species Tilman model. If there is a 
fixed point with all components positive then coexistence of all species 
occurs for fast stirring. 

Sketch of Proof. A convergence theorem for the mean field ODE 
for the Tilman model is trivial. Clearly, u\{t) —> p\. Once u\ is close 
to pi , du2Jdt is almost a function of U2 alone and has an attracting 
fixed point at p2^ so 1x2 (*) —» p25 etc. One way of proving the second 
conclusion is to let gi{u) — u — pilogu and to introduce the convex 
function [g2(u)— ^2(^2) — ^ ] + which is decreasing along solutions when 
u\(t) is close enough to pi. Using Proposition 1 on this function we 
can show that on a linearly growing set v,2(t,x) is close to p2. This 
observation and induction allows us to check the assumption (•) in 
Proposition 2 and the desired result follows. Details are given in 
Section 8. • 

TWO. Suppose now that two of the invadability conditions fail. 
There are several cases to consider. If we have i )/- j and j )/- i then we 
have two locally attracting equilibria on T^ (where k is the remaining 
index 7̂  i,j) and our methods cannot work. Thus we can assume 
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Section 6. Three species linear competition models. 69 

without loss of generality the index 1 appears in each of the failed 
conditions while 2 and 3 appear once. This gives us three possibilities: 

(i) 1 » 2, 1 » 3. In this case the boundary equilibrium (<7i,0,0) is 
locally attracting so our methods fail and we expect the l's to take 
over. 

(ii) 2 » 1, 1 » 3. We will now show that coexistence is possible in 
this case. 

Theorem 6.4. Suppose that (a) 1 y 0, 2 >- 0, 3 y 0, 

(b) 2 » 1, 1 » 3, 3 y 2, 2 y 3, and (c) 1 y 2,3. 

Then there is coexistence in the three species linear competition model 
with fast stirring. 

Figure 6.3 

Proof of Theorem 6.4. We begin in the corner and work our way 
out. See Figure 6.3. The schematic of the proof is 

{(o,o,o)}^it2^r°^r°urO->r° 
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As in the two previous cases, since 1 >*- 0, 2 y 0 and 3 >- 0, we can 
pick positive 770 and Z/Q, SO that ho = \og~~((ui + u2 + US)/4TJO) has 

(6.15) dho/dt < —z/0 when 0 < {u\ + u2 + u3) < 4r/0 

Edge T® 2. This time there is only one edge with a nonsaddle point 
so we start with it. Let Oi = ri/au be the equilibrium density of type 
i in the absence of competitors, and let giiu) — u — <Ji log w. Each 0^ 
is an attracting fixed point, so (a) of Proposition 1.1 is satisfied. Let 
zi = Uj + Uk where j < k are the elements of {1,2,3} — {i}. When 
i — 3 (but not when i = 1 or i = 2), we have j y i and k y i, 
so (b) holds. Applying Proposition 3.1, with e± < 770, we see that if 
#i < 1, Ai, 771 < ei, z/i < ISQ, and £?i are chosen appropriately and 
^i(w) = (ei — ix)+2 then 

/ii(^x) =p i ( ix 3 + 6iip1(u3)z3) - Ai log 2:3 

has (i) dhi/dt < — v\ when u\ > t\ and 0 < z3 < rji and (ii) dhi/dt < 
B\ when 0 < u\ < e\ and 0 < z3 < 771. If we pick Mi large enough 
then the function hi = hi A Mi is only nontrivial when 0 < z3 < 771. 
If we take 771 < 771 then we will have hi > Mi when 0 < z3 < fji. 
Region (ii) is not a problem because of (6.15), so if we pick Ki > 1 
large then 

(a ia\ dKiho + hi 
(6.16) < -V! 

when 0 < zs < fji. In words, ji = Kiho + hi is a repelling function 
for the edge T® 2 • We are now ready to add the 

Face T®. Here the boundary fixed point has o\ > 0 and o\ — 0, 
so Lemma 5.2 implies the existence of a Lyapunov function fi that 
satisfies (a), (d), and (e) of Proposition 4.2. The condition 2 >- 1 
implies that (b) holds. Applying Proposition 4.2, with e < 771, we see 
that if 62 < 1, A2, 772 < e, 1/2 < vi, and 5 2 are chosen appropriately 
then 

h2(u) = f2(ui +02u2,u3 + 62u2) - A 2 log^ 2 

has (i) dh2/dt < — v2 when u\ > e and 0 < 112 < 772 and (ii) dh2Jdt < 
B2 when 0 < ?zi < e and 0 < 112 < r]2- If we pick M 2 large enough 
then the function J12 = /12 A M2 is only nontrivial when 0 < Ui < 772. 
If we take 772 < 772 then we will have h2 > M 2 when 0 < u2 < fJ2-
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Section 6. Three species linear competition models. 71 

Region (ii) is not a problem because of (6.16), so if we pick K2 > 1 
large then 

(6.17) < -V2 

when 0 < U2 < 772- In words, J2 = K2J1 + ^2 is a repelling function 
for the face T^. We are now ready to add the 

Face Tj]. Here the boundary fixed point has o\ > 0 and af = 0, 
so Lemma 5.2 implies the existence of a Lyapunov function ^3 that 
satisfies (a), (d), and (e) of Proposition 4.2. The condition 3 >- 2 
implies that (b) holds. Applying Proposition 4.2, with e < 772, we see 
that if 03 < 1, A3, 773 < e, z/3 < z/25

 a n d ^2 are chosen appropriately 
then 

h3(u) = f3(ui + 93u3,u2 +03u3) - A3 logu 3 

has (i) dh3/dt < — v3 when 112 > e and 0 < u3 < r]3 and (ii) dh3/dt < 
B3 when 0 < U2 < e and 0 < u3 < r]3. If we pick M3 large enough 
then the function h3 = h3 A M3 is only nontrivial when 0 < u3 < 773. 
If we take fj3 < r/3 then we will have h3 > M3 when 0 < u3 < fj3. 
Region (ii) is not a problem because of (6.17), so if we pick K3 > 1 
large then 

(a - ^ dKzj2 + h3 
(6.18) < -v3 

when 0 < u3 < fj3 or 0 < U2 < fj3. In words, j 3 = K3J2 + h3 is a 
repelling function for two faces, T® UT^. We are now ready to add 
the final 

Face T?. Here, the fixed point has both components positive, so 
Lemma 5.1 implies the existence of a Lyapunov function fi that sat
isfies (a), (d), and (e) of Proposition 4.1. The condition 1 ^ 2,3 
implies that (b) holds. Applying Proposition 4.1, with e < f}3, we see 
that if 64 < 1, A4, 774 < 773, z/4 < v3, and B4 are chosen appropriately 
then 

h4(u) = fl(u2 + 04Ui,U3 + 64U1) - A4 log Tii 

has (i) dh^jdt < —v4 when U2 A ^3 > e and 0 < u\ < 774 and (ii) 
dh4/dt < B4 when 0 < 112 A 7x3 < e and 0 < u\ < 774. If we pick M 4 

large enough then the function h4 — h4 A M4 is only nontrivial when 
0 < u3 < 774. It follows from (6.17) that if we pick K4 > 1 large then 
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72 Mutual Invadability Implies Coexistence 

K4J3 + h^ is a repelling function for TQ and the proof of Theorem 6.4 
is complete. • 

(hi) 2 » 1, 3 » 1. One can easily generalize the proof of Theorem 
6.4 to get a coexistence result. Unfortunately, the conditions in the 
resulting theorem are mutually contradictory! The conditions 2 » 1 
and 3 » 1 imply that the fixed points (0,^2,0) and (0,0,0-3) are 
in H^ = {dui/dt < 0}. If 2 >- 3 and 3 >- 2 then the fixed point 
(0,0-2,0-3) wiH ^ e above the line segment from (0,02,0) to (0,0,0-3) 
and hence lie in H^ — {du\/dt < 0}. Thus we cannot have 1 y 2 ,3 . 

THREE. Finally, we have the case in which three of the invad
ability conditions fail. To avoid bistability on the faces exactly one of 
each pair i y j , j y i must fail. Then to avoid one species dominating 
the other two we must have a cyclic relationship between competitors, 
which without loss of generality we can take to be 1 « 2 « 3 « 1. 
Figure 6.4 shows that this case can happen. Unfortunately, each of 
the three fixed points on the edges is a saddle point, so we have no 
place to start our construction. 

There is a good reason we cannot construct a Lyapunov function 
in general for this case. By results in Section 16.1 of Hofbauer and 
Sigmund (1998) if we write the mean field ODE as 

(6.19) - ^ = nui I 1 - J2 cvu3 

then the case under consideration corresponds to 

C31 > Cn > C2l C12 > C22 > C32 C23 > C33 > C13 

The three boundary fixed points and their saddle connections, orbits 
having one saddle as a-limit set (time —» — 00) and one as o;-limit set 
(time —> +00), form what is called a heteroclinic cycle. If we let 

OL% = — > 1 > -1- = Pi 

where the arithmetic in the subscript is done modulo 3, then Theorem 
16.1.1 in Hofbauer and Sigmund (1998) implies that the heteroclinic 
cycle is an at tractor if 

3 3 

(6.20) l[(at - 1) > fj(l - A) 
2 = 1 i=l 
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Section 6. Three species linear competition models. 

while the system is persistent if det C > 0 and 

3 3 

(6.21) n(«i-i)<n(1-^) 
i = l z = l 

73 

Figure 6.4 

A concrete example of this situation occurs in Section 6 of Durrett 
and Levin (1998). They consider a competitive cycle in which 1 » 
2 » 3 » 1. In their model, 

(a) Vacant sites become occupied by type i at rate fa 

(b) Occupied sites x at rate (5 — 1 attack a randomly chosen 
neighbor y. 

(c) If y is occupied by the type which can be outcompeted by the 
one at x the individual at y is killed. It is replaced by the type at x 
with probability (1 — a)/(/3 — 1) 

The rather strange choice of constants is motivated by the fact that 
if this is done then the mean field ODE will be an equation studied 
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74 Mutual Invadability Implies Coexistence 

by May and Leonard (1975). 

^ 1 = Ni{l - Ni - aN2 -/3N3} 

(6.22) ^ = j v 2 { l - / ? J V i - . / V 2 - a i V 3 } 

-^- = N3{1 - aNx - (3N2 - N3} 

When a + (3 > 2 and a < 1, orbits of the ODE spiral outward to 
the hetroclinic cycle. See Figure 6 on page 39 in Durrett and Levin 
(1998). 
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7. Three species preda tor -prey models. In this section we con
sider three species Lotka-Volterra systems in which a^ < 0 for some 
Mi-
Example 7.1. Two-prey, one-predator model. Following the 
set-up of Example 1 in the Introduction, we say that each site can 
be in a state 0 = vacant, i — 1,2 to indicate sites occupied by prey 
species i, or 3 to indicate a predator. Letting fi be the fraction of 
neighbors in state i, we can write the transition rates of the model as 
follows: 

0 -
0 -
1 -
2 -

- 1 Pih 
- 2 fof2 
- 3 fof3 
- 3 /34f3 

l - > 0 Si 
2 ^ 0 S2 

3 ^ 0 <53+7/3 

In words, individuals of species i dies at rate 8i\ those of type i = 1, 2 
give birth at rate /%, successfully colonizing only vacant squares. Last 
but not least, prey sites are taken over by predators at rates that 
depend upon the species being attacked. 

Results of Neuhauser (1992) show that if Si — 52 and there is no 
predator then two species competing will in general lead to one type 
competitively excluding the other. In view of this, it is somewhat 
suprising that the presence of a predator can stabilize the competition 
of two prey species, leading to coexistence of all three species. One of 
the first experiments suggesting that this could occur was conducted 
by Paine (1966). He showed in a marine system that predator removal 
could lead to the extinction of previously coexisting species. Parrish 
and Saila (1970) conjectured and Cramer and May (1972) later proved 
the possibility of predator mediated coexistence in the ODE: 

dt 
dN2 

dt 
dN3 

= 7Vi{ei - aniVi - ai2N2 - a13N3} 

= N2{e2 — ot2iN\ — a22N2 — 0:23^3} 

= N3{-e3 + a31Ni + a32N2} 
dt 

Further work on the ODE, see Vance (1978), Fujii (1978), Hsu (1981), 
Huston and Vickers (1983), Takeuchi and Adachi (1983), has led to 
a complete understanding of when two-prey and a predator can per
manently coexist, that is, 

liminf Nz(t) > e% > 0 
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In a different direction, Caswell (1978) and Crowley (1979) con
sidered metapopulation models, i.e., systems that consist of a large 
number of patches each of which is equally accessible to all the others. 
Mimura and Kan-on (1996) studied predator-mediated coexistence in 
reaction-diffusion equations and showed the existence of periodic and 
chaotic spatio-temporal structures in these models. Shah (1997) was 
the first to demonstrate predator-mediated coexistence could occur in 
a stochastic spatial model. In the terminology of this paper, he used 
a collection of repelling functions to confine the PDE in smaller and 
smaller regions of T, until he could conclude that the densities i^(£, x) 
in the PDE stay bounded away from 0 on a linearly growing set. Here, 
we show that his result can be proved with a single repelling function. 

To begin our analysis, we note that the mean field ODE for this 
model is 

~dt 
du2 

~dt 
du3 

= fiiUiUo - SiUi - (53UiU3 

= (32U2UQ - S2U2 - (34U2U3 

= (33uiu3 + (34u2u3 - 53(u3 + 7^3) 
dt 

which can be rearranged to give 

—^ = i*i{(/3i - 5i) - foil! - ftn2 - (ft + (33)u3} 

(7.1.1) ^ = u2{(p2 - S2) - foui - f32u2 - (ft + f34)u3} 

-rr = u3{-53 + P3U1 + p4u2 ~ iu3\ 

To begin to analyze this system, we start with the behavior of 
each species in the absence of the others. If we suppose 

(7.1.2) ft > 8X 

and let G\ — (ft — 5i)/ft then on the edge V\3, (<TI,0,0) is an at
tracting fixed point. Similarly, if we suppose 

(7.1.3) ft > S2 

and let <J2 = (ft — S2)//32 then on the edge T^ , (0, 0*2,0) is an attract
ing fixed point. To bring out the connection with the other conditions 
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Section 7. Three species predator-prey models. 77 

we will write the assumptions (7.1.2) and (7.1.3) in invadability nota
tion using Definition 4 as 1 >- 0 and 2 >- 0 respectively. In the absence 
of prey 

(7.1.4) du3/dt < 0 on T°12 

a condition that using Definition 1 we write as 3 [ 0. 
On the face T§ we have a competition between two species so if 

we assume 

(7.1.5) 01/S1 > (32/S2 

then Lemma 5.2 implies there is a convex Lyapunov function which 
is decreasing whenever us = 0 and u\ > 0, a conclusion that we have 
defined in (6.9) as 1 » 2. On the faces r? and T°2 the ODE is of the 
predator-prey type. From (7.1.3) we see that l's and 3's can coexist 
if 3 y 1 or 

("-6) ~^r> % 
and using (2.1.4) that in this case there is an attracting fixed point 
on the face Y\ with coordinates 

2 = 7(/9l-<Sl) + (ft+/?3)<S3 2 = -ftfr + Wl-ai) 
CTl /3i7+ ft(/?i+ft) ^ /?i7+ & ( & + & ) 

Similarly, we conclude that 2's and 3's can coexist if 3 >̂  2 or 

'7-» ¥ > I 
and in this case there is an attracting fixed point on the face Y\ with 
coordinates 

1 = l(02-^) + (02+04)h I = - f fz^ + foOfr-fr) 
^ 021 + 04(132+04) ^ /327 + /34(/32+/34) 

From (7.1.1) we see that 2's can invade the 1,3 equilibrium (or 
2>- 1,3) if 

(7.1.8) 02 - S2 - 02a\ - (02 + 04)<r* > 0 
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78 Mutual Invadability Implies Coexistence 

while l's can invade the 2,3 equilibrium (or 1 >- 2,3) if 

(7.1.9) ft - ($x - ft a* - (ft + ft)^1 > 0 

Theorem 7.1. Suppose that (a) 1 >- 0, 2 >- 0, 0 >- 3, 

(b) 1 » 2, 3 y 1, 3 >- 2, and (cj 2 >- 1,3 and 1 >- 2,3. 

Then coexistence occurs in the two-prey, one-predator model with fast 
stirring. 

Remark. To be precise, the assumptions of the theorem are that 
(7.1.2)-(7.1.9) hold. 

Figure 7.1 

Sketch of Proof. See Figure 7.1. This time we cannot begin with 
the corner function so we instead let z% = u\ +112 and 

h\ = max{1x3 — Ai log2:3, Mi} 

Proposition 1.2 implies that if the parameters are chosen appropriately 
h\ is a repelling function for the edge T\2- There is no exceptional 
set since the fixed point is at 0. The fixed point on T® 3 is a saddle 
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Section 7. Three species predator-prey models. 79 

point so we ignore it and use Proposition 1.1 to extend to T® 2 U T® 3 . 
On the face r ° we have af > 0, G\ — 0, so using Proposition 4.2, we 
can e x t e n d t o r § u r 5 2 . This covers the problem regions for the other 
two faces, so two uses of Porposition 4.1, gives a repelling function for 
r°. • 
P r o o f of T h e o r e m 7 . 1 . Following the outline just given, the first 
step is: 

Edge T\2- In the absence of prey, the predators die out, so (a) of 
Proposition 1.2 holds. Let zs = u\ + U2- Since 1,2 y 0, (b) holds. 
Applying Proposition 1.2, we see that if Ai, i/i, and r/i are chosen 
appropriately then h\{u) — u^ — Ai log zs has 

(7.1.10) dhi/dt < -v\ when 0 < z3 < r/i 

If we pick Mi large enough then the function hi = hi A Mi is only 
nontrivial when 0 < z% < rji. If we now take fji < r/i then we will 
have hi > Mi when 0 < zs < fji. 

Edge T® 3 . Let a2 — (02 — ^2)/1^2 be the equilibrium density of type 2 
in the absence of competitors, and let #2(^2) = ^2 — ®2 log 7/2- Since 
a2 is an attracting fixed point, (a) of Proposition 1.1 is satisfied. Let 
z2 = ui +U3. Since 1 >- 2 and 3 >- 2, (b) holds. Applying Proposition 
1.1, with e2 < 771, we see that if 62 < 1, A2, % < e, z/2 < ^ i , and S 2 

are chosen appropriately and ip(u) — (€2 — u)+2 then 

h2(u) = # 2 (T/ 2 + #2^2(^2)^2) ~ A2 log 2:2 

has (i) dh2/dt < —V2 when 7x2 > ^2 and 0 < Z2 < 772 and (ii) d/12/rft < 
£?2 when 0 < U2 < €2 and 0 < £2 < ??2 • If we pick M2 large enough 
then the function h2 = h2 A M2 is only nontrivial when 0 < Z2 < rj2. 
If we take 772 < 7/2? then we will have /12 > M2 when 0 < z2 < fJ2-
Region (ii) is not a problem because of (7.1.10), so if we pick Ki > 1 
large then 

(7.1.11) dJKj^M < _„2 

when 0 < 2:2 < 772 or 0 < 2:1 < 7/2. In words, ji — K\hi + h2 is a 
repelling function for two edges T^ 2 U T? 3. The arguments in this 
paragraph fail for the edge 1^3, since 2 ^ 1, so we turn now to the 
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Face T®. Here the fixed point has erf > 0 and a\ — 0, so Lemma 
5.2 gives a Lyapunov function fy that satisfies (a), (d), and (e) of 
Proposition 4.2. The condition 3 >- 1 implies that (b) holds. Applying 
Proposition 4.2, with e < 772, we see that if #3 < 1, A3, 773 < e, 1/3 < ^25 

and 5 3 are chosen appropriately then 

M w ) = h{ui + ^ 3 , ^ 2 + ^3^3) - A 3 log TX3 

has (i) dhs/dt < —vs when 1x1 > e and 0 < 7x3 < 773 and (ii) dhs/dt < 
B3 when 0 < ui < e and 0 < 7x3 < 772. If we pick M3 large enough 
then the function /13 = /13 A M3 is only nontrivial when 0 < 7x3 < 773. 
If we now take 7/3 < 773 then we will have hs > M3 when 0 < 7x3 < 773. 
Region (ii) is not a problem because of (7.1.11), so if we pick K2 > 1 
large then 

(7.1.12) dK2jl + h* < -u3 K J dt ~ 

when us < 773 or zs < 773. In words, J2 = K2J1 + ^2 is a repelling 
function for a face and an edge: T® U T® 2 . We are now ready to add 
the Lyapunov functions on the 

Faces T® and T®. Here we have supercrtical predator-prey interac
tions, so Lemma 5.0 gives us Lyapunov functions f\ and f2 for these 
faces that satisfy (a), (d), and (e) of Proposition 4.1. The invadabil
ity conditions 2 >- 1,3 and 1 >~ 2,3 imply that (b) holds. Applying 
Proposition 4.1 now, with e < 773, we see that if 64 < 1, A4, 774 < e, 
^4 < ^3, and U4 are chosen appropriately then 

(7.1.13) h±(u) = fi(u2 + 6±ui,us + <94TXI) - A4 log7/1 

has (i) dh^/dt < — v± when 7x2 A 7x3 > £ and 0 < TXI < 774 and (ii) 
dh^/dt < B4 when 7i2 A 7x3 < e and 0 < TXI < 774. If we pick M4 
large enough then the function J14 = h^ A M4 is only nontrivial when 
0 < 7x1 < 774. Another application of Proposition 4.1, gives a function 

(7.1.14) h5(u) = f2(ui +#57x2,7x3 + #5TX2) - A5 log7x2 

has (i) dh$/dt < —1/5 when 7x2 A 7x3 > e and 0 < TXI < 774 and (ii) 
dh$/dt < B$ when 7x1 A 7x3 < e and 0 < TX2 < 775. If we pick M 5 

large enough then the function h§ — h§ A M5 is only nontrivial when 
0 < 7x2 < 775. Combining (7.1.12)-(7.1.14), we see that if Ks is chosen 
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Section 7. Three species predator-prey models. 81 

large enough then K3J2 + I14 + h$ is a repelling function for TQ and 
the proof of Theorem 7.1 is complete. • 

Concrete Example. To get a feel for what the conditions in 
Theorem 7.1 mean and to demonstrate that they can all hold simul
taneously, we will investigate what happens when we take 7 = 0 to 
simplify the formulas, fix Si — 82 = 1, assign values to £3, and to 
fiz < Ai? then look at the behavior as a function of the birth rates 
Pi and /32- Letting D — 1 — 63/fi^ F = 1 — 5%/fa, we can write the 
conditions in (7.1.8) and (7.1.9) as 

(ft + ft)(Fft - 1 ) - (ft + ftX^ft - 1 ) > 0 
(ft + ftX^ft - 1 ) - (ft + ft)(#ft - 1 ) > 0 

Expanding out and canceling ± F f t f t in the first line and ± D f t f t 
in the second we have two linear inequalities 

- ( F f t + l)f t + (Ff t + l ) f t > ft - ft 
(Dft + l)f t - (Dft + l ) f t > ft - ft 

Rearranging these equations leads to 

r 7 1 ^ PsF + l ^ ftF + 1 

At this point the reader may be wondering: How do these con
ditions compare to the existence of a fixed point with all coordinates 
positive? Some tedious algebra left as an exercise for the reader shows 
that yet again the invadability conditions in (7.1.15) are equivalent 
to the existence of a fixed point with all components positive. Half 
of this is a general result. Theorem 5.2.1 of Hofbauer and Sigmund 
(1998) shows that for a Lotka-Volterra system, the interior of R+ 
contains a or cu limit points if and only if the system has an interior 
fixed point. The invadability condition gives a nontrivial u-limit set 
by Proposition 0, so there must be a fixed point. We know of no 
general result in the other direction, but we have been able to check 
this equivalence algebraically in most of our examples. 

The existence of an interior fixed point does not mean that it will 
be attracting. See Figure 7.2 for an example due to Gilpin (1975): 
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n=r2 = 1, r3 = - 1 , 

/ .001 .001 .01 \ 
aij = .0015 .001 .001 

\ - . 0 0 5 -.0005 0 / 

One does not have to be be this extreme with the matrix a^. Accord
ing to Exercise 16.2.9 of Hofbauer and Sigmund (1998), we will also 
get chaos if we multiply a^ by 1000 (which is the same as suitably 
changing time and units of measurement of ui) and then change 0,33 
to .01 (to be 100% sure that the 3's remain bounded). 

To have a numerical example to plug into (7.1.15) we set /3s = 3, 
/34 = 2, Si = S2 = Ss = 1, in which case D = 1 - 1/2 = 1/2, 
F = 1 — 1/3 = 2/3 and the equations say 

(T.1.16) 7 A + l < A < 4 f t + 2 

Keeping in mind the fact that we have imposed the condition (5\ > fa 
and noting that 

(i) the lower bound in (7.1.16) is ft when (2/9)/?i = 1/3 or 
0i = 3/2, 
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(ii) the upper bound in (7.1.16) is fa when (1/5) fa = 2/5 or 

(iii) the upper bound has slope .8 versus the .777... slope of the 
lower bound. 

it follows that the region in (7.1.16) is an infinite three sided polygonal 
region, the interior of which we will call C for coexistence region. See 
Figure 7.3. 

To apply Theorem 7.1 and conclude coexistence we must also 
have (7.1.6) and (7.1.7), which in the current notation would be writ
ten as 

fa > 1/F = 3/2, fa >1/D = 2 

It is interesting here that each of the corresponding constraint lines 
goes through one of the corners of the polygon C. To prove that this 
always happens we note that taking fa — 1/F in the first equation 
of (7.1.15) gives a lower bound of 1/F while taking fa — 1/D in the 
second gives an upper bound of 1/D. 

D = 3 

0 l /C = 4/3 (1,3) coexist 

Figure 7.3 

When fa > fa, 1/F < 1/D, so Theorem 7.1 applies only to the 
parameter values in Cn{fa > 1/D}. When/?2 < 1/D, the second prey 
species is not nutritious enough to sustain the predator by itself but 
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this does not rule out the possibility of the three species coexisting. 
Based on the existence of a fixed point, one might conjecture that 
there is coexistence in C n {fa < 1/D}. To do this when fa < l/D, 
we return to the general set-up at the beginning of the example and 
note that if 3 y 1 and 2 >- 1,3 then the fixed point {a\, 0,0*3) exists 
and 2's can invade it. When 3 ^ 2 fails the predator-prey system on 
the face T\ only has the boundary equilibrium 

fa~S2 
(Jo 

fa 
r | = 0 

We have assumed that fa/Si > fa/82 so in the plane Y\, (0, cr^O) is 
unstable, i.e., l's can invade this degenerate 1,3 equilibrium. Com
bining the conditions and writing 3 ^ 2 for 

(7.1.17) P2 ~ S2 

02 04 
we can state our result as 

Theorem 7.2. Suppose (a) 1 y 0, 2 y 0, 0 y 3, 

(b) 1 » 2, 3 y 1, 3 ^ 2 and (c) 2 ^ 1 , 3 . 

Then with fast stirring there is coexistence in the two-prey, one-
predator model 

Figure 7.4 
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Sketch of Proof. See Figure 7.4. As in the previous result, we let 
z3 — ui + U2 and 

hi = max {us — \i log z3, M i } 

which is a repelling function for T^2- On the face T^ the fixed point 
has o\ > 0 and erf = 0, so Proposition 4.2 allows us to extend to T®. 
On the face T® the fixed point has af > 0 and erf = 0, so another 
use of Proposition 4.2 extends to r § U Tj]. This covers the problem 
region for the face T^, so using Proposition 4.1 now gives a repelling 
function for r ° . • 

P r o o f of T h e o r e m 7.2. The first step, as in the proof of Theorem 
7.1, is the 

Edge V® 2- If Ai, i/i, and rji are chosen appropriately and z3 = U1+U2 
then /&i(?z) = ^3 — Ai log 2:3 has 

(7.1.18) dhi/dt < -vi for 0 < z3 < r/i 

If we pick Mi large enough then the function hi = h\ A Mi is only 
nontrivial when 0 < £3 < 771. If we take fji < r/i then we will have 
hi > Mi when 0 < z% < fji. Since 3 ^ 2 , the next step in the proof 
is different from that of Theorem 7.1. This time we next look to the 
face where the predators cannot invade. 

Face r ? . On this face, the ODE is a subcritical predator-prey system 
with a fixed point that has a\ > 0 and a\ — 0, so Lemma 5.3 gives a 
Lyapunov function f\ that satisfies (a), (d), and (e) of Proposition 4.2. 
Since 1 >- 2, (b) holds. Applying Proposition 4.2, with e < r/i, we see 
that if 62 < 1, A2, r]2 < e, ^2 ^ ^i5 and £?2 are chosen appropriately 
then 

/*2(» = / l (^2 +02Ui,U3 +92Ui) - A2loglXi 

has (i) dh2Jdt < — V2 when 112 > e and 0 < 1x1 < 772 and (ii) dh2Jdt < 
B2 when 0 < ^2 < e and 0 < u\ < 772- If we pick M2 large enough 
then the function J12 = /12 A M2 is only nontrivial when 0 < u\ < 772. 
If we take f\2 < V2 then we will have /i2 > M2 when 0 < u\ < fJ2. 
Region (ii) is not a problem because of (7.1.18). Thus, if we pick 
Ki > 1 large then 

(7.1.19) dJKjn+M < _pi 
at 
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when u\ < e. In words ji = Kihi + /12 is a repelling function for the 
face r? . We move on now to the 

Face T3. On this face, the fixed point has a\ > 0 and o\ — 0, so 
the ODE is in Case 3a of the linear competition model, and Lemma 
5.2 gives a Lyapunov function f3 that satisfies (a), (d), and (e) of 
Proposition 4.2. Since 3 >~ 1, (b) holds. Applying Proposition 4.2, 
with e < 772, we see that if 93 < 1, A3, 773 < e, v3 < v2, and S3 are 
chosen appropriately then 

hz{u) = f3(m + 93u3,u2 + 93u3) - A 3 log u3 

has (i) dh3/dt < — v3 when u\ > e and 0 < u3 < 773 and (ii) dh2Jdt < 
B3 when 0 < u\ < e and 0 < u3 < 7]3. If we pick M3 large enough 
then the function h3 = h3 A M3 is only nontrivial when 0 < u3 < 773. 
If we take 773 < 773 then we will have h3 > M3 when 0 < u3 < f)3. 
Region (ii) is not a problem because of (7.1.19). Thus, if we pick 
K2 > 1 large then 

(7.1.20) " ^ T ^ S - 3 

when ui < 773 or ^3 < 773. In words, j'2 = K2J1 + h% is a repelling 
function for two faces: r^ U T3. It remains to cover the 

Face r[>. The first step is to note that on this face, the ODE is a 
supercritcal predator-prey model, so Lemma 5.0 gives a Lyapunov 
function fo that satisfies (a), (d), and (e) of Proposition 4.1. Since 
2 >- 1,3, (b) holds. Applying Proposition 4.1, with e < 773, we see 
that if 04 < 1, A4, 774 < e, 1/4 < z/3, and B4 are chosen appropriately 
then 

h±(u) = f2(ui + 0^2, u3 +64112) - A4log^2 

has (i) dh^jdt < — ̂ 4 when u\ A u3 > e and 0 < U2 < 774 and (ii) 
dh^/dt < B3 when 0 < u\ A u3 < e and 0 < u2 < 774. Region (ii) is 
not a problem because of (7.1.20). If we pick M4 large enough then 
the function /14 = /14 A M4 is only nontrivial when 0 < U2 < r/4. Thus 
if we pick K3 > 1 large then K3 j 2 + ^4 is a repelling function for r 0 

and the proof of Theorem 7.2 is complete. • 

Example 7.2. Three species food chain. As the name might 
suggest, in this system 0 = vacant, 1 = prey, 2 = a predator that feeds 
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on l's, while 3 = a predator that feeds on 2's. Using our traditional 
notation the rates may be written as follows: 

0 -
1 -
2 -

- 1 0ifi 
- 2 (32f2 

- 3 03f3 

1 -
2 -
3 -

-*0 5x 
-> 0 <52 + 72/2 
-> 0 <53 + 73 /3 

One can write the mean field ODE for this model as 

dt 
du2 

~dt 
du3 

= fiiuiiio - 8\U\ - P2U2U1 

= fi2U2Ui ~ U2(S2 + 72^2) - 03^2^3 

= P^3U2 - U3(83 + 73^3) 
dt 

and rearrange to write the system in Lotka-Volterra form: 

— = ui{Pi -Si- fi\u\ - (Pi + f32)u2 - /3iu3} 

(7.2.1) — = u2{-52 + fcui - 72^2 - P3u3} 

—rr = u3{-Ss + /?3^2 - 73^3} 

To begin to analyze this system, we note that all species will die 
out unless 

(7.2.2) Pi > <*! 

On the face T® the ODE is of the predator-prey type. From (2.1.7) 
we see that l's and 2's can coexist if 2 y 1 or 

and using (2.1.4) that in this case there is an attracting fixed point 
on the face rjj with coordinates 
(7.2.4) 

3 = 12(01 ~ 5i) + (fa + P2)52 3 = -PlS2 +fa(01 -h) 
°X 0112+02(01+02) °2 0112+02(01+02) 

The next step is to ask if the 3's can invade the 1,2 equilibrium. This 
will occur if 

(7.2.5) 03o\ " 3̂ > 0 or 4>4 
P3 
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Plugging (7.2.4) into (7.2.5), the condition becomes 

/ 7 2 6 x - / ^ 2 + / W l - * l ) 3̂ 
{ ' ' ) A72 + / W 1 + & ) ft 

Clearly this can hold only if fa > 51? which is (7.2.2), and if foiPi — 
Si) > P162, which implies (7.2.3). Though in this case (7.2.6) implies 
the other two conditions, we will write all three in the theorem in 
their invadability form. 

Theorem 7.3. Suppose (a) 1 y 0, 2 | 0, 3 j 0, (b) 2 y 1, and 
(c) 3 >- 1,2. Then with fast stirring, coexistence occurs in the three 
species food chain. 

Remark. Here, 2 j 0 and 3 j 0 simply indicate that 2's and 3's are 
predators, while 1 >- 0, 2 >- 1, and 3 ^ 1,2 are our three conditions 
(7.2.2), (7.2.3), (7.2.6). 

Sketch of proof. On the face r ° the fixed point is at (0,0), so by 
Proposition 4.3, there is no exceptional set and we have a repelling 
function for T®. On the face T^ the fixed point has a\ > 0 and 
o\ — 0, so Proposition 4.2 allows us to extend to T^ UT^. This covers 
the problem region for the final extension, so Proposition 4.1 gives us 
a repelling function for T0. • 

U^ u( 

Figure 7.5 
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Proof of T h e o r e m 7.3. Following the outline in the sketch, we 
begin with the 

Face T®. Here, we have a predator-prey system in which the prey die 
out, so Lemma 5.3 gives us a Lyapunov function f\ which satisfies 
(a), (d), and (e) of Proposition 4.3. Since 1 >- 0, (b) holds. Using 
Proposition 4.3 now, we see that if constants #i, Ai, 771, 1/1, and B\ 
are chosen correctly h\ — fi(u2 + #1^1, ^3 + 0±ui) — Ai log2/1 has 

(7.2.7) dhx/dt < -vx < 0 when 0 < ux < 7/1 

There is no exceptional set since the fixed point is at (0, 0). If we pick 
Mi large enough then the function hi = hi A Mi is only nontrivial 
when 0 < zi < 771. If we take f/i < rji then we will have hi > Mi 
when 0 < zi < fji. We move now to the 

Face T®. Here the ODE is a degenerate linear competition model with 
G\ > 0 and a\ = 0, so Lemma 5.2 gives us a Lyapunov function $2 
that satisfies (a), (d), and (e) of Proposition 4.2. The condition 2 ^ 1 
implies that (b) holds. Using Proposition 4.2 now with e < f/i, we 
see that if constants 62 < 1, A2, 772 < e, ^2 < ^ 1 , and B2 are chosen 
correctly 

^2 = /2(^i + #2^2,^3 + 62U2) - \2\ogu2 

has (i) dh2/dt < —v2 < 0 when u\ > e, 0 < U2 < r/2 and (ii) dh2/dt < 
B2 when 0 < iii < e, 0 < ^2 < ^2- If we pick M2 large enough then 
the function J12 = ^2 A M2 is only nontrivial when 0 < ?i2 < %• If 
we now take f/2 < 772 then we will have /12 > M2 when 0 < U2 < f/2-
Region (ii) is not a problem because of (7.2.7). Thus if we pick Ki > 1 
large then 

( 7 .2 .8) Wrhr+h,) < _^ 

when ui < f/2 or 112 < fJ2- In words, ji = K\h\ + J12 is a repelling 
function for two faces: T^ U T^. We are now ready for the final 

Face r[]. Here, the system is a supercritical predator-prey system, so 
Lemma 5.0 provides us with a Lyapunov function, fs which satisfies 
(a), (d), and (e) of Proposition 4.1. The condition 3 >- 1,2 implies 
that (b) holds. Using Proposition 4.1 now with e < f/2, we see that if 
constants #3 < 1, A3, 773 < e, 1/3 < 1/2, and B3 are chosen correctly 

^3 = h{ux + #3^3,^2 + #3^3) - A3 log 7/3 
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90 Mutual Invadability Implies Coexistence 

has (i) dhs/dt < —v3 < 0 when u\ A u2 > e, 0 < u3 < r]3 and (ii) 
dhs/dt < B3 when 0 < u\ A u2 < e, 0 < u3 < rj3. If we pick M3 

large enough then the function J13 = h3 A M3 is only nontrivial when 
0 < u3 < 773. Region (ii) is not a problem because of (7.2.8). Thus if 
we pick K2 > 1 large then K2ji + h3 defines a repelling function for 
TQ completing the proof of Theorem 7.3. • 

Remark. It would be interesting to be able to analyze the three 
species food chain with type 2 predators since Hastings and Powell 
(1991) have shown that in this case the ODE can be chaotic. How
ever to do this with our methods, we would need a convex Lyapunov 
function for each face. 

Continuing our fascination with the relationship between invad
ability conditions and the existence of an interior fixed point we note 
that if p3 = c then the third and second equations in (7.2.1) imply 

P2 = n Pi = -^\l2p2 + ftc + o2\ 
ft ft 

The pi increase with c, so we will have P\p\ + {Pi + j32)p2 + Pip3 = 
Pi — S\ for some c > 0 if and only if when we set c — 0 

Pi • -^ ( 7 2 ^ + ^ 2 ) + (Pi+fo)^- <Pi~Si ft I ft J ft 

Multiplying each side by p2 and rearranging this becomes 

(7.2.9) [Pil2 + p2(Pi + p2)}^- < -Pi82 + (pi - 8i)p2 

ft 
which is clearly equivalent to to (7.2.6). 

Remark . Hofbauer and Sigmund (1998) have considered a closely 
related ODE: 

—rr = V>I{QI ~ bnui ~ bi2U2} 

(7.2.10) — = u2{-q2 + b2iUi - b22u2 - b23u3} 

du3 

~~dt 
= u3{-q3 + b32u2 - b33u3} 
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where we have departed from our usual notation to have all the qi > 0 
and b^ > 0. As the reader will see in a moment, the absence of 
the — bisUs term makes life considerably easier. Theorem 5.3.1 in 
Hofbauer and Sigmund (1998) shows that , in contrast to the chaotic 
two-prey one-predator example, 

T h e o r e m 7.4. If (7.2.10) has an interior fixed point p then p is the 
limit from any starting point in T + . 

Proof. If we pick C{ so that c\d\2 — Q2&21 and €2*223 = C36I32 then 
repeating the proof of Lemma 5.0 shows X ^ c * ( ^ ~~ Pi^°gui) is a 
convex Lyapunov function. We leave it to the reader to see if this 
reasoning can be extended to our case which has 0,13 ^ 0. See the 
proof of Lemma 5.1 for some tips about how to proceed. • 

Having considered predator-prey systems of types 1-2, and 1 -1 -
1, it is natural to also consider 2-1: 

E x a m p l e 7.3. Two-predator one-prey m o d e l . In this case we 
do not expect to be successful in getting coexistence. The exclusion 
principle states that if n populations depend linearly on m resources 
with m < n, then at least one of the populations will vanish. To be 
precise, we state 

(7.3.1) Suppose that for 1 < i < n 

1 dui ^—s f 
—jr = -<*i + )^bijRj(u1,...un) 
\JL>i LLL 

3 = 1 

and the Ui(t) stay bounded ast-^oo. Then lini£_+oo inf̂  Ui(t) = 0. 

Proof. This result is given on pages 47-48 of Hofbauer and Sigmund 
(1998). Since the proof is short and closely related to our methods we 
give it. Since n > m there is a nontrival vector c so that Y2i cihj — 0 
for all j . Let h(u) = J2i ci ^°Sui- Calculus shows that 

dh v ^ 
(7.3.2) ^ = -2>a* = - a 

i 

We will only consider the generic case in which a ^ 0. In this case we 
can suppose that a > 0. Integrating (7.3.2) gives h(u(t)) = h(u(0)) — 
at so 

n 
JJUi(t)c* = eh(u(0))e-at _^ Q 
i=\ 
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92 Mutual Invadability Implies Coexistence 

as t —+ (X). By assumption we cannot have l imsupt^( t ) = oo so this 
must be caused by the convergence of inf̂  Ui(i) —+ 0. • 

Despite the bad news in (7.3.1), we will proceed to formulate our 
two-predator, one prey model. Part of the reason for our perseverance 
is that our results will show that changing the death term — oti in 
(7.3.1) to — ai — ^iUi will allow coexistence to occur in some cases. 
The states of our model are 0 = vacant, 1 = sites occupied by prey, 
2,3 = predators 1 and 2. The transition rates of the model as follows: 

o - 1 Mi 
1 - 2 (32f2 

1 - 3 03f3 

1 -
2 -
3 -

-+0 <Ji 
-> 0 82 + 722/2 + 723/3 
-> 0 53 + 732/2 + 733/3 

Remark . Even though formulated as a two-predator one-prey model, 
one can think of the intertidal region and rename the states 0 = bare 
rock, 1 = barnacles, and 2,3 = occupancy by two different types of 
mussels, which need the presence of barnacles to be able to attach to 
the rock. In this interpretation, it would be natural to have rates S2\ 
and #31 for 2 —» 1 and 3—^1. However, even without this generaliza
tion, the analogy suggests that we should be able to get coexistence 
of the two predators when the diagonal terms 7^ are large. 

The mean field ODE for our two-predator one-prey model is 

dt 
du2 

~dt 
dus 
dt 

which has the Lotka-Volterra form 

du\ 

= (32u2ui - u2(52 + 722^2 + 723^3) 

= /33^3^1 - ^3(^3 + 732^2 + 733^3) 

dt 
du2 

ux {/?! - 5 1 - fixm - (A + f32)u2 - (ft + (32)u3} 

(7-3.3) -rr = u2 {-52 + (32ui - -y22u2 - 723^3} 

-TT = u3 {S3 + /?3^1 ~ 732^2 ~ 7 3 3 ^ } 

To begin to analyze this system we note that if the l 's die out 
then all the other species will as well, so we must have 

(7.3.4) Pi > 8x 
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Section 7. Three species predator-prey models. 93 

On the faces T® and T9, the ODE is of the predator-prey type. From 
(2.1.7) we see that l's and 2's can coexist if 

(7'3'5) -JT > A 
and using (2.1.4) that in this case there is an attracting fixed point 
with coordinates 

3 = 722(/?l -<?l) + (fo + / W 2 
(7 fi, Ul 722^1 + (01+02)02 
[ ' ' } -P1S2 +(Pi-6i)l32 

a2 = 72201 + (01 + 02)02 

Replacing all of the subscript 2's by 3's in the last two formulas, we 
see that l's and 2's can coexist if 

(7.3.7) * L = * > Sf 
Pi Pi 

and in this case there is an attracting fixed point with coordinates 

2 = 733(01 -<5l) + (0i +03)<S3 

(7 „ R) °l 73301 + (01 + 03)03 
1 ' " ^ 2 _ -PlSs + (01 ~ £l)03 

^ 73301 + (01 +03)03 

Turning to the next level of competition, 3's can invade the 1,2 
equilibrium if 

(7.3.9) - 5 3 + 03*1 - 732<ri > 0 

while 2's can invade the 1,3 equilibrium if 

(7.3.10) -<S2 + $2*1 ~ 723^3 > 0 

In view of the result in (7.3.2) it is natural to ask if the conditions 
we have just introduced can all be satisfied simultaneously. To see 
that the answer is yes, consider the special case in which 723 = 0 and 
732 = 0 then plug the equations for the densities given in (7.3.6) and 
(7.3.8) into the invadability conditions (7.3.9) and (7.3.10) to get 

x , fl 7 2 2 ( / ? l - f r ) + (/3l+/32)*2 n 
3 P3' 12201 + {01 +/32)fo 

_ * n 133(01 - Si) + (01 + 03)S3 
2 P 2 ' 733/3i + (0i + /53)/53 
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94 Mutual Invadability Implies Coexistence 

If 722 = 733 = 0 then these inequalities reduce to the mutually con
tradictory: S2/P2 > S3/fa a n d <W/#2 < <W/#3- If 722 and 733 are large 
then two fractions are each close to ((3\ — 5i)//3i, so it is clear that the 
two conditions can be satisfied simultaneously. Having shown that 
there is a nonempty set of examples we can now in good conscience 
state our result. 

Theorem 7.5. Suppose (a) 1 y 0, 2 | 0, 3 1 0, 

(b)2yl,3y 1, and (c) 3 y 1,2, and 3 ^ 1 , 2 . 

Then with fast stirring, we have coexistence in the one-prey, two-
predator model. 

Remark. Again 2 | 0 and 3 [ 0 simply say that 2's and 3's are preda
tors, while the other five conditions correspond to (7.3.4), (7.3.5), 
(7.3.7), (7.3.9), and (7.3.10) 

Sketch of Proof. On the face T® the fixed point is (0,0) so we can 
use Proposition 4.3 to construct a repelling function for that face. 
Using Proposition 1.1 now we can extend to r?ur§ 3 . This covers the 
problem regions for the other two faces so two uses of Proposition 4.1, 
give a repelling function for T°. • 

Figure 7.6 
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Proof of T h e o r e m 7.5. Following the outline in the sketch, the first 
step is: 

Face T?. In the absence of prey both predators have dui/dt < 0 for 
U{ > 0, so /i(?xi, U2) = u\ + U2 is a Lyapunov function which satisfies 
(a), (d), and (e) of Proposition 4.3. Since 1 >- 0, (b) holds. Using 
Proposition 4.3 now, we see that if constants #1, Ai, 771, v\, and B\ 
are chosen correctly h\ = fi(u2 + #1^1,^3 + #1^1) — Ai log 1x1 has 

(7.3.11) dhx/dt < - ^ 1 < 0 when 0 < m < 771 

If we pick Mi large enough then the function hi = h± A Mi is only 
nontrivial when 0 < z\ < 771. If we take 7/1 < 771 then we will have 
/ii > Mi when 0 < z\ <fj\. We move now to the 

Edge r ° 3 . 0*1 = (Pi — 81)/j3i is an attracting fixed point, so if we let 
gi(u) — u — ailogTi then (a) of Proposition 1.1 holds. Invadabihty 
conditions 2 >- 1 and 3 ^ 1 imply that (b) holds when z\ = U2 + 7/3. 
Using Proposition 1.1 now with 62 < 771, we see that if constants 
#2 < 1? A2, 772 < 62, ^2 < ^i> and ^2 are chosen appropriately and 
7/̂ 2 (TX) = (62 — u)+ t h e n 

^2 = P i ( ^ i + #2^2(^1)^1) - A2 logzi 

has (i) dh2Jdt < —V2 < 0 when u\ > €2, 0 < z\ < 7/2 and (ii) 
dfi2/dt < B2 when 0 < u\ < 62, 0 < z\ < 772. If we pick M2 
large enough then the function J12 = ^2 A M2 is only nontrivial when 
0 < 712 + us < 772. If we now take 772 < 772 then we will have /12 > M2 
when 0 < 7i2 + 7x3 < 772. Region (ii) is not a problem because of 
(7.3.11). Thus if we pick Kx > 1 large then 

(7 312) «q*.y*,) < _„, 

when ui < 772 or u2 +U3 < r]2. In words, j i = i^i/ii + J12 is a repelling 
function for a face and an edge: T^ U T^ 3. We are now ready for the 

Faces T® and T®. Here we have supercritical predator-prey systems, so 
Lemma 5.0 gives us Lyapunov functions fy and J2 for these faces that 
satisfy (a), (d), and (e) of Proposition 4.1. The invadabihty conditions 
3 >- 1,2 and 2 >- 1,3 imply that (b) holds. Applying Proposition 4.1 

Purchased from American Mathematical Society for the exclusive use of Richard Durrett (DRRCTJ)
Copyright 2002 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



96 Mutual Invadability Implies Coexistence 

now, with e < r]2j we see that if #3 < 1, A3, 773 < e, vs < z/2, and B3 
are chosen appropriately then 

(7.3.13) h3(u) = /3(?xi +(9 3 i i 3 ,^ 2 + #3^3) - A3 logu 3 

has (i) dhs/dt < —vs when 1/4 A 1x2 > e and 0 < 1/3 < 773 and (ii) 
dhs/dt < Bs when 7x1 A U2 < e and 0 < 1x3 < 773. If we pick M3 
large enough then the function hs — /13 A M3 is only nontrivial when 
0 < u\ < 773. Another application of Proposition of 4.1, gives a 
function 

(7.3.14) h±{u) = /2(^ i + 0^u2lus + #4TX2) - A4log7x2 

has (i) dh^/dt < —v^ when TXI A 7x3 > e and 0 < 7x2 < 774 and (ii) 
dh^/dt < B4 when 7x1 A 7x3 < e and 0 < 7x2 < 7/4. If we pick M4 
large enough then the function h^ = /14 A M4 is only nontrivial when 
0 < TX2 < 7/4. Combining (7.3.12)-(7.3.14), we see that if Ks is chosen 
large enough then K2J1 + hs + h^ is a repelling function for TQ and 
the proof of Theorem 7.5 is complete. • 

From 2-predator and 1-prey we move now to: 

E x a m p l e 7.4. Two- infect ion mode l . The case in which suscep-
tibles can be doubly infected is covered by Example 2.5. Indeed the 
original motivation for Durrett and Neuhauser (1997) was to study 
the competition of different strains of the barley yellow dwarf virus. 
Thus, we will concentrate on the situation where individuals can have 
at most one type of infection. That is, our states are 0 = removed, 
1 = susceptible, and 2 = infected with strain 1, and 3 = infected 
with strain 2. Generalizing from Example 2 in the Introduction, but 
changing notation, we take the rates of the form 

0 - • 1 ft/i 1 — 0 81 
1 - 2 72/2 2 - 0 82 

1 - 3 73/3 3 - 0 63 

Note that we have removed the spontaneous birth term, but now the 
l 's can die from other causes. The mean field ODE for this model is 

Piuiuo - ui{5i + 72^2 + 73^3) 

72^2^1 — ̂ 2^2 

73^3^1 - ^3^3 

(7.4.1) 

dui 
~dt 
du2 

~dT 
dus 

dt 
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The second and third equations have the form of two types feeding 
on the same resource, so adapting the proof of (7.3.2) gives. 

(7.4.2) Suppose ry2/52 > 73/^3. Then for any starting point in T + we 
have u3{t) —> 0. 

Remark. In words, if we assume that the two strains are equally 
transmissible, i.e., 72 = 7 3 , this says that the less virulent strain, i.e., 
the one with the smaller Si, wins the competition. 

Proof. A little calculus shows 

— ( -73 \ogu2 + 72 log ^3) = 5273 - £372 < 0 

Integrating, letting —a = ^ 7 3 — £372 and then exponentiating we 
have 

u2(t)-^u3(t)^ = u2(0)-^u3(0)^e-at 

Since u2{t) < 1, it follows that u3(t) < Ce~at^2 - • 0. • 

In order to allow for the possibility of coexistence, we will now 
generalize the model. Following Section 16.5 of Hofbauer and Sig-
mund (1998), we note that many parasites can be transmitted hor
izontally (through infection) and vertically (i.e., from parent to off
spring). With this in mind we use the states introduced before but 
now take the rates of the form 

0 -
0 -
0 -
1 -

- 1 Plfl 
-> 2 #2 /2 
-> 3 £ 3 / 3 
-* 2 72/2 

l - > 0 Si 
2 ^ 0 S2 

3 - ^ 0 53 

1 - • 3 73 /3 

The mean field ODE for this model is 

dt 
du2 

~dt 
du3 

dt 

= Piuxuo - ui(Si + 72^2 + 73^3) 

= (32u2uo + 72^2^1 - ^2^2 

= /?3^3^0 + 73^3^1 - U383 
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which has the Lotka-Volterra form 

— = ui {(ft -Si)- $\u\ - {Pi + 72)w2 - (A + 73)^3} 

(7.4.3) d ^ = u2 { (& - 62) + (72 - fo)ui - (32u2 - P2U3} 
dt 

dii3 
= m {(p3 - S3) + (73 - /?3)ui - P3U2 - P3U3} 

dt 

To begin to analyze this system we note that unless 

(7.4.4) (3i > Si 

the whole system will collapse, while if (7.4.4) holds then in the 
absence of the two infections the susceptibles will reach a density 
0*1 — (Pi ~ S\)/ fl\- Infection 2 can invade this equilibrium if 

(7.4.5) fa - S2 + (72 - fo)*! > 0 

Likewise infection 3 can invade the l 's equilibrium if 

(7.4.6) p3 ~ S3 + (73 - PS)CT! > 0 

At this point there are several cases to consider. We expect to 
have the best success with coexistence when one epidemic survives by 
horizontal transmission and the other by vertical transmission since 
this corresponds to two ecologicial 'niches.' Thus we will suppose 

(7.4.7) f32 - S2 > 0 and /33 - S3 < 0 

or invadability language that 2 >- 0 while 0 >~ 3. When (32 > S2) the 
2's reach a density <J2 — (f32 — 52)/'j32 which can be invaded by the l 's 
if 

(7.4.8) Pi-Sl-(fa+l2)a2>0 

If, in addition, (7.4.5) holds then (2.1.4) implies there is an equilibrium 
with 

3 = W l - 6l) - (01 + 72)(/?2 ~ S2) 
Gl A/?2 + ( / 3 i + 7 2 ) ( 7 2 - / 5 2 ) 

3 = M02 ~ S2) + (^2 ~ W l ~ 5i) 

°2 A/?2 + (/?!+72)(72 ~/32) 
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Section 7. Three species predator-prey models. 99 

On the face T®, the system is of the predator-prey type, so using 
(2.1.4) again or more simply changing all the 2's to 3's in the previous 
formula 

2 /Wl-<Sl ) - ( /? l+ /33)( /?3- (*3) 
Gl /?l/33 + (/?l+/?3)(73-#B) 

2_/?lQfl3-<*3) + (73-&)(/3l-<Sl) 
°Z Pifh + iPi+nXls-fo) 

On the face TQ, we have a competition model in which the 3's lose to 
the l's. Turning now to the higher order competitions, 3's can invade 
the 1,2 equilibrium if 

(7.4.9) P3-S3 + (73 - PM - Ps^l > 0 

and 2's can invade the 1,3 equilibrium if 

(7.4.10) P2-S2 + (72 - /32)*i ~ fal > 0 

Combining our calculations we have 

Theorem 7.6. Suppose (a) 1 y 0, 2 y 0, 3 j 0, 

(b) 2 y 1, 1 y 2, 3 y 1, 2 » 3, and (c) 2 y 1,3 and 3 >~ 1, 2. 

Then there is coexistence for the two infection model with fast stirring. 

Figure 7.7 
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100 Mutual Invadability Implies Coexistence 

Sketch of Proof. See Figure 7.7. As in the proof of Theorem 7.1, 
we let zs = u\ + ^2 and 

h\ = max {^3 — Ai logZ3, M i } 

On the face T\ the fixed point has o\ > 0 and cr\ = 0, so Proposition 
4.2, allows us to extend to T\ U V® 3. This covers the problem regions 
for the remaining two faces, so two uses of Proposition 4.1 give a 
repelling function for r ° . • 

P r o o f of T h e o r e m 7.6. Following the outline in the sketch, we 
begin with the 

Edge T^2. In the absence of prey, the predators die out, so (a) of 
Proposition 1.2 holds. Let z\ — U\ + 112. Since 1,2 >*- 0, (b) holds. 
Applying Proposition 1.2, we see that if Ai, v\, and 771 are chosen 
appropriately then h\{u) = 113 — X\ logzi has 

(7.4.11) dhi/dt < -vi for 0 < zx < 771 

If we pick Mi large enough then the function hi = hi A Mi is only 
nontrivial when 0 < zi < 771. If we now take 771 < 771 then we will 
have hi > Mi when 0 < zi <fji. We move now to the 

FaceT?. Here the ODE is a degenerate linear competition model with 
G\ > 0 and o\ — 0, so Lemma 5.2, gives us a Lyapunov function /1 
that satisfies (a), (d), and (e) of Proposition 4.2. The condition 1 y 2 
implies that (b) holds. Using Proposition 4.2 now with e < 771, we 
see that if constants 62 < 1, A2, ^2 < e, 1/2 < ^ 1 , and £?2 are chosen 
correctly 

^2 = / 1 (^2 + #2^1 , ̂ 3 + #2^1) - A2 log ui 

has (i) dh^jdt < — ̂ 2 < 0 when 712 > e, 0 < ui < 772 and (ii) dh2Jdt < 
B2 when 0 < 7i2 < e, 0 < Tii < 772. If we pick M 2 large enough then 
the function T12 = ^2 A M2 is only nontrivial when 0 < ui < 772- If 
we now take 7)2 < ^2 then we will have /z2 > M2 when 0 < 112 < f]2-
Region (ii) is not a problem because of (7.4.11). At this point we can 
also add the 

Edge T® 3 . (Ji = (Pi — 5i)//?i is an attracting fixed point, so if we let 
gi{u) — u—Gi log u then (a) of Proposition 1.1 holds. Let Z3 — U2+U3. 
The invadability conditions 2 >~ 1 and 3 >- 1 imply that (b) holds. 
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Section 7. Three species predator-prey models. 101 

Using Proposition 1.1 now with e3 < 772, we see that if constants 
#3 < 1, A3, 773 < €3, v3 < v2)

 a n d ^ 3 a r e chosen appropriately and 
ip3(u) = (7/3 — 77)+2 then 

/i3(tt) =^i(iXi +6>3^3(^l)^2) - A 3 log Z3 

has (i) dhs/dt < —v3 < 0 when u\ > 63, 0 < z3 < 773 and (ii) 
dh3/dt < B3 when 0 < u\ < €3, 0 < z3 < 773. If we pick M3 
large enough then the function h3 = h3 A M3 is only nontrivial when 
0 < ?i2 + ^3 < 773. If we now take 773 < 773 then we will have h2 > M 2 

when 0 < 1x2 + ^3 < 773. Region (ii) is not a problem because of 
(7.4.11). Thus if we pick K1 > 1 large then 

(7.4.12) djK^+kt + hs) < 

when ni < 773 or 7/2 + 773 < 773. In words, ji = K2hi + h2 + h3 is a 
repelling function for a face and an edge: 1^ u r 2 3 . With this, we can 
complete the proof by adding the 

Faces r 2 and T®. On the face T2 we have a supercritical predator-prey 
system, while on the face T® we have a Case 2 competitive system. 
Thus, Lemmas 5.0 and 5.1 give us Lyapunov functions f2 and f3 

for these faces that satisfy (a), (d), and (e) of Proposition 4.1. The 
invadability conditions 3 ^ 1,2 and 2 ^ 1,3 imply that (b) holds. 
Applying Proposition 4.1 now, with e < 773, we see that if 64 < 1, A4, 
774 < e, 1/4 < v3l and B4 are chosen appropriately then 

(7.4.13) h4(u) = f3(ui + 64u3,u2 + 04u3) - A4 log u3 

has (i) dh^/dt < — v± when u\ f\u2 > e and 0 < u3 < 774 and (ii) 
dh^/dt < B4 when 771 A u2 < e and 0 < 773 < 774. If we pick M4 
large enough then the function J14 = /14 A M4 is only nontrivial when 
0 < u\ < 774. 

Another application of Proposition of 4.1, gives a function 

(7.4.14) h5(u) = / 2 ( u i +05u2,u3 + 95u2) - X5logu2 

has (i) dh$/dt < — v$ when 7/1 A u3 > e and 0 < u2 < 775 and (ii) 
dh$/dt < B$ when TXI A 773 < e and 0 < 772 < 775. If we pick M5 
large enough then the function h^ — /15 A M5 is only nontrivial when 
0 < 7/2 < 7̂5. Combining (7.4.12)-(7.4.14), we see that if K2 is chosen 
large enough then K2ji + J14 + h$ is a repelling function for TQ and 
the proof of Theorem 7.6 is complete. • 
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8. Some asymptotic results for our ODE and PDE. In this 
section we will give the proofs of Propositions 0 and 1, and Theorem 
6.3. 

Proof of Proposition 0. Let e > 5, let Q = inf{t : </)(u(t)) < M + S} 
be the quitting time from cj) > M+S, R = inf {t > Q : (f)(u(t)) > M+e] 
be the time of the first return to (j) > M + e, and T = sup{s < R : 
<t>{u{t)) <M + 5}. On (T, R] we have <f>(u(t)) > M + S, so dxfr/dt < 0 
leading to a contradiction 

0 < 6 - S = </)(u(R)) - (j)(u(T)) = [ ^j-(u{s)) ds<0 

Thus, once u(t) leaves {(j) > M + S} it can never re-enter {(f) > M + e} 
with e > S. To see that the ODE must leave {(f) > M + S} in finite 
time note that by (ii) we have d(f)(u(t))/dt < —cs < 0 while (f)(u(t)) > 
M + 5, so we must have 

Qs<{<l>(u(0))-(M + 6)}/c6 D 

To prove the second result, we use the obvious generalization 
of the previous idea: put the reaction-diffusion equation inside the 
repelling function. This time, however, it is useful to introduce a 
smooth enough truncation. Let if)(z) = 0 for z < 0, and let 

# * ) = / +rrdy iorz>0 
Jo y + l 

It is immediate from the definition that ip' is increasing so ip is convex 
and satisfies 

(8.1) j<1>(z)<z 

Let (f)(a) = ip((f)(u) — (M + e)) be the truncated version of (p. 

Proof of Proposition 1. Let h(t,x) — (f)(u(t,x)), where u is a 
solution of 

(8.2) -ZT=&Ui + / » iovl<i<k 
ot 
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Section 8. Some asymptotic results for our ODE and PDE. 103 

In what follows the indices i and j are in [1, fc], while the index m G 
[l ,d]. Differentiating and using the equation in (8.2) gives 

dh ^ 84) du% ^ <90 

z z 

dh Y ^ ^ ^ ^ 
Ct'Em • (J^i (s%m 

d2h Y ^ ®$ d2ui v ^ < ^ ^2(^ ®u 

dx2^ t-r* dui dx^ ^ dxm du.dun dx7 

'3 

dcf) 
U Summing the last equation for 1 < m < d and using cj>t — ]TV -^- ft{ 

to denote the time derivative of 0 along solutions of the ODE gives 

dh _ ~ y ^ du% d2(f) duj 
dt 2—'. dxrn duiduj dxm 

m,i,j J 

Being the composition of two convex functions <j)(u) = 0(0(u) — (M + 
e)) is convex, so the last term (including the minus sign) is nonpositive 
and we have 

dh 
(8.3) — < Ah + <fc 

Remark. The calculation leading to (8.3) is simple but also very-
fragile. It breaks down for example if we consider unequal diffusion 
rates, since in that case 

i 

and we have no way to get o2 into the expression 

d2h Y ^ d<t> d2ui \~^ 

To prove Proposition 1 we need to show that if the initial condi
tion ix(0, x) G r is continuous, and has 

(8.4) Ui(0,x) >r]t>0 when x G [-5,5]2 
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104 Mutual Invadability Implies Coexistence 

There are constants K > 0 and to < oc, which only depend on rji, 5, 
and 7 so that 

h(t,x) < 7 when \x\ < nt, t> to 

To get upper bounds on h(t,x), we note that the definition of ip and 
(ii) imply that when <j)(u) > M + e 

& = ^ ( 0 ( u ) - ( M + e ) ) - 0 t 

(8-5) (j){u) - (M + e) _ <j>(u) 
^ ^ Cf ~ ] Z 7 T~Z ~ \~ ^ ^ Cf 

1 + </>(u) -(M + e) - 1 + 0(u) 

since ^(ix) < ix and z/(z + 1) is increasing for z G [0, oc). Our initial 
condition may have h(0,x) — oc. To get things started we show 

L e m m a 8 .1 . There is a constant K which only depends on the 
constants r/i and 5 in (8.4), so that ift > 1 and \x\ < t then h(t,x) < 
Kt. 

Proof: Assumption (v) implies that ^ > Aui — aiUi. Using Lemma 
5.1.2 and the assumptions in (8.4) gives 

Uifax) > e'^rii [ (47rt)~d/2e^x-y\2/4tdy 
Jye[-5,5]d 

> e-aitrn • {2S)d(4,7it)~d/2exp(-(\x\ +S)2/4t) 

We have (j)(u) < C ( l + Yli=i ^°&~(ui)) by (iv), and the desired result 
follows. D 

Remark . If we instead use the bound (f)(u) < C ( l + X^=i uiP) where 
p > 0 we end up with h{t, x) < Ke7t which is not good enough to 
satisfy the demands of Lemma 8.4. 

Our SECOND STEP in the proof of Proposition 1 is to let Dr = 
{y : \y\ < r} and define h\(t,x) to be the function with h(s,x) — Ks 
if s — at, or x G dDat and 

dh . 7 h . __ r n _ 
— = Ah - c€——r in Vt = [at, t\ x Dat at I + a 
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Section 8. Some asymptotic results for our ODE and PDE. 105 

Using Lemma 8.1 we see that h(s,x) < h\(s,x) when s = at or 
x G dDat) so taking into account the inequality in (8.5) we should 
expect to find that 

(8.6) h(s, x) < h\ (s, x) for (s, x) G Vt 

To prove this we use the following comparison result: 

L e m m a 8.2. Suppose fi(h) > /2(h) and the hi solve 

dhi 
—j = Ahz - fi(hi) in Vt 

with hi(s,x) < /i2(s,x) if s — at, or x G dDat then 

hi(s,x) < h2(s,x) in Vt 

Proof. This type of conclusion usually goes under the name of the 
"maximum principle." However, the version we need is easier to prove 
than to find in the library. Suppose first that fi(h) > /2(h) and 
/ii(s, x) < ^2(5, x) if s — at, or x G dDat. Let SQ be the smallest value 
of s for which there is an x with hi(s, x) > /i2(s, x). Continuity of the 
hi implies that we can find an x$ so that fri(so,#o) = ^2(^0,^0)- The 
strict inequality between the hi on the boundary implies x$ G Dat and 
SQ > 0. The definition of so implies that hi(so,x) < h2(so,x) for all x. 
Since /&i(so?#o) = ^2(^05^0)? w e must have Vhi(soJxo) = V/i2(so?#o) 
and A/ii(so,xo) < A / ^ s c b ^ o ) - Using the last fact and fi(h) > /2(h) 
it follows that at (so,#o) 

^ = Ahx - Mh,) < Ah2 - f2(h2) = ^ 

However this implies that hi(so — e, x) > /^(^o ~ e,xo) for small e 
contradicting the definition of SQ5 so we must have /ii(s, x) < ^2(5, x) 
for all ($,#) G P a t - To prove the result in (2.4) now let fo(h) — 
fi(h) + e and change the boundary values to hi(s,x) — e. The new 
solution / IQ(S,X) < / ^ ( s , ^ ) and converges pointwise to h\(s,x) as 

Our THIRD STEP is to bound h\(s, x) by h\(s, x) = wKat(s-at) 
where wq(r) is the solution of 

w 
w'(t) — —c€ with w(0) — q v J 1 + w v J 
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106 Mutual Invadability Implies Coexistence 

Lemma 8.3. If\x\ < at/2 then we have 

(8.7) 0 < / 4 ( i , x ) - / 4 ( £ , x ) < (K + a)t-Ce-St 

Proof. For the left-hand inequality we note that Lemma 8.2 implies 
h\(s,x) > hl

2(s,x) in Vt. To estimate the difference we let g{x) — 
cex/(l + x) and observe that Ito's formula (see e.g., Section 4.2 of 
Durrett (1996)) implies that if r = mi{s : Bs 0 Dat} then 

psAr 
/ i - ( t - 3 A r , J 5 s A T ) - / g(hi(t - r, Br)) dr s < (1 - a)t 

Jo 

is a bounded martingale. Using the martingale property at time s = 
(1 — a)t gives that 

(8.8) Jo 

h\{t,x) = Ex[h\(at,B{1_a)t) 

psAr 
- / g(hl(t-r,Br))dr;r>(l-a)t 

Jo 

+ EJhl(t-T,BT) 

psAr \ 
-J g(ht(t-r,Br))dr;T<(l-a)tj 

Since h\{at,x) = h^at.x) and 0 < h\{t — r,Br) < h\(t — r,Br) for 
r > r we have 

/ •SAT 

/ i i ( a t , B ( 1 _ a ) t ) - / ^ i ( t - r , S r ) ) d r 
JO 

psAr 
< h\{at, B(i_a)t) - / 9 (^ (* - r, #r)) dr 

Jo 

on {r > (1 — a)t}. Subtracting the two expressions for hl(t, x) in (8.7) 
and recalling that h\>Q gives 

h\(t,x) - h\(t, x) < 0 + Ex(h\(t -T,BT) 

+ / <JC4(* - r ' 5 r ) ) rfr; r < (1 - o)t) 

< (K + a)tPx(r < (1 - a ) i ) 
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Section 8. Some asymptotic results for our ODE and PDE. 107 

since h\(s,x) = Ks when x G dDat and 0 < g < a. Standard large 
deviations estimates for Brownian motion imply that for \x\ < at/2, 
Px(j < (1 — a)t) < Cexp(—5t), which completes the proof. D 

Our FOURTH STEP is to investigate wKat((l-a)t). Abstracting 
a little to simplify notation, we begin by considering the behavior of 
solutions of 

w 
w' = -/3 with w(0) = W 

1 + w 
Lemma 8.4. Let T7 = inf{£ : w(t) < 7}. There is a constant C so 
that given w > 2 and 7 < 1 we have 

(8.9) (W~l) < T7 < ^ + CW1'2 (log W1'2 - log 7) 

Proof of Proposition 1. From (8.9), we see that for fixed 7 as 
W —> oc the time to go from W to 7 is ~ W//3. Thus if we pick a so 
that Ka/P < 1 — a then for t > to we will have wxat((l — a)£) < 7 
and the proof of Proposition 1 is complete. • 

Proof of Lemma 8.4. Since w'(i) > —/3 we have w(t) >W — (3t and 
T7 > (W — 7)//?. To prove the other bound, we observe that while 
w{t) > W1'2, 

w l / 2 

so w(t) reaches level W1^2 at a time 

W W 1 /9 

where C is independent of W > 2. When iu(£) < W1 /2 we have 
wf < —/3w/{l + W1/2} or integrating that 

w(t) < w(0) exp(-/ft /{l + W1/2}) 

This implies that the time to go from level W1/2 to 7 is 

1 _L w i / 2 
(8.11) < — - ^ (log W1/2 - log 7) 
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Adding this to (8.10) gives the desired estimate. This completes the 
proof of Lemma 8.4 and hence the proof of Proposition 1. • 

P r o o f of T h e o r e m 6.3. For simplicity, we will do the proof only 
for the two species Tilman model. The general case can be done with 
the same idea but with n steps in the proof instead of 2. We begin 
by recalling the mean field ODE given in (2.1.5): 

— - = Am + ui {(Pi - 6i) - Piux} 

-^=Au2 + u2 {(f32 - S2) - (Pi + P2)u! - p2u2} 

Let pi = (/?i — Si)/Pi and (pi(ui) = ui — p i l o g ^ i . (pi is a convex 
Lyapunov function, so Proposition 1 implies that given ei, 771, and 
S there are constants KI and ti so that if ui(0,x) > rji > 0 when 
x e [S,5]d then 

(8.12) \ui(t,x) — pi\ < €1 when \x\ < Kit, t>ti 

Let p2 = {(#2 — ^2) — (Pi + P2)o'i}/P2 be the equilibrium density 
of 2's, let (j)2(u2) — u2 — (j2 log 162, and introduce the truncated version 

(8.13) C 2 M = (02(^2) - ^2(^2) ~ e 2 ) + 

tha t is flat near the fixed point. If the constant ei in the first step 
was chosen small enough, ("2 will be a repelling function with M — 0 
when \ui(t,x) — o"i| < ei. If we pick a > 0 small enough then the 
region Vt — [at,t] x {y : \y\ < at} will for large t lie inside the good 
region for (8.12): {(i ,x) : \x\ < Kt,t > to}. 

Introducing the smoothly truncated version Q2 — ^((2(u) — 63), 
we have the differential inequality (8.3) and the estimate (8.5) from 
the proof of Proposition 1. The proofs of Lemmas 8.1-8.4 go through 
as before and we conclude that given e2, r]2 and 5 there are constants 
K2 < Ki and t2 > ti so that if 1x2(0, #) > r]2 > 0 when x G [—5, S]d 

then 
\u2(t,x) — p2\ < e2 when \x\ < n2t, t >t2 

Combined with (8.12) this implies that (•) holds, so the desired result 
now follows from Proposition 2. • 
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A List of t h e Invadabil i ty Condi t ions 

The first three definitions are for two dimensional systems only. 

Definit ion 1. We say that 2's die out, and write 2 [ 07 if 

du2Jdt < 0 when u\ — 0 and U2 > 0. 

Definit ion 2. We say that Vs equilibrate at density o\, and write 
1 - • <r1, if 

u\(t) —> ai as t —> oc when ^2 = 0 and ?zi(0) > 0. 

Definit ion 3. We say that species 2 can invade species 1 in equilib-
rium7 and write 2 >- 1? if as u —> (cri, 0) inside T +

7 we Lave 

liminf — > 0. 
U2 dt 

Definit ion 4. We say that i y 0 if as u —> 0 inside T + 7 we iiave 

liminf -^ > 0. 
iXi dt 

Definit ion 5. We say that 2 , . . . n can invade 1 and write 2 , . . . n >- 1 
if there is a positive linear combination z = UJ\U2 + • - - + u\un so that 
as u —> (<r, 0 n _i ) from inside T+, we have 

T • r 1 dz 
h m m l — > U. 

z dt 

The last two definitions are for three dimensional systems. Here 
{ij,k}= {1 ,2 ,3} . 

Def init ion 6. We say that k can invade i,j in equilibrium and write 
k y i,j if as u —> ak (the fixed point on the boundary T^) inside T + 7 

we have 
liminf — > 0. 

Uk dt 
Definit ion 7. 2 » 3 means there is a convex Lyapunov function on 
the face T® that is decreasing whenever U2 > 0. 
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