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Abstract

Consider a combination of the contact process and the voter model in which deaths
occur at rate 1 per site, and across each edge between nearest neighbors births occur at
rate λ and voting events occur at rate θ. We are interested in the asymptotics as θ →∞
of the critical value λc(θ) for the existence of a nontrivial stationary distribution. In
d ≥ 3, λc(θ) → 1/(2dρd) where ρd is the probability a d dimensional simple random
walk does not return to its starting point. In d = 2, λc(θ)/ log(θ) → 1/4π, while in
d = 1, λc(θ)/θ1/2 has lim inf ≥ 1/

√
2 and lim sup < ∞. The lower bound might be the

right answer, but proving this, or even getting a reasonable upper bound, seems to be
a difficult problem.

1 Introduction

In this paper we consider a particle system on Zd that is a contact process plus a voter
model run at a fast rate θ. To define the process precisely, if ni(x) is the number of nearest
neighbors of x in state i then x changes from 0 → 1 at rate (λ+ θ)n1(x) and from 1 → 0 at
rate δ+θn0(x). The behavior of the contact process is essentially the same in all dimensions.
There is a critical value λc (depending on dimension) of the infection parameter λ with the
property that the system has a nontrivial stationary distribution for λ > λc and does not
for smaller λ. The voter model, on the other hand, displays a strong dimension dependence.
For d ≤ 2, the only extremal invariant measures are the pointmasses on “all zeros” and “all
ones”. If d ≥ 3, however, the extremal invariant measures νvm

ρ are indexed by the density ρ
of ones. For precise statements and proofs, see Chapters V and VI of [11] and Part I of [13].

Now suppose, informally, that the two processes are superimposed on one another in
d ≥ 3, with the voter model being run at infinite rate. The effect is to make the distribution
µt at time t be an invariant measure for the voter model at all times t. Since the density of
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ones ρ(t) = µt(1) is not changed by the voter part, the evolution of the density is determined
by the contact part:

d

dt
ρ(t) = 2dλµt(10)− µt(1) = 2dλνvm

ρ(t)(10)− ρ(t). (1) cvODE

Here µt(1) and µt(10) represent the probabilities that a site takes the value 1, and that
two adjacent sites take the values 1,0 at time t respectively. In the voter equilibirium,
νvm

ρ (10) = ρ(1− ρ)ρd, where ρd is the probability that a simple random walk on Zd does not
return to the origin. (See page 242 of [11].) Therefore, in the ODE (1)

lim
t→∞

ρ(t) =

{
1− (2dλρd)

−1 if λ ≥ 1/(2dρd);

0 if λ ≤ 1/(2dρd).
(2) cvrho

This suggests that λc(θ) → 1/(2dρd) as θ → ∞. The asymptotics for the critical value and
the equilibrium density will be proved in Theorem 1 below.

In d ≤ 2 this heuristic does not work well, since running the voter model infinitely fast
would drive the system to consensus. However, the fact that clustering occurs in the voter
model means that an occupied site is usually completely surrounded by other occupied sites
preventing births from occurring, and suggests that λc(θ) → ∞. Theorems 2–5 prove this
and identify the order of magnitude of λc(θ).

If we let θ = ε−2 then our model beomes a voter model perturbation in the sense of Cox,
Durrett, and Perkins [2]. From their results we get

d3asy Theorem 1. In d ≥ 3, 2dρdλc(θ) → 1.

Proof. The key is the fact proved in Theorem 1.2 (all the results we cite here are from [2]): if
θ →∞, space is scaled to θ−1/2Zd, and the initial profile converges to a continuous function
v(x) (in a sense made precise in [2]), then the particle system at each time t converges (in
the same sense) to u(t, x), the solution of

∂u

∂t
= ∆u− u+ 2dλρdu(1− u).

If β = 2dλρd > 1 results of Aronson and Weinberger (cited and used in a similar way in [2])
imply that Assumption 1 is satisfied, so we can apply Theorem 1.4 to conclude that there is a
stationary distribution that concentrates on Ω0,1, the configurations with infinitely many 1’s
and 0’s, and that in any such stationary distribution sites are occupied with probability close
to (β − 1)/β, confirming the heuristic calculation in (2). Using −u+ βu(1− u) < (β − 1)u,
we see that if β < 1, then for any initial condition the PDE converges exponentially fast
to 0, which checks Assumption 2, so Theorem 1.5 implies that that there is no nontrivial
stationary distribution.

To prove results in dimensions d ≤ 2 we will use the fact that the contact plus voter
model, written as ξt : Zd → {0, 1}, is dual to a set-valued branching coalescing random
walk, ηt, in which each particle dies at rate 1, jumps to each of its 2d nearest neighbors at
rate θ, and gives birth onto each neighbor at rate λ. If the transitions in either of the last
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two possibilities produce two particles on one site, they immediately coalesce to one. Due
to work of Harris [9] and Griffeath [8], this is often called the “additive” dual. The precise
relationship between the two processes is that for any finite set A

P (ξt(x) = 0 for all x ∈ A) = P (ξ0(y) = 0 for all x ∈ ηA
t )

where ηA
t denotes the dual process starting from ηA

0 = A.
To study the dual process, we will adapt arguments in Durrett and Zähle [5] to show that

if we let θ →∞, scale space to θ−1/2Z2, let λ/ log(θ) → γ, and remove particles that quickly
coalesce with their parents, then on any finite time interval the dual process converges to
a branching Brownian motion in which the Brownian motions are run at rate 2, particles
give birth at rate 4πγ and die at rate 1. Once this it is done, it is routine to use a block
construction to show that if 4πγ > 1 the limiting Brownian motion dominates a supercritical
one-dependent oriented percolation. A weak convergence argument then allows us to extend
the comparison with oriented percolation to the dual process with large θ, and results from
Durrett’s St. Flour Notes [4] give the following:

d2surv Theorem 2. In d = 2,

lim sup
θ→∞

λc(θ)/ log(θ) ≤ 1

4π
.

In the other direction we have

d2die Theorem 3. Let ε = 1/(1 + 2λ+ 4θ). If d = 2, the process dies out if

E(0,0)(1− ε)τ−1 > 1− 1

4λ
,

where τ is the hitting time of the origin for the lazy simple symmetric random walk on Z2,
that stays put with probability 1/2. From this it follows that

lim inf
θ→∞

λc(θ)/ log(θ) ≥ 1

4π
.

To get the second conclusion from the first, integrate by parts (or use Fubini’s theorem) to
conclude that if F is the distribution function of a nonnegative random variable and φ is its
Laplace transform ∫ ∞

0

e−λx(1− F (x)) dx =
1− φ(λ)

λ
.

Using the well-known fact that
P (τ > n) ∼ π/ log n (3) 2dSRW

(see page 167 of [15] or Lemma 3.1 in [3]) and applying a Tauberian theorem (e.g., Theorem
4 from Section XIII.5 of [6]), we see that

1− φ(ε) ∼ π/ log(1/ε).

If λ ∼ c log(θ), then from the definition of ε it follows that 1/ε ∼ 4θ, and the inequality will
hold for large θ if c < 1/4π.
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In d = 1, the best technique known to obtain an upper bound on the critical value for the
contact process is the one of Holley and Liggett [10]. It gives λc ≤ 2. This was later improved
in [12] to λc ≤ 1.942 using an extension of that technique. It is natural to ask whether this
approach can be applied to the contact+voter process, and if so, what the resulting bound
is. In fact, it does apply, and shows that the process survives if

θ = 2λ3/2

√
λ−

√
2

2
√

2λ− 1
.

Since the fraction on the right converges to 1/2
√

2 as λ→∞, it follows that

lim sup
θ→∞

λc(θ)/θ
2/3 ≤ 21/3.

The details of the argument can be found in [14]. Even though the Holley-Liggett bound
for the contact process is very close to the right answer λc ≈ 1.65, here it fails to give the
correct order of magnitude. As the next two results show, the correct rate of growth is θ1/2.

To prove an upper bound on the critical value it is convenient to rescale time so that
particles die at rate δ = 1/λ, give birth on each nearest neighbor at rate ν = θ/λ and jump
across each edge at rate 1.

d1surv Theorem 4. In d = 1, lim infν→∞ νδc(ν) > 0 and hence

lim sup
θ→∞

λc(θ)/θ
1/2 <∞.

To get the second conclusion from the first note that δ ≥ c/ν translates into λ ≤ (θ/c)1/2.
The key to the proof is a block construction to compare the process with δ = 0 with a

supercritical one-dependent oriented percolation. To do this, we use an idea from Bramson
and Griffeath [1]. We follow two tagged particles in the dual: a white particle that only
follows random walk steps and a red particle that follows random walk steps and in addition
branchings that take it to the right. The two particles may come together several times and
follow the same trajectory for a while, but the drift in the red particle will eventually take
it to the right and away from the white particle.

The existence of a comparison with oriented percolation for the process with δ = 0
immediately implies that δc > 0. To get the result given in Theorem 4, we use the fact that
our construction takes place in a space time box that is 8Lν wide (in space) and 10Lν high
(in time) with L is large, to conclude that the dual process survives with positive probability
if 10Lνδ is small.

Since the proof of Theorem 4 is based on a block construction, the constant is very large.
This problem was avoided in the proof of Theorem 2 by using a large number of particles in
the block construction. This is possible because two dimensional Brownian motions do not
hit points or each other. This strategy does not seem to be practical in d = 1.

The final result gives a good lower bound on the critical value. The proof is similar to
the one for Theorem 3, so the result might also be sharp.

d1die Theorem 5. In d = 1, the contact process dies out if θ > 2λ(λ− 1) and hence

lim inf
θ→∞

λc(θ)/θ
1/2 ≥ 1/

√
2.
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The remainder of the paper is devoted to proofs. Theorem 5 is proved in Section 2 and
Theorem 3 in Section 3. This follows the order in which the result were first proved, but
the second proof is somewhat simpler, so if the reader gets bogged down in the details of
the first proof, he might have more success in understanding the second one. Theorem 2 is
proved in Section 4, and Theorem 4 in Section 5. Section 3 depends heavily on the ideas
used in Section 2. However, these sections are otherwise independent.

2 Extinction in one dimension

Proof of Theorem 5. Let µ be the upper invariant measure for the process, i.e., the limit
starting from all 1’s, and for finite A ⊂ Z, put

ψ(A) = µ{η ≡ 0 on A}.

(This limit exists by monotonicity – see Theorem 2.3 of Chapter III of [11].) From the
definition of ψ it is clear that

ψ(A)− ψ(A ∪B) = µ{η ≡ 0 on A, η 6≡ 0 on B\A}
≤ µ{η ≡ 0 on A ∩B, η 6≡ 0 on B\A} = ψ(A ∩B)− ψ(B).

That is, ψ is supermodular:

ψ(A ∪B) + ψ(A ∩B) ≥ ψ(A) + ψ(B).

It is a long known and frequently used fact that invariant measures for a Markov process
translate into harmonic functions for the dual process. In the present case, the duality
function is H(η, A) = 1{η≡0 on A}. Early examples that show the usefulness of this observation
are found in the analysis of the voter model (Section 1 of Chapter V of [11]) and symmetric
exclusion process (Section 1 of Chapter VIII of [11]). See Corollary 1.3 of Chapter VIII for
an explicit statement of this connection. The discussion there applies equally well to our
process and its dual.

At the level of generators, the duality relation asserts that

(LH)(η, A) =
∑
B

q(A,B)[H(η,B)−H(η, A)],

where L is the generator of the particle system acting on the first coordinate of H, and
q(A,B) is the Q−matrix of the dual Markov chain. Integrating both sides with respect to µ
gives 0 on the left, since µ is invariant, so it follows that

0 =
∑
B

q(A,B)[ψ(B)− ψ(A)]. (4) harmonic

So, this function ψ is harmonic for the dual chain. Using (4) and the shift invariance of
µ,

(1 + 2λ)ψ({0}) = 1 + 2λψ({0, 1}),
(1 + 2θ + λ)ψ({0, 1}) = (1 + θ)ψ({0}) + θψ({0, 2}) + λψ({0, 1, 2}),
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To check the second equation, note that while events happen to the pair {0, 1} at rate
2 + 4θ + 2λ, it suffices by symmetry to consider only those that affect the site on the right.
Similarly, for n ≥ 2,

(1 + 2θ + 2λ)ψ({0, n}) = ψ({0}) + θψ({0, n+ 1}) + θψ({0, n− 1})
+ λψ({0, n, n+ 1}) + λψ({0, n− 1, n}).

Let f(0) = ψ({0}) and f(n) = ψ({0, n}) for n ≥ 1. Though it is not needed below, we
note that f(n) ↓ by Theorem 1.9 of Chapter VI of [11]. The proof given there for the contact
process applies to our process as well. Changing notation, we have from above

(1 + 2λ)f(0) = 1 + 2λf(1). (5) ineq0

To simplify the other equations, we use the supermodularity equation

ψ({0,m,m+ 1}) ≥ ψ({0,m}) + ψ({m,m+ 1})− ψ({m})

to eliminate ψ(A) for |A| = 3 in the above harmonicity equations. This gives

(1 + 2θ − λ)f(1) ≥ (1 + θ − λ)f(0) + θf(2), (6) ineq1

and for n ≥ 2,

(1 + 2θ + λ)f(n) + (2λ− 1)f(0) ≥ 2λf(1) + (θ + λ)f(n− 1) + θf(n+ 1). (7) ineq2

Now let g(n) = f(n)− f(n+ 1) for n ≥ 0. Using
∑n−1

k=0 g(k) = f(0)− f(n), we see that

θg(n) ≥ (θ + λ)g(n− 1)− 2λg(0) +
n−1∑
k=0

g(k)

for n ≥ 1. In fact, this is (6) if n = 1 and (7) if n ≥ 2. Furthermore, (5) becomes
g(0) = (1− f(0))/(2λ).

Define h(n) recursively by h(0) = 1, θh(1) = 1 + θ − λ, and

θh(n) + 2λ = (θ + λ)h(n− 1) +
n−1∑
k=0

h(k) (8) recursion

for n ≥ 2. For the future, note that (8) also holds when n = 1. Then

g(n) ≥ 1− f(0)

2λ
h(n), n ≥ 0. (9) ineq

To see this, define g∗(0) = g(0), and then g∗(n) by using the recursion satisfied by g(n) with
inequalities replaced by equalities. By induction, g(n) ≥ g∗(n). Since the recursion is linear,
g∗(n) = g(0)h(n).

Lemma 2.1. The solution to the recursion (8) for h can be given explicitly: h(n) = h∗(n),
where

h∗(n) = 1 +
n∑

k=1

k∑
j=0

(
n+ k − j

2k − j

)(
k

j

)
k − 2j

k

λj

θk
.
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Proof. To check this, it suffices to show that h∗ satisfies (8), together with the initial condi-
tions. The initial conditions are immediate. For the recursion, it suffices to check that after
replacing h(n) in (8) by the above expression for h∗(n), the coefficient of λj/θk is the same
on both sides of the resulting equation. To simplify matters, we will use the convention that
0
0

= 1 and
(

k
j

)
= 0 unless 0 ≤ j ≤ k. The coefficient of λj/θk is(

n+ k − j + 1

2k − j + 2

)(
k + 1

j

)
k − 2j + 1

k + 1
+ 2× 1{j=1,k=0} (10) leftside

for the expression on the left, and(
n+ k − j

2k − j + 2

)(
k + 1

j

)
k − 2j + 1

k + 1
+

(
n+ k − j

2k − j + 1

)(
k

j − 1

)
k − 2j + 2

k

+

(
k

j

)
k − 2j

k

n−1∑
l=k

(
l + k − j

2k − j

) (11) rightside

for the expression on the right. The sum on the right above can be expressed as

n−1∑
l=k

(
l + k − j

2k − j

)
=

(
n+ k − j

2k − j

)
n− k

2k − j + 1
. (12) binomsum

To see this, note that the two expressions above agree when n = k. The differences between
the two sides at n+ 1 and n are(

n+ k − j

2k − j

)
and

(
n+ k − j + 1

2k − j

)
n+ 1− k

2k − j + 1
−

(
n+ k − j

2k − j

)
n− k

2k − j + 1
(13) binomid

respectively. Writing (
n+ k − j + 1

2k − j

)
=

(
n+ k − j

2k − j

)
n+ k − j + 1

n− k + 1
, (14) binomred

we see that the two expressions in (13) agree. Now replace the sum in (11) with the right
side of (12), and combine the resulting binomial coefficients (using identities similar to (14))
to check that (10) and (11) agree.

In order to determine the behavior of h(n) for large n, it is simplest to compute the
generating function. To avoid convergence issues in changing of order of summation, one
can consider the positive and negative terms separately, but the result is the same. To be
precise, one would write (k − 2j)/k = 1− 2/jk and sum the resulting two series separately,
adding the results at the end. Using the Taylor series

∞∑
m=0

(
m+ l

l

)
um =

1

(1− u)l+1
, |u| < 1,
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∞∑
n=0

unh(n) = 1 +
∞∑

k=1

k∑
j=0

(
k

j

)
k − 2j

k

λj

θk

∞∑
n=k

(
n+ k − j

2k − j

)
un

= 1 +
∞∑

k=1

k∑
j=0

(
k

j

)
k − 2j

k

λj

θk
uk(1− u)j−2k−1

= 1 +
u(1− λ(1− u))

θ(1− u)3

∞∑
k=1

[
u(1 + λ(1− u))

θ(1− u)2

]k−1

,

where the final step comes from the binomial theorem, provided that∣∣∣∣u(1 + λ(1− u))

θ(1− u)2

∣∣∣∣ < 1.

Let 0 < v < 1 be the solution of v(1 + λ(1− v)) = θ(1− v)2. (Note that the ratio of the left
side to the right side increases from 0 to ∞ as v goes from 0 to 1, so the solution exists and
is unique.) As u ↑ v, the final sum above tends to ∞. Therefore

lim
u↑v

∞∑
n=0

unh(n) =

{
+∞ if λ(1− v) < 1;

−∞ if λ(1− v) > 1.

Solving the quadratic for v gives

v =
1 + λ+ 2θ −

√
(1 + λ)2 + 4θ

2(λ+ θ)
,

and therefore

1− λ(1− v) =
2θ + λ(3− λ)− λ

√
(1 + λ)2 + 4θ

2(λ+ θ)
.

It follows that λ(1− v) < 1 is equivalent to

2θ + λ(3− λ) > λ
√

(1 + λ)2 + 4θ.

For this to be true, the left side must be positive, and the inequality obtained by squaring
both sides must hold, i.e.,

2θ > λ(λ− 3) and θ > 2λ(λ− 1).

Note that once λ > 1
3
, the second condition is more restrictive than the first.

To complete the proof, note that if θ > 2λ(λ− 1), then

lim
u↑v

∞∑
n=0

unh(n) = +∞.

Since 0 < v < 1, this implies that

lim sup
n→∞

h(n) = +∞,

Since g(n) is bounded, this together with (9) implies f(0) = 1, so the process dies out.
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Alternative proof. For readers who are less adept at computations with Binomial coefficients,
we now sketch another approach. We want to solve (8),

θh(n) + 2λ = (θ + λ)h(n− 1) +
n−1∑
k=0

h(k) for n ≥ 1,

with h(0) = 1. If we let j(n) =
∑n−1

k=0 h(k) then we have the system that can be written as(
h(n)
j(n)

)
=

(
1 + (λ+ 1)/θ 1/θ

1 1

) (
h(n− 1)
j(n− 1)

)
+

(
−2λ/θ

0

)
for n ≥ 1,

where j(0) = 0. Writing A for the matrix and taking into account the initial condition:(
h(n)
j(n)

)
= An

(
1
0

)
+

n−1∑
m=0

Am

(
−2λ/θ

0

)
.

Being a positive matrix, the Perron-Frobenius theorem implies An
ij ∼ viγ

n
1wj where λ1

is the largest eigenvalue and w and v are associated left and right eigenvectors, which have
strictly positive entries and are normalized so that

∑
iwivi = 1. Here an ∼ bn means that

an/bn → 1. From the asymptotics for An we see that

h(n) ∼ v1w1

[
γn

1 (1 + (1− λ)/θ)− γn−1
1

1− 1/γ1

(2λ/θ)

]
. (15) hasy

To find the eigenvalues we set (1 + (λ+ 1)/θ − x)(1− x)− 1/θ = 0 which becomes

x2 − (2 + (λ+ 1)/θ)x+ 1 + λ/θ = 0.

Solving we get

γi =
2 + (λ+ 1)/θ ±

√
(2 + (λ+ 1)/θ)2 − 4[1 + λ/θ]

2
.

Underneath the square root we have

4 +
4(λ+ 1)

θ
+

(λ+ 1)2

θ2
− 4− 4

λ

θ
=

(λ+ 1)2

θ2
+

4

θ
.

Multiplying top and bottom by θ, the largest eigenvalue is

γ1 =
1 + λ+ 2θ +

√
(λ+ 1)2 + 4θ

2θ
> 1.

From (15) we see that h(n) → ∞ if γ1 − 1 > 2λ/θ. Subtracting 1 from γ1 removes the
2θ from the numerator. When θ = cλ2,

γ1 − 1 ∼ λ

2θ
(1 +

√
1 + 4c),

so again we find lim inf λc(θ)/θ
1/2 ≥ 1/

√
2.
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3 Extinction in two dimensions

Proof of Theorem 3. Now let f(0, 0) = ψ({(0, 0)}) and f(m,n) = ψ({(0, 0), (m,n)}) for
m,n ≥ 0,m+n ≥ 1. Imitating the proof in the previous section, we begin by observing that

(1 + 4λ)ψ({(0, 0)}) = 1 + 2λψ({(0, 0), (1, 0)}) + 2λψ({(0, 0), (0, 1)}
(1 + 4λ)f(0, 0) = 1 + 2λf(0, 1) + 2λf(1, 0). (16) f00

Note that we have used reflection symmetry to keep the points in the first quadrant. Next,

(1 + 3λ+ 3θ)ψ({(0, 0), (1, 0)}) = ψ({(0, 0)}(1 + θ) + 2θψ({(0, 0), (1, 1)}
+ θψ({(0, 0), (2, 0)}) + 2λψ({(0, 0), (1, 0), (1, 1)}) + λψ({(0, 0), (1, 0), (2, 1)}).

Supermodularity implies

ψ({(0, 0), (1, 0), (1, 1)}) ≥ ψ({(0, 0), (1, 0)}) + ψ({(1, 0), (1, 1)})− ψ({1, 0}),

so switching to the f notation

(1 + 3λ+ 3θ)f(1, 0) ≥ f(0, 0)(1 + θ) + 2θf(1, 1) + θf(2, 0)

+ 2λ[f(1, 0) + f(0, 1)− f(0, 0)] + λ[2f(1, 0)− f(0, 0)],

and rearranging gives

(1− λ+ 4θ)f(1, 0) + (3λ− θ − 1)f(0, 0) ≥ 2λf(0, 1) + 2θf(1, 1) + θf(2, 0). (17) f10

When m ≥ 2 there are terms θψ({(0, 0), (m − 1, 0)}) and λψ({(0, 0), (m − 1, 0), (m, 0)}, so
switching to the f notation

(1 + 4λ+ 4θ)f(m, 0) ≥ f(0, 0) + θf(m− 1, 0) + 2θf(m, 1) + θf(m+ 1, 0)

+ λ[f(m− 1, 0) + f(1, 0)− f(0, 0)] + 2λ[f(m, 0) + f(0, 1)− f(0, 0)]

+ λ[f(m, 0) + f(1, 0)− f(0, 0)],

and rearranging gives

(1 + λ+ 4θ)f(m, 0) + (4λ− 1)f(0, 0) ≥ 2λf(1, 0) + 2λf(0, 1) (18) fm0

+ (λ+ θ)f(m− 1, 0) + θf(m+ 1, 0) + 2θf(m, 1).

Similarly, when m,n ≥ 1

(1 + 2λ+ 4θ)f(m,n) + (4λ− 1)f(0, 0) ≥ 2λf(1, 0) + 2λf(0, 1)

+ (λ+ θ)[f(m− 1, n) + f(m,n− 1)] + θ[f(m+ 1, n) + f(m,n+ 1)].

Letting g(m,n) = 1− f(m,n), (16) becomes

(1 + 4λ)g(0, 0) = 2λ[g(0, 1) + g(1, 0)], (19) g00
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Multiplying each side of (18) by −1, noting that the coefficients on each side sum to 5λ+4θ
and using the last identity we have

(1 + 4θ + λ)g(m, 0) ≤2g(0, 0) + (λ+ θ)g(m− 1, 0) (20) gm0

+ θg(m+ 1, 0) + 2θg(m, 1).

Performing these manipulations on (17) gives the same result so this equation holds for
m ≥ 1. A similar argument shows that for m,n ≥ 1

(1 + 2λ+ 4θ)g(m,n) ≤ 2g(0, 0) + (λ+ θ)[g(m− 1, n) + g(m,n− 1)] (21) gmn

+ θ[g(m,n+ 1) + g(m+ 1, n)].

As a warmup, consider formally the case θ = ∞. Then (19), (20) and (21) imply that if
S̄k is simple random walk on the positive quadrant in Z2 with reflection at the boundaries
then

g(m,n) ≤ E(m,n)g(S̄1). (22) warmup

Since Sk is recurrent, the bounded subharmonic function g is constant. By (19), this constant
is zero, so the process dies out.

Suppose now that the process survives, g(0, 0) > 0, and let

h(m,n) = g(m,n)/2g(0, 0).

Then h(0, 0) = 1/2 and (19), (20) and (21) imply that for m,n ≥ 1

h(0, 1) + h(1, 0) = 1 + 1/4λ, (23) ineq9

(1 + λ+ 4θ)h(m, 0) ≤ 1 + (λ+ θ)h(m− 1, 0) + θh(m+ 1, 0) + 2θh(m, 1), (24) ineq7

(1 + 2λ+ 4θ)h(m,n) ≤ 1 + (λ+ θ)[h(m− 1, n) + h(m,n− 1)]

+ θ[h(m,n+ 1) + h(m+ 1, n)]. (25) ineq8

Clearly, f(m,n) ≤ f(0, 0). Since the contact process has positive correlations (see e.g.,
Theorem 2.13 of Chapter III of [11]), f(m,n) ≥ f 2(0, 0), so for all m,n

1/2 ≤ 1− f(m,n)

2(1− f(0, 0))
≤ 1− f(0, 0)2

2(1− f(0, 0))
=

1 + f(0, 0)

2
≤ 1.

i.e., 1/2 ≤ h(m,n) ≤ 1. Let ε = 1/(1+2λ+4θ). To motivate the next definition divide each
side of (25) by (1 + 2λ+ 4θ) to get

h(m,n) ≤ ε+(1− ε)
(λ+ θ)

2λ+ 4θ
[h(m− 1, n) + h(m,n− 1)]

+ (1− ε)
θ

2λ+ 4θ
[h(m,n+ 1) + h(m+ 1, n)], (26) hmn2

and note that if λ � θ the two fractions on the right are ≈ 1/4. For a future comparison,
note that (1− ε)/(2λ+ 4θ) = ε.
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Define hk(m,n) for k ≥ 0 and m,n ∈ Z by hk(0, 0) = 1/2 for all k. For (m,n) 6= (0, 0),
let h0(m,n) = 1 and

hk+1(m,n) = ε+ (1− ε)E(m,n)hk(S̃1), (27) rec

where S̃k is the lazy version of the reflecting random walk S̄k, defined before (22), that stays
put with probability 1/2. It is easy to see 1/2 ≤ hk(m,n) ≤ 1 for all k,m, n. Let τ be
the hitting time of the origin for S̃k. One can think of hk(m,n) of a reward earned by our
process S̃k starting from (m,n) and stopped at time τ .

• A reward of 1/2 is earned at time τ .

• A reward of 1 is earned at time k if τ > k.

• A reward of ε is earned at time j < k if τ > j.

• Rewards earned at time j are discounted by (1− ε)j.

This interpretation leads easily to the following formula:

hk(x) =
1

2

k∑
i=1

(1− ε)iP x(τ = i) + ε
k−1∑
j=0

(1− ε)jP x(τ > j) + (1− ε)kP x(τ > k).

Writing P x(τ = i) = P x(τ > i− 1)− P x(τ > i) and rearranging gives

hk(x) =
1

2
+
ε

2

k−1∑
j=0

(1− ε)jP x(τ > j) +
1

2
(1− ε)kP x(τ > k), x 6= 0. (28) hkx

We have used the lazy random walk so that x → P x(τ > j) is increasing (and hence
x → hk(x) is also) in the usual partial order on the positive quadrant. To prove this we
note that two random walks started at (m,n) and (m′, n′) with m′ ≥ m and n′ ≥ n can be
coupled to preserve the order. The ordering is trivial to maintain while the walk is in the
interior of the quadrant or on the left side. To handle the situation when one walker is at
(`, 1) and the other is at (`, 0) note that:

from/to (`, 2) (`, 1) (`, 0)
(`, 1) 1/8 1/2 1/8
(`, 0) 0 2/8 1/2

To compare hk with h note that if m,n ≥ 1

hk+1(m,n) =
1

2
[ε+ (1− ε)hk(m,n)]

+
1

2

(
ε+

1− ε

4
[hk(m− 1, n) + hk(m,n− 1) + hk(m+ 1, n) + hk(m,n+ 1)]

)
.

12



Since hk(m,n) ≤ 1 and (1− ε)/4 = (λ/2 + θ)/(1 + 2λ+ 4θ) = ε(λ/2 + θ)

hk+1(m,n) ≤ 1

2
hk(m,n) +

ε

2
(29) comp1

+
1

2
ε

(
(λ+ θ)[hk(m− 1, n) + hk(m,n− 1)] + θ[hk(m+ 1, n) + hk(m,n+ 1)]

+
λ

2
[hk(m+ 1, n)− hk(m− 1, n)] +

λ

2
[hk(m,n+ 1)− hk(m,n− 1)]

)
.

To handle the equation on the boundary we add λh(m, 0) to each side of (24), and divide
by 1 + 2λ+ 4θ to rewrite it as

h(m, 0) ≤ ε+ ε[(λ+ θ)h(m− 1, 0) + λh(m, 0) + θh(m+ 1, θ) + 2θh(m, 1)]. (30) hm02

The corresponding equation for hk+1 is

hk+1(m, 0) =
1

2
[ε+ (1− ε)hk(m, 0)]

+
1

2

(
ε+

1− ε

4
[hk(m− 1, 0) + hk(m+ 1, 0) + 2hk(m, 1)]

)
.

Arguing as before we can convert this into

hk+1(m, 0) ≤ 1

2
hk(m, 0) +

ε

2
(31) comp2

+
1

2
ε

(
(λ+ θ)hk(m− 1, 0) + λhk(m, 0) + θhk(m+ 1, 0) + 2θhk(m,n+ 1)

+
λ

2
[hk(m+ 1, 0)− hk(m− 1, 0)] + λ[hk(m, 1)− hk(m, 0)]

)
.

The last lines in (29) and (31) are ≥ 0 by the monotonicity of hk, so comparing with (26)
and (30), we see that hk+1 and h satisfy similar iterations with ≤ and ≥ respectively. Since
h0 ≥ h, it follows by induction that

hk(m,n) ≥ h(m,n). (32) hbound

Taking the limit in (28) and using (32) gives

h(m,n) ≤ 1

2
+
ε

2

∞∑
j=0

(1− ε)jP (m,n)(τ > j).

Since 2h(1, 0) = 1 + 1/4λ by (23),

1 ≤ 4λε
∞∑

j=0

(1− ε)jP (1,0)(τ > j).

Since this argument was based on the assumption that the process survives, it follows that
the process dies out whenever the opposite (strict) inequality holds.
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4 Survival in two dimensions

The proof is simple since most of the work has already been done by Durrett and Zähle
[5]. It is only necessary to make some minor modifications to their proof presented on pages
1758–1761. However, since we have to give the details, we have taken the opportunity to
clarify the proof and sharpen some of the bounds. As in [5], we work with the dual coalescing
random walks ηt, but now jumps occur at rate θ across each edge between nearest neighbors,
births occur at rate λ = γ log(θ) across each edge, and deaths occur at rate 1 per site. Thus,
in contrast to [5], we have no need to speed up the process, only to scale space to θ−1/2Z2.

Most of the particles that are born in ηt coalesce with their parents. These short intervals
in which the size of the duals increases and then decreases are not compatible with weak
convergence, so we define a pruned dual process η̄t using the rule that a newly born
particle has mass 0 until it has avoided coalescence with its parent for 1/ loga(θ) units of
time, where a is the first of several positive constants whose values will be specified later. In
the proof we will show that it is very unlikely for a particle to collide with a particle that is
not its parent.

Let Z1
t and Z2

t be independent random walks that make jumps to nearest neighbors at
rate 1 and let St = Z1

t − Z2
t . Suppose S0 is a neighbor of 0. Let T0 = inf{t : St = 0}.

From (3), P (T0 > t) ∼ π/(log t). Changing to the fast time scale let st = θ−1/2S(θt) and
t0 = inf{t : st = 0}. We use lower case letters to remind us that this process is smaller in
space and time. Therefore

P (t0 > 1/ loga(θ)) = P (T0 > θ/ loga(θ)) ∼ π

log θ − a log log θ
. (33) tauasy

Let R = θ/ loga θ and r = 1/ loga θ. Using a trivial inequality, then (33), and Chebyshev’s
inequality we have

P (|SR| ≥ θ1/2/ logb(θ)|T0 > R) ≤ 1

P (T0 > R)
P (|SR| ≥ θ1/2/ logb(θ))

≤ C log θ · θ

loga θ
· log2b(θ)

θ
= C(log θ)1+2b−a. (34) close

which goes to 0 if a > 1 + 2b. Here, and in what follows, we have collected all the constants
into one placed at the front.

Note that when |SR| ≤ θ1/2/ logb(θ), we have |sr| ≤ 1/ logb(θ), i.e., the new particle is
close to its parent. The next result, which follows from using the local central limit theorem,
shows that they are not too close

P (|SR| ≤ θ1/2/ logc(θ)|T0 > R) ≤ 1

P (T0 > R)
P (|SR| ≤ θ1/2/ logc(θ))

≤ C log(θ) ·
(

θ1/2

logc(θ)

)2

· loga(θ)

θ
= C(log θ)1+a−2c. (35) far

Here the second term on the last line gives the order of magnitude of the number of points
x with |x| ≤ θ1/2/ logc(θ), and the third is a bound on the order of magnitude of P (SR = x).
If 1 + a < 2c this tends to 0.
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To prove results about the asymptotic behavior of the pruned dual η̄t we will consider the
pruned branching random walk η̂t in which particles are assigned mass 0 until they have
avoided coalescing with their parent for time 1/ loga θ. After this time, we ignore collisions
with any other particle (including its parent) until time L2, which again is a constant whose
value will be specified later. By (33) particles in η̂t are born at rate

∼ 4γ log θ · π

log θ
= 4γπ,

and die at rate 1. From this and (34) it is easy to see that

pbrwconv Lemma 4.1. As θ → ∞ the pruned branching random walk η̂t, 0 ≤ t ≤ L2, converges to a
branching Brownian motion ζt, 0 ≤ t ≤ L2 in which births occur at rate 4γπ, deaths at rate
1, and the Brownian motions run at rate 2.

To estimate the difference between η̄t and η̂t, we need to estimate the probability that a
newly born particle collides with another particle before time L2. Using (33), one can easily
show that

P (t0 ≤ L2|t0 > 1/ loga(θ)) = P (T0 ≤ L2θ|T0 > θ/ loga(θ)) → 0. (36) nocmom

To do this, we note that if ε > 0 then for large θ

P (θ/ loga(θ) < T0 ≤ L2θ) ≤ π(1 + ε)

log θ − a log log θ
− π(1− ε)

log θ + log log(L2)

≤ πε log θ +O(1)

log θ − a log log θ)2
.

The result in (36) implies that after the initial separation we don’t have to worry about a
particle colliding with its parent before time L2. To show that it avoids the other particles,
we will first show that if two particles are sufficiently separated then they will not collide by
time L2. Then we will use induction to prove the desired amount of separation is maintained.
The first step is to suppose S0 = x with |x| ≥ θ1/2/ log∆(θ), with the capital letter ∆ to
suggest this is a large constant, and then estimate the probability α(x), that St will hit the
ball of radius K before it exits the ball of radius Mθ1/2 − 1. Our goal is to conclude that

ᾱ = sup
|x|≥θ1/2/ log∆(θ)

α(x) → 0.

If St were a two-dimensional Brownian motion, then we would use the harmonic function
log |z| to calculate α(x). For the random walk, we use the recurrent potential kernel defined
by A(x) =

∑∞
k=0[q

k(0) − qk(x)] where q is uniform on the four nearest neighbors and qk

denotes the k-fold convolution. It is immediate from the definition that∑
y

q(y − x)A(x)− A(x) = 1(x=0)

i.e., the difference is 1 if x = 0 and 0 otherwise. From this we see that A(St) is a martingale
until time T0. By Theorem 2 of [7] or P3 of Section 12 of [15],

A(x) = cA log |x|+O(1). (37) pkasy
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IfK is large and |x| ≥ θ1/2/ log∆(θ), then applying the optimal stopping theorem to A(St)/cA

(1/2) log θ−∆ log log θ +O(1) ≤ A(x)

≤ α(x)[logK +O(1)] + (1− α(x))[(1/2) log θ + logM +O(1)],

where the second inequality comes from the fact that upon exit from the annulus the random
walk will jump over the boundary by a distance ≤ 1. Rearranging we have

α(x)[(1/2) log θ − logK] ≤ ∆ log log θ + logM +O(1), (38) nocoal

and we see that for any ∆ <∞, ᾱ→ 0 as θ →∞.
To do the induction argument to bound the spacings between the particles, we can ignore

the death of particles. If we do this then, for large θ, the growth of the number of particles
is bounded by a branching process with births at rate 5γπ. This implies that the expected
number of particles N(L2) in the system at time L2 is finite, so if ε > 0 then we can pick Nε

so that P (N(L2) > Nε) ≤ ε.
We now choose the values of our parameters:

b = 1/3, a = 2, c = 2,

which satisfy a > 1 + 2b and 2c > 1 + a. With these choices, (35) implies that when a
new particle is added to η̄t the newly born particle is with high probability at distance
≥ θ1/2/ log2 θ from its parent. Suppose that at time 0 we have k particles that are separated
by ≥ θ1/2/ log2 θ. The result in (38) implies that none of the k particles will coalesce by time
L2. Since, for large θ, births in η̄t occur at rate ≤ 5γπ, it follows that for any δ > 0 the first
successful birth will with high probability occur after R′ = θ/ logδ θ. If R′ ≤ t ≤ L2 then the
argument for (35) can be repeated to show

P (|St| ≤ θ1/2/ log2(θ)) ≤ C

(
θ1/2

log2(θ)

)2

· logδ(θ)

θ
= C(log θ)2−δ.

This implies that when the new particle is added to η̄t the k + 1 particles are with high
probability separated by θ1/2/ log2(θ). Since this conclusion holds with probability ≥ 1 − ε
and the argument is only repeated Nε times, we have shown that the desired separation is
maintained with high probability, and it follows from (38) that there is no coalescence. Since
this shows that η̄t = η̂t with high probability, we have:

pdconv Lemma 4.2. As θ →∞ the pruned dual η̄t, 0 ≤ t ≤ L2, converges to a branching Brownian
motion ζt, 0 ≤ t ≤ L2, in which births occur at rate 4γπ, deaths at rate 1, and the Brownian
motions run at rate 2.

With Lemma 4.2 established, the rest of the proof is almost identical to that in [5]. Let
ζ̄t be a modification of ζt in which particles are killed when they leave [−4L, 4L]2. In [5] this
is [0, 4L]2 but that is because they need to keep their construction in one half-space. We will
use the more natural symmetric geometry in the construction here.

If we use ζ̄x
t (A) to denote the number of points in A when the killed branching Brownian

motion ζ̄t starts with one particle at x and let µ = 4γπ − 1 then

E[ζ̄x
t (A)] = eµtP (B̄x

t ∈ A),
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where Bx
t is a Brownian motion run starting from x, run at rate 2, and killed when it exits

[−4L, 4L]2. Let Ik = (2kL2, 0) + [−L,L]2. From the last estimate it follows easily (see page
1760 of [5] for more details) that if µ > 0 (an assumption that will be in force until we state
Lemma 4.3)

inf
x∈I0

E[ζ̄x
L2(Ii)] ≥ 2 for i = 1,−1,

and hence if we let ζ̄A
t =

∑
x∈A ζ̄

x
t , then for A ⊂ I0

E[ζ̄A
L2(Ii)] ≥ 2|A| for i = 1,−1.

where |A| is the number of particles in A.
Since E[ζ̄x

L2(Ii)
2] ≤ E[ζx

L2(R2)2] ≡ cL, and the ζ̄x
t are independent, it follows that for

A ⊂ [−L,L]2

var [ζ̄A
L2(Ii)] ≥ |A|cL for i = 1,−1.

Using by Chebyshev’s inequality that if A ⊂ [−L,L]2 has |A| ≥ K then

P (ζ̄A
L2(Ii) < K) ≤ cL/K for i = 1,−1.

The last conclusion gives us the block event for the branching Brownian motion ζ̄t:

bbmbc Lemma 4.3. Suppose 4γπ > 1. Let ε > 0. If L ≥ L0(ε) and ζ̄0(I0) ≥ K then we will
with probability ≥ 1 − 2ε have ζ̄L2(Ii) ≥ K for i = −1, 1. We do this in a system in which
particles are killed when they leave [−4L, 4L]2 so the events for I0 and Im are independent
when m ≥ 4.

Combining this with Lemma 4.2 it follows that

pdbc Lemma 4.4. Suppose 4γπ > 1. Let ε > 0 and pick L ≥ L0(ε). If θ ≥ θ0(ε, L) and we start
with ≥ K particles in I0 in η̄t that are separated by ≥ 1/ log2 θ at time 0 then we will with
probability ≥ 1 − 2ε have ≥ K particles in I−1 and I1 that are separated by ≥ 1/ log2 θ at
time L2. We do this in a system in which particles are killed when they leave [−4L, 4L]2 so
the events for I0 and Im are independent when m ≥ 4.

With Lemma 4.4 established the existence of a stationary distribution follows from Theorem
4.2 in [4].

5 Survival in one dimension

In this section we consider the version of the contact plus voter process in which births
occur at rate 1. The dual process has deaths at rate δ, births across each edge at rate 1, and
random walks that jump to each nearest neighbor at rate ν, with coalescence when two walks
hit. Let L be a large constant that will be chosen later. Let Im = 4mLν + [−0.2Lν, 0.2Lν].
We will show for the dual process with δ = 0 that if we start with one particle in I0 at time
0 then with high probability we will have one in I0 and one in I1 at time 10Lν. We will
do this by following the behavior of two tagged particles in the dual. In order to have the
events in our construction one dependent, we will also show that with high probability the
particles do not leave [−2Lν, 6Lν].
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−2Lν 6Lν
0

10Lν

0

I0

4Lν

I1

T0 ≤ 2Lν

T1 ≤ 6Lν

Figure 1: Picture of the block construction in d = 1. Time runs down the page. The white
particle stays in the region on the left. Once the red particle hits Lν at time T1 it stays
within the region on the right.

The Key to the proof is a trick used by Bramson and Griffeath [1]. We follow a tagged
particle in the dual that moves according to the following rules: when it is affected by a
random walk event it must jump, but when there is a branching event, it follows the birth
if and only if it takes it to the right. This process, which we call Xr(t), makes jumps

x→ x+ 1 at rate ν + 1,

x→ x− 1 at rate ν.

It is easy to check that Xr(2νt)/2ν ⇒ Br(t) = B(t)+ t. Let X` denote the analogous process
that only follows births to the left and has limit B`(t) = B(t) − t, and let Xc denote the
process the ignores branching arrows and has limit Bc(t) = B(t).

The Construction. Suppose we have a particle at x ∈ I0. There are three things to prove.

(i) Suppose the particle in I0 is at x. We use Xr if x < 0 or X` if x > 0 to bring the particle
to 0, which happens at time T0. We will declare this part of the construction a success if the
particle never leaves [−0.4Lν, 0.4Lν] and T0 ≤ 2Lν. Having brought our particle to 0, we
change our rule so that the particle we are watching, which we call the white particle, only
follows random walk arrows.

(ii) At time T0 we begin to follow a red particle that moves according to Xr(t). The red
particle may coalesce with the white particle a large number of times, but will keep separating
from it becuase it follows births to the right, while the white particle does not. Since the red
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particle is approximately a Brownian motion with drift, it will reach 4Lν at some time T1.
We declare this part of the construction a success if T1 ≤ T0 + 6Lν. At time T1, we change
our rule so that the red particle, only follows random walk arrows.

(iii) The last thing we need is for the white particle not to leave [−0.2Lν, 0.2Lν] in [T0, 10Lν]
and for the red particle not to leave 4Lν + [−0.2Lν, 0.2Lν] in [T1, 10Lν]. Note that between
time T0 and time T1, the red particle is always to the right of the white particle, and always
to the left of 4Lν so if the two events in the first sentence happen, the red particle will not
leave the interval [−0.2Lν, 4.2Lν].

Rescaled Construction. The processes Br, B`, and Bc arise from Xr, X`, and Xc by
scaling space and time by 2ν. Using the weak convergence of these processes it is enough
to show that if L is large, then the correspondingly scaled events hold for the B′s with high
probability.

(i) The initial particle starting in [−0.1L, 0.1L] can be brought to 0 without exiting [−0.2L, 0.2L]
and gets there at time T̄0 ≤ L.

(ii) The red particle born at time T̄0 gets to 2L at time T̄1 ≤ T̄0 + 3L.

(iii) The white particle does not leave [−0.1L, 0.1L] during [T̄0, 5L] and the red particle does
not leave 2L+ [−0.1L, 0.1L] during [T̄1, 5L].

Lemma 5.1. Suppose Br(0) = x < 0 and let T̄0 = inf{t : Br(t) = 0}. In this case, as
L→∞

sup
x∈[−0.1L,0]

Px(T̄0 ≥ L) → 0 and sup
x∈[−0.1L,0]

Px

(
inf
t≤L

Br(t) ≤ −0.2L

)
→ 0.

Proof. It suffices to prove the result when x = −0.1L. As L → ∞, Br(tL)/L ⇒ −0.1 + t
where ⇒ indicates weak convergence in C([0, 1]). The two results follow from this.

Let τ1 = inf{t : Br(t) = L}. Repeating the previous proof we see that P0(τ1 ≥ 2L) → 0.
To check (iii) now, use scaling to conclude that for any 0 < γ,M <∞

lim
L→∞

P

(
sup

t≤ML
|Bc(t)| ≤ γL

)
= lim

L→∞
P

(
sup

0≤t≤1
(ML)1/2B(t) ≤ γL

)
= 1.

At this point we have shown that if L ≥ L0 then all three events in the rescaled con-
struction occur with probability ≥ 1 − ε. If we take L = L0 then the weak convergence of
the X’s to the B’s implies that if ν ≥ ν0 all three events in the construction occur with
probability ≥ 1− 2ε. Up to this point the calculations are for the process with no death. If
we pick δ = η/Lν with η small then the probability of a death affecting either of our two
tagged particles is ≤ ε. The events in the block construction are one dependent, so applying
Theorem 4.1 from Durrett’s St. Flour Notes [4], we see that the dual process starting from
a single particle at 0 survives with positive probability.
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