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Abstract

Most human tumors result from the accumulation of multiple genetic and epige-
netic alterations in a single cell. Mutations that confer a fitness advantage to the cell
are known as driver mutations and are causally related to tumorigenesis. Other muta-
tions, however, do not change the phenotype of the cell or even decrease cellular fitness.
While much experimental effort is being devoted to the identification of the different
functional effects of individual mutations, mathematical modeling of tumor progres-
sion generally considers constant fitness increments as mutations are accumulated. In
this paper we study a mathematical model of tumor progression with random fitness
increments. We analyze a multi-type branching process in which cells accumulate mu-
tations whose fitness effects are chosen from a distribution. We determine the effect
of the fitness distribution on the growth kinetics of the tumor. This work contributes
to a quantitative understanding of the accumulation of mutations leading to cancer
phenotypes.

Keywords: cancer evolution, branching process, fitness distribution, beneficial fitness ef-
fects, mutational landscape
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1 Introduction

Tumors result from an evolutionary process occurring within a tissue (Nowell, 1976). From an
evolutionary point of view, tumors can be considered as collections of cells that accumulate
genetic and epigenetic alterations. The phenotypic changes that these alterations confer
to cells are subjected to the selection pressures within the tissue and lead to adaptations
such as the evolution of more aggressive cell types, the emergence of resistance, induction
of angiogenesis, evasion of the immune system, and colonization of distant organs with
metastatic growth. Advantageous heritable alterations can cause a rapid expansion of the
cell clone harboring such changes, since these cells are capable of outcompeting cells that
have not evolved similar adaptations. The investigation of the dynamics of cell growth,
the speed of accumulating mutations, and the distribution of different cell types at various
timepoints during tumorigenesis is important for an understanding of the natural history
of tumors. Further, such knowledge aids in the prognosis of newly diagnosed tumors, since
the presence of cell clones with aggressive phenotypes lead to less optimistic predictions for
tumor progression. Finally, a knowledge of the composition of tumors allows for the choice of
optimum therapeutic interventions, as tumors harboring pre-existing resistant clones should
be treated differently than drug-sensitive cell populations.

Mathematical models have led to many important insights into the dynamics of tumor
progression and the evolution of resistance (Goldie and Coldman, 1983 and 1984; Bodmer
and Tomlinson, 1995; Coldman and Murray, 2000; Knudson, 2001; Maley and Forrest, 2001;
Michor et al., 2004; Iwasa et al., 2005; Komarova and Wodarz, 2005; Michor et al., 2006;
Michor and Iwasa, 2006; Frank 2007; Wodarz and Komarova, 2007). These mathematical
models generally fall into one of two classes: (i) constant population size models, and (ii)
models describing exponentially growing populations. Many theoretical investigations of ex-
ponentially growing populations employ multi-type branching process models (e.g., Iwasa et
al., 2006; Haeno et al., 2007; Durrett and Moseley, 2009), while others use population genetic
models for homogeneously mixing exponentially growing populations (e.g., Beerenwinkel et
al., 2007; Durrett and Mayberry, 2009). In this paper, we focus on branching process models.
In these models, cells with i ≥ 0 mutations are denoted as type-i cells, and Zi(t) specifies the
number of type-i cells at time t. Type-i cells die at rate bi, give birth to one new type-i cell
at rate ai, and give birth to one new type-(i + 1) cell at rate ui+1. In an alternate version,
mutations occur with probability µi+1 during birth events which occur at rate αi. These
two versions are equivalent provided ui+1 = αiµi+1 and ai = αi(1 − µi+1). However, the
relationship between the parameters must be kept in mind when comparing results between
different formulations of the model.

One biologically unrealistic aspect of this model as presented in the literature is that all
type-i cells are assumed to have the same birth and death rates. This assumption describes
situations during tumorigenesis in which the order of mutations is predetermined, i.e. the
genetic changes can only be accumulated in a particular sequence and all other combinations
of mutations lead to lethality. Furthermore, in this interpretation of the model, there cannot
be any variability in phenotype among cells with the same number of mutations. In many
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situations arising in biology, however, there is marked heterogeneity in phenotype even if
genetically, the cells are identical (Elowitz et al., 2002; Becskei et al., 2005; Kaern et al.,
2005; Feinerman et al., 2008). This variability may be driven by stochasticity in gene
expression or in post-transcriptional or post-translational modifications. In this paper, we
modify the branching process model so that mutations alter cell birth rates by a random
amount.

An important consideration for this endeavor is the choice of the mutational fitness
distribution. The exponential distribution has become the preferred candidate in theoretical
studies of the genetics of adaptation. The first theoretical justification of this choice was
given by Gillespie (1983, 1984), who argued that if the number of possible alleles is large
and the current allele is close to the top of the rank ordering in fitness values, then extreme
value theory should provide insight into the distribution of the fitness values of mutations.
For many distributions including the normal, Gamma, and lognormal distributions, the
maximum of n independent draws, when properly scaled, converges to the Gumbel or double
exponential distribution, Λ(x) = exp(−e−x). In the biological literature, it is generally noted
that this class of distributions only excludes exotic distributions like the Cauchy distribution,
which has no moments. However, in reality, it eliminates all distributions with P (X > x) ∼
Cx−α. For distributions in the domain of attraction of the Gumbel distribution, and if
Y1 > Y2 · · · > Yk are the k largest observations in a sample of size n, then there is a sequence
of constants bn so that the spacings Zi = i(Yi−Yi+1)/bn converge to independent exponentials
with mean 1, see e.g., Weissman (1978). Following up on Gillespie’s work, Orr (2003) added
the observation that in this setting, the distribution of the fitness increases due to beneficial
mutations has the same distribution as Z1 independent of the rank i of the wild type cell.

To infer the distribution of fitness effects of newly emerged beneficial mutations, several
experimental studies were performed; for examples, see Imhoff and Schlotterer (2001), San-
juan et al. (2004), and Kassen and Bataillon (2006). The data from these experiments is
generally consistent with an exponential distribution of fitness effects. However, there is an
experimental caveat that cannot be neglected (Rozen et al., 2002): if only those mutations
are considered that reach 100% frequency in the population, then the exponential distribu-
tion is multiplied by the fixation probability. By this operation, a distribution with a mode
at a positive value develops. In a study of a quasi-empirical model of RNA evolution in which
fitness was based on secondary structures, Cowperthwaite et al. (2005) found that fitnesses
of randomly selected genotypes appeared to follow a Gumbel-type distribution. They also
discovered that the fitness distribution of beneficial mutations appeared exponential only
when the vast majority of small-effect mutations were ignored. Furthermore, it was deter-
mined that the distribution of beneficial mutations depends on the fitness of the parental
genotype (Cowperthwaite et al., 2005; MacLean and Buckling, 2009). However, since the
exceptions to this conclusion arise when the fitness of the wild type cell is low, these findings
do not contradict the picture based on extreme value theory.

In contrast to the evidence above, recent work of Rokyta et al. (2008) has shown that
in two sets of beneficial mutations arising in the bacteriophage ID11 and in the phage φ6
– for which the mutations were identified by sequencing – beneficial fitness effects are not
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exponential. Using a statistical method developed by Biesal et al. (2007), they tested the
null hypothesis that the fitness distribution has an exponential tail. They found that the
null hypothesis could be rejected in favor of a distribution with a right truncated tail. Their
data also violated the common assumption that small-effect mutations greatly outnumber
those of large effect, as they were consistent with a uniform distribution of beneficial effects.
A possible explanation for the bounded fitness distribution may be found in the culture con-
ditions utilized in the experiments: they evolved ID11 on E.coli at an elevated temperature
(37o C instead of 33o C). There may be a limited number of mutations that will enable
ID11 to survive in increased temperatures. The latter situation may be similar to scenarios
arising during tumorigenesis, where, in order to develop resistance to a drug or to progress
to a more aggressive stage, the conformation of a particular protein must be changed or
a certain regulatory network must be disrupted. If there is a finite, but large, number of
possible beneficial mutations, then it is convenient to use a continuous distribution as an
approximation.

In this paper, we consider both bounded distributions and unbounded distributions for
the fitness advance and derive asymptotic results for the number of type-k individuals at
time t. We determine the effects of the fitness distribution on the growth kinetics of the
population, and investigate the rates of expansion for both bounded and unbounded fitness
distributions. This model provides a framework to investigate the accumulation of mutations
with random fitness effects.

The remainder of this section is dedicated to statements and discussion of our main
results. Proofs of these results can be found in Sections 2-5.

1.1 Bounded distributions

Let us consider a multi-type branching process in which type-i cells have accumulated i ≥ 0
advantageous mutations. Suppose the initial population consists entirely of type-0 cells that
give birth at rate a0 to new type-0 cells, die at rate b0 < a0, and give birth to new type-1 cells
at rate u1. The parameters a0, b0, and u1 denote the birth rate, death rate, and mutation rate
for type-0 cells. To simplify computations, we will approximate the number of type-0 cells by
Z0(t) = V0e

λ0t, where λ0 = a0−b0 > 0. If the initial cell population Z0(0) = V0 � 1/λ0, then
the branching process giving the number of 0’s is almost deterministic and this approximation
is accurate. When a new type-1 cell is born, we choose x > 0 according to a continuous
probability distribution ν. The new type 1-cell and its descendants then have birth rate
a0 +x, death rate b0, and mutation rate u2. In general, type-k cells with birth rate a mutate
to type-(k + 1) cell at rate uk+1 and when a mutation occurs, the new type-(k + 1) cell and
its descendants have an increased birth rate a+ x where x > 0 is drawn according to ν. We
let Zk(t) denote the total number of type-k cells in the population at time t. When we refer
to the kth generation of mutants, we mean the set of all type-k cells.

We begin by considering situations in which the distribution of the increase in the birth
rate is concentrated on [0, b]. In particular, suppose that ν has density g with support in
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[0, b] and assume that g satisfies:

(∗) g is continuous at b, g(b) > 0, g(x) ≤ G for x ∈ [0, b]

Our first result describes the mean number of first generation mutants at time t, EZ1(t).

Theorem 1. If (∗) holds, then

EZ1(t) ∼
V0u1 g(b)

bt
e(λ0+b)t

where a(t) ∼ b(t) means a(t)/b(t) → 1.

The next result shows that the actual growth rate of type-1 cells is slower than the mean.
Here, and in what follows, we use ⇒ to indicate convergence in distribution.

Theorem 2. If (∗) holds and p = b/λ0, then for θ ≥ 0,

E exp(−θt1+pe−(λ0+b)tZ1(t)) → exp(−V0u1θ
λ0/(λ0+b)c1(λ0, b)), (1.1)

where c1(λ0, b) is an explicit constant whose value will be given in (3.8). In particular, we
have

t1+pe−(λ0+b)tZ1(t) ⇒ V1,

where V1 has Laplace transform given by the righthand side of (1.1).

Theorem 2 is similar to Theorem 3 in Durrett and Moseley (2009) which assumes a deter-
ministic fitness distribution so that all type-1 cells have growth rate λ1 = λ0 + b. There,
the asymptotic growth rate of the first generation is exp(λ1t). In contrast, the continuous
fitness distribution we consider here has the effect of slowing down the growth rate of the
first generation by the polynomial factor t1+p. To explain this difference, we note that the
calculation of the mean given in Section 3 shows that the dominant contribution to Z1(t)
comes from growth rates x = b−O(1/t). However, mutations with this growth rate are un-
likely until the number of type-0 cells is O(t), i.e., roughly at time r1 = (1/λ0) log t. Thus at
time t, the number of type-1 cells will be roughly exp((λ0 + b)(t− r1)) = exp((λ0 + b)t)/t1+p.

To prove Theorem 2, we look at mutations as a point process in [0, t] × [0, b]: there is
a point at (s, x) if there was a mutant with birth rate a0 + x at time s. This allows us to
derive the following explicit expression for the Laplace transform of Z1(t):

E(e−θZ1(t)) = exp

(
−u1

∫ b

0

dx g(x)

∫ t

0

ds V0e
λ0s(1− φ̃x,t−s(θ))

)
where φ̃x,r(θ) = Ee−θZ̃x

r and Z̃x
r is a continuous-time branching process with birth rate a0+x,

death rate b0, and initial population Z̃x
0 = 1. In Figure 2, we compare the exact Laplace

transform of t1+p exp(−(λ0+b)t)Z1(t) with the results of simulations and the limiting Laplace
transform from Theorem 2, illustrating the convergence as t→∞.
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Notice that the Laplace transform of V1 has the form exp(C θα) where α = λ0/(λ0 +
b) which implies that P (V1 > v) ∼ v−α as v → ∞ (see, for example, the argument in
Section 3 of Durrett and Moseley (2009)). To gain some insight into how this limit comes
about, we give a second proof of the convergence that tells us the limit is the sum of points
in a nonhomogeneous Poisson process. Each point in the limiting process represents the
contribution of a different mutant lineage to Z1(t).

Theorem 3. V1 = limt→∞ t1+pe−(λ0+b)tZ1(t) is the sum of the points of a Poisson process
on (0,∞) with mean measure µ(z,∞) = A1(λ0, b)u1V0z

−λ0/(λ0+b).

A similar result can be obtained for deterministic fitness distributions, see the Corollary to
Theorem 3 in Durrett and Moseley (2009). However, the new result shows that the point
process limit is not an artifact of assuming that all first generation mutants have the same
growth rate. Even when the fitness advances are random, different mutant lines contribute
to the limit. This result is consistent with observations of Maley et al. (2006) and Shah et
al. (2009) that tumors contain cells with different mutational haplotypes. Theorem 3 also
gives quantitative predictions about the relative contribution of different mutations to the
total population. These implications will be explored further in a follow-up paper currently
in progress.

With the behavior of the first generation analyzed, we are ready to proceed to the study
of further generations. The computation of the mean is straightforward.

Theorem 4. If (∗) holds, then

EZk(t) ∼
V0 · u1 · · ·uk · g(b)k

tkbkk!
e(λ0+kb)t

As in the k = 1 case, the mean involves a polynomial correction to the exponential growth
and again, does not give the correct growth rate for the number of type-k cells. To state the
correct limit theorem describing the growth rate of Zk(t), we will define pk and u1,k by

k + pk =
k−1∑
j=0

λ0 + kb

λ0 + jb
and u1,k =

k∏
j=1

u
λ0/(λ0+(j−1)b)
j

for all k ≥ 1.

Theorem 5. If (∗) holds, then for θ ≥ 0

E exp(−θtk+pke−(λ0+kb)tZk(t)) → exp(−ck(λ0, b)V0u1,kθ
λ0/(λ0+kb))

tk+pke−(λ0+kb)tZk(t) ⇒ Vk

We prove this result by looking at the mutations to type-1 individuals as a three di-
mensional Poisson point process: there is a point at (s, x, v) if there was a type-1 mutant
with birth rate a0 + x at time s and the number of its type-1 descendants at time t, Zs,x

1 (t),
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has e−(λ0+x)(t−s)Zs,x
1 (t) → v with v > 0. To study Zk(t) we will let Zs,x,v

k (t) be the type-k
descendants at time t of the 1 mutant at (s, x, v). Zs,x,v

k is the same as a process in which
the initial type (here type-1 cells) behaves like ve(λ0+x)(t−s) instead of Z0(t) = V0e

λ0t, so the
result can be proved by induction.

To explain the form of the result we consider the case k = 2. Breaking things down
according to the times and the sizes of the mutational changes, we have

EZ2(t) =

∫ b

0

dx1 g(x1)

∫ b

0

dx2 g(x2)

∫ t

0

ds1

∫ t

s1

ds2

V0e
λ0s1u1e

(λ0+x1)(s2−s1)u2e
(λ0+x1+x2)(t−s2)

As in the result for Z1(t) the dominant contribution comes from x1, x2 = b−O(1/t) and as
in the discussion preceding the statement of Theorem 2, the time of the first mutation to
b− O(1/t) is ≈ r1 = (log t)/λ0. The descendants of this mutation grow at exponential rate
λ0 +b−O(1/t), so the time of the first mutation to 2b−O(1/t) is ≈ r2 = r1 +(log t)/(λ0 +b).
Noticing that

exp((λ0 + 2b)(t− r1 − r2)) = exp((λ0 + 2b)t)t−(λ0+2b)/λ0−(λ0+2b)/(λ0+b)

tells us what to guess for the polynomial term: t−(2+p2) where

2 + p2 =
λ0 + 2b

λ0

+
λ0 + 2b

λ0 + b

In Figure 4, we compare the asymptotic Laplace transform from Theorem 5 with the
results of simulations in the case k = 2. To explain the slow convergence to the limit, we
note that if we take account of the mutation rates u1, u2 in the heuristic from the previous
paragraph (which becomes important when u1, u2 are small), then the first time we see a
type-1 cell with growth rate b − O(1/t) will not occur until time λ−1

0 log(t/u1) when the
type-0 cells reach O(t/u1) and so the first type-2 cell with growth rate 2b− O(1/t) will not
be born until time r = λ−1

0 log(t/u1) + (λ0 + b)−1 log(t/u2) when the descendants of the
type-1 cells with growth rate b−O(1/t) reach size O(t/u2). When u1 = u2 = 10−3, λ0 = .1,
and b = .01, r ≈ 223. The mutations created at this point will need some time to grow and
become dominant in the population. It would be interesting to compare simulations at time
300, but we have not been able to do this due to the large number of different growth rates
in generation 1.

1.2 Unbounded distributions

Let us now consider situations in which the fitness distribution is unbounded. Suppose that
the fitness increase follows a generalized Frechet distribution,

P (X > x) = xβe−γxα

(1.2)
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for some positive γ, α and any β ∈ R. There is a two-fold purpose for considering such
distributions. First, if i.i.d. random variables ζ1, . . . , ζn have a power law tail, i.e. P (ζi >
y) ∼ cy−α as y →∞, then their maxima and the spacings between order statistics converge to
a limit of the form (1.2) with β = 0. Second, this choice allows us to consider the gamma(β+
1, γ) distribution which has α = 1 and the normal distribution, which asymptotically has
this form with α = 2, β = −1.

To analyze this situation, we will again take a Poisson process viewpoint and look at
the contribution from a mutation at time s with increased growth rate x. A mutation that
increases the growth rate by x at time s will, if it does not die out, grow to e(λ0+x)(t−s)ζ at
time t where ζ has an exponential distribution. The growth rate (λ0 + x)(t− s) ≥ z when

x ≥ z

t− s
− λ0.

Therefore,

µ(z,∞) ≡ E(# mutations with (λ0 + x)(t− s) ≥ z)

= V0u1

∫ t

0

(
z

t− s
− λ0

)β

eλ0s exp

(
−γ
(

z

t− s
− λ0

)α)
ds

= V0u1

∫ t

0

(
z

t− s
− λ0

)β

exp(φ(s, z)) ds

where

φ(s, z) = λ0s− γ

(
z

t− s
− λ0

)α

. (1.3)

The size of this integral can be found by maximizing the exponent φ over s for fixed z. Since

∂φ

∂s
(s, z) = λ0 − αγ

(
z

t− s
− λ0

)α−1
z

(t− s)2
(1.4)

and

∂2φ

∂s2
(s, z) = −α(α− 1)γ

(
z

t− s
− λ0

)α−2
z2

(t− s)4
− αγ

(
z

t− s
− λ0

)α−1
2z

(t− s)3
(1.5)

we can see that ∂2φ/∂s2(s, z) < 0 when αz > λ0(t− s) so that for all z in this range, φ(s, z)
is concave as a function of s and achieves its maximum at a unique value sz.

When α = 1, it is easy to set (1.4) to 0 and solve for sz. This in turn leads to an
asymptotic formula for µ(z,∞) and allows us to derive the following limit theorem for Z1(t).

Theorem 6. Suppose α = 1 and let c0 = λ0/4γ. Then t−2 logZ1(t) → c0 and

1

t

[
logZ1(t)− c0t

2

(
1 +

(2β + 1) log t

λ0t

)]
⇒ y∗

where y∗ is the rightmost point in the point process with intensity given by

(2c0)
β(π/λ0)

1/2V0u1 exp(γλ0 − λ0y/2c0). (1.6)
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When α 6= 1, solving for sz becomes more difficult, but we are still able to prove the
following limit theorem for Z1(t).

Theorem 7. Suppose α > 1 is an integer. There exist explicitly calculable constants ck =
ck(α, γ), 0 ≤ k < α, and κ = κ(β, α, γ) so that t−(α+1)/α logZ1(t) → c0 and

1

t1/α

[
logZ1(t)− c0t

(α+1)/α

(
1 +

∑
1≤k<α

ckt
−k/α + κ

log t

t

)]
⇒ y∗

where y∗ is the rightmost particle in a point process with explicitly calculable intensity.

The complicated form of the result is due to the fact that the fluctuations are only of order
t1/α, so we have to be very precise in locating the maximum. The explicit formulas for the
constants and the intensity of the point process are given in (5.12) and (5.13). With more
work this result could be proved for a general α > 1, but we have not tried to do this or
prove Conjecture 1 below because the super-exponential growth rates in the unbounded case
are too fast to be realistic.

We conclude this section with two comments. First, the proof of Theorem 7 shows that in
contrast to the bounded case, in the unbounded case, most type-1 individuals are descendants
of a single mutant. Second, the proof shows that the distribution of the mutant with the
largest growth rate is born at time s ∼ t/(α+1) (see Remark 1 at the end of Section 5) and
has growth rate z = O(t(α+1)/α). The intuition behind this is that since the type-0 cells have
growth rate eλ0s and the distribution of the increase in fitness has tail ≈ e−γxα

, the largest
advance x attained by time t should occur when s = O(t) and satisfy

eCλ0te−γxα

= O(1) or x = O(t1/α).

The growth rate of its family is then (λ0 + x)(t− s) = O(t(α+1)/α).
Since the type-1 cells grow at exponential rate c1t

(α+1)/α, if we apply this same reasoning
to type-2 mutants, then the largest additional fitness advance x attained by type-2 individuals
should satisfy

ec1t(α+1)/α

e−γxα

= O(1) or x = O(t1/α+1/α2

).

and the growth rate of its family will be O(t1+1/α+1/α2
). Extrapolating from the first two

generations, we make the following

Conjecture 1. Let q(k) =
∑k

j=0 α
−j. As t→∞,

1

tq(k)
logZk(t) → ck

Note that in the case of the exponential distribution, q(k) = k + 1.
The rest of the paper is organized as follows. Sections 2-5 are devoted to proofs of our

main results. After some preliminary notation and definitions in Section 2, Theorems 1-3
are proved in Section 3, Theorems 4-5 in Section 4, and Theorems 6-7 in Section 5. We
conclude with a discussion of our results in Section 6.
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2 Preliminaries

This section contains some preliminary notation and definitions which we will need for the
proofs of our main results. We denote by N (t) the points in a two dimensional Poisson
process on [0, t]× [0,∞) with mean measure

V0e
λ0sdsν(dx)

where in Sections 3-4, ν(dx) = g(x)dx with g satisfying (∗) and in Section 5, ν has tail
ν(x,∞) = xβe−γxα

. In other words, we have a point at (s, x) if there was a mutant with
birth rate a0+x at time s. Define a collection of independent birth/death branching processes
Zs,x

1 (t) indexed by (s, x) ∈ N (t) with Zs,x
1 (s) = 1, individual birth rate a0 + x, and death

rate b. Zs,x
1 (t) is the contribution of the mutation at (s, x) and

Z1(t) =
∑

(s,x)∈N (t)

Zs,x
1 (t).

It is well known that

e−(λ0+x)(t−s)Zs,x
1 (t) → b

a0 + x
δ0 +

λ0 + x

a0 + x
ζ

where ζ ∼ exp((λ0 + x)/(a0 + x)) (see, for example, equation (1) in Durrett and Moseley
(2009)). In several results, we shall make use of the three dimensional Poisson process M(t)
on [0, t]× [0,∞)× (0,∞) with intensity

V0e
λ0sν(dx)

(
λ0 + x

a0 + x

)2

e−v(λ0+x)/(a0+x)dv.

In words, (s, x, v) ∈ M(t) if there was a mutant with birth rate a0 + x at time s and the
number of its descendants at time t, Zs,x

1 (t), has Zs,x
1 (t) ∼ ve(λ0+x)(t−s). It is also convenient

to define the mapping z : [0,∞) × [0, t] → [0,∞) which maps a point (s, x) ∈ N (t) to the
growth rate of the induced branching process if it survives: z(s, x) = (λ0 + x)(t− s) and let

µ(A) = E|{(s, x) ∈ N (t) : z(s, x) ∈ A}|

for A ⊂ [0,∞).
We shall use C do denote a generic constant whose value may change from line to line.

We write f(t) ∼ g(t) if f(t)/g(t) → 1 as t → ∞ and f(t) = o(g(t)) is f(t)/g(t) → 0.
f(t) � (�)g(t) means that f(t)/g(t) → ∞ ( resp. 0) as t → ∞ and f(t) = O(g(t)) means
|f(t)| ≤ Cg(t) for all t > 0. We also shall use the notation f(t) ' g(t) if f(t) = g(t) + o(1)
as t→∞.
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3 Bounded distributions, Z1

In this section, we prove Theorems 1 - 3.

Proof of Theorem 1. Mutations to 1’s occur at rate V0e
λ0s so

EZ1(t) = u1

∫ t

0

∫ b

0

e(t−s)(λ0+x)g(x) dxV0e
λ0s ds

= u1V0e
λ0t

∫ b

0

dx g(x)

∫ t

0

e(t−s)x ds (3.1)

= u1V0e
λ0t

∫ b

0

dx g(x)
etx − 1

x
.

We begin by showing that the contribution from x ∈ [0, b − (1 + k) log t)/t] can be ignored
for any k ∈ [0,∞). The Mean Value theorem implies that

etx − 1

x
≤ tetx (3.2)

Using this and the fact that
∫ d

c
tetxdx ≤ etd for any c < d, we can see that

tke−bt

∫ b−(1+k)(log t)/t

0

dx g(x)
etx − 1

x
≤ Gtke−(1+k) log t → 0 (3.3)

To handle the other piece of the integral, we take k = 1 and note that∫ b

b−(2 log t)/t

dx g(x)
etx − 1

x
∼ g(b)

b
ebt

∫ b

b−2 log t/t

et(x−b) dx

After changing variables y = (b− x)t, dx = −dy/t, the last integral

=
1

t

∫ 2 log t

0

e−y dy ∼ 1/t

which proves the result.
The above proof tells us that the dominant contribution to the 1’s come from mutations

with fitness increase x ≥ bt = b − 2 log t/t. To describe the times at which the dominant
contributions occur, let S(t) = (2/b) log log t. Then the contribution to the mean from
x ∈ [bt, b] and s ≥ S(t) is by (3.1)

≤ Gu1V0e
(λ0+b)t 2(log t)

t

∫ ∞

S(t)

e−sbt ds

≤ Gu1V0e
(λ0+b)t 2(log t)

tbt
e−btS(t)

Since btS(t) ≥ 2 log log t, this quantity is o(t−1e(λ0+b)t). In words, the dominant contribution
to the mean comes from points close to (0, b) or more precisely from [0, (2/b) log log t]× [b−
(2 log t)/t, b].

12



Proof of Theorem 2. It suffices to prove (1.1). The computation in (3.3) with k = 2 + p
implies that the contribution from mutations with x ≤ bt = b − (3 + p)(log t)/t can be
ignored. Therefore, we have

E exp(−θZ1(t)) ' E (exp(−θZ1(t));At)

where At = {(s, x) ∈ N (t) : x > bt}. By Lemma 2 of Durrett and Moseley (2009), we have

E(e−θZ1(t);At) = exp

(
−u1

∫ b

bt

dx g(x)

∫ t

0

ds V0e
λ0s(1− φ̃x,t−s(θ))

)
where φ̃x,r(θ) = Ee−θZ̃x

r and Z̃x
r is a birth/death branching process with birth rate a0 + x,

death rate b0, and initial population Z̃x
0 = 1. Using

e−(λ0+b)t = e−(λ0+x)(t−s)e−(λ0+x)se−(b−x)t (3.4)

we have

E
(
exp(−θZ1(t)e

−t(λ0+b)t1+p);At

)
= exp

(
−u1V0

∫ b

bt

dx g(x)

∫ t

0

ds eλ0s

{1− φ̃x,t−s(θe
−(λ0+x)(t−s)e−(λ0+x)se−(b−x)tt1+p)}

)
Changing variables s = rx + r where rx = 1

λ0+x
log(t1+p) on the inside integral, y = (b− x)t,

dy/t = −dx on the outside, and continuing to write x as short hand for b− y/t, the above

= exp

(
− u1V0

∫ (3+p) log t

0

dy

t
g(x)t(1+p)λ0/(λ0+x)∫ t−rx

−rx

dr eλ0r{1− φ̃x,t−r−rx(θe
−(λ0+x)(t−r−rx)e−(λ0+x)re−y)}

)
(3.5)

Formula (20) in Durrett and Moseley (2009) implies that as u→∞,

1− φ̃x,u(θe
−(λ0+x)u) → λ0 + x

a0 + x
· θ

θ + λ0+x
a0+x

(3.6)

and therefore, letting t→∞ and using (1+p)λ0/(λ0 +b) = 1, we can see that the expression
in (3.5)

→ exp

(
−u1V0g(b)

∫ ∞

0

dy
λ0 + b

a0 + b

∫ ∞

−∞
dr eλ0r θe−(λ0+b)re−y

θe−(λ0+b)re−y + λ0+b
a0+b

)
Changing variables r = 1

λ0+b
{q + log[θe−y(a0 + b)/(λ0 + b)]}, dr = dq/(λ0 + b) gives

= exp

(
−u1V0g(b)θ

λ0/(λ0+b)

(
λ0 + b

a0 + b

)b/(λ0+b) ∫ ∞

0

dy e−yλ0/(λ0+b)∫ ∞

−∞

dq

λ0 + b
eqλ0/(λ0+b) e−q

e−q + 1

)
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To simplify the first integral we note that∫ ∞

0

dy e−yλ0/(λ0+b) =
λ0 + b

λ0

For the second integral, we prove

Lemma 1. If 0 < c < 1 ∫ ∞

−∞
dq eqc e−q

e−q + 1
= Γ(c)Γ(1− c) (3.7)

Proof. We can rewrite the integral as∫ ∞

−∞
dq eqc

∫ ∞

0

dx e−xe−q exp(−e−qx)

so that after interchanging the order of integration and changing variables w = e−qx, dw =
−dq e−qx so that w/x = e−q, dw/x = −dq e−q, we have

=

∫ ∞

0

dx

∫ ∞

0

dw

x
(w/x)−ce−xe−w =

∫ ∞

0

dx x−1+ce−x

∫ ∞

0

dww−ce−w

which is = Γ(c)Γ(1− c).

Taking c = λ0/(λ0 + b) and letting

c1(λ0, b) = g(b)
λ0 + b

λ0

· 1

λ0 + b

(
a0 + b

λ0 + b

)−b/(λ0+b)

Γ(λ0/(λ0 + b))Γ(1− λ0/(λ0 + b)) (3.8)

we have proved Theorem 2.

Recall that we have assumed Z0(t) = V0e
λ0t is deterministic. This assumption can be

relaxed to obtain the following generalization of Theorem 2 which is used in Section 4.

Lemma 2. Suppose that Z0(t) is a stochastic process with Z0(t) ∼ eλ0tV0 for some constant
V0 as t→∞. Then the conclusions of Theorem 2 remain valid.

To see why this is true, we can use a variant of Lemma 2 from Durrett and Moseley
(2009) to conclude that

E
(
e−θZ1(t)|F0

t

)
= exp

(
−u1

∫ b

0

dx g(x)

∫ t

0

dsZ0(s)
(
1− φ̃x,t−s(θ)

))
,

where F0
t is the σ-field generated by Z0(s) for s ≤ t. Therefore,

E
(
e−θZ1(t)

)
= E exp

(
−u1

∫ b

0

dx g(x)

∫ t

0

dsZ0(s)
(
1− φ̃x,t−s(θ)

))
,
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Given ε > 0, we can choose tε > 0 so that∣∣∣∣ Z0(t)

V0 exp(λ0t)
− 1

∣∣∣∣ < ε

for all t > tε. Since the contribution from t ≤ tε will not affect the limit and the term inside
the expectation is bounded, the rest of the proof can be completed in the same manner as
the proof of Theorem 2.

We conclude this section with the

Proof of Theorem 3. Let M(t) be the three dimensional Poisson process defined in Sec-
tion 2. Using (3.4), we see that in order for the contribution of Zs,x

1 (t) to the limit of
t1+pe−(λ0+b)tZ1(t) to be > z we need

v > zt−(1+p)e(b−x)te(λ0+x)s

Therefore, the expected number of mutations that contribute more than z to the limit is

u1V0

∫ b

0

dx g(x)

∫ t

0

ds eλ0s λ0 + x

a0 + x
exp

(
−λ0 + x

a0 + x
· zt−(1+p)e(b−x)te(λ0+x)s

)
In order to turn the big exponential into e−r we change variables:

s =
1

λ0 + x
log

(
r

zt−(1+p)e(b−x)t λ0+x
a0+x

)

ds = dr/r(λ0 + x) to get

u1V0

∫ b

0

dx g(x)z−λ0/(λ0+x)

(
λ0 + x

a0 + x

)x/(λ0+x)

· t(1+p)λ0/(λ0+x)

e−(b−x)tλ0/(λ0+x)

∫ β(x,t)

α(x,t)

dr

λ0 + x
r−x/(λ0+x)e−r

where α(x, t) = zt−(1+p)e(b−x)t(λ0 + x)/(a0 + x) and β(x, t) = α(x, t)e(λ0+x)t. As in the
previous proof, the main contribution comes from x ∈ [bt, b] so when we change variables
y = (b − x)t, dx = −dy/t, replace the x’s by b’s and use 1 = (1 + p)λ0/(λ0 + b) we convert
the above into

g(b)z−λ0/(λ0+b) u1V0

λ0 + b

(
λ0 + b

a0 + b

)b/(λ0+b) ∫ ∞

0

dy e−yλ0/(λ0+b)

∫ ∞

0

r−b/(λ0+b)e−r dr

Performing the integrals gives the result with

A1(λ0, b) = g(b)
1

λ0

(
λ0 + b

a0 + b

)b/(λ0+b)

Γ(λ0/(λ0 + b))

15



4 Bounded distributions, Zk

We now move on to the proofs of Theorems 4 and 5. Recall that we have defined pk by the
relation

k + pk =
k−1∑
j=0

λ0 + kb

λ0 + jb
.

Proof of Theorem 4. Breaking things down according to the times and the sizes of the
mutational changes we have

EZk(t) =

∫ b

0

dx1 g(x1) · · ·
∫ b

0

dxk g(xk)

∫ t

0

ds1 · · ·
∫ t

sk−1

dsk

V0e
λ0s1u1e

(λ0+x1)(s2−s1) · · ·uke
(λ0+x1+···+xk)(t−sk)

=

∫ b

0

dx1 g(x1) · · ·
∫ b

0

dxk g(xk)

∫ t

0

ds1 · · ·
∫ t

sk−1

dsk

V0u1 · · ·uke
λ0tex1(t−s1) · · · exk(t−sk). (4.1)

The first step is to show

Lemma 3. Let bt = b− (2k+1)(log t)/t. The contribution to EZk(t) from points (x1, . . . xk)
with some xi ≤ bt is o(t−2ke(λ0+kb)t).

Proof. (3.2) implies that∫ t

sj−1

dsj e
(xj+···+xk)(t−sj) =

e(xj+···+xk)(t−sj−1) − 1

xj + · · ·+ xk

≤ te(xj+···+xk)(t−sj−1).

Applying this and working backwards in the above expression for EZk(t), we get

EZk(t) ≤ tkV0u1 · · ·uk

∫ b

0

dx1 g(x1) · · ·
∫ b

0

dxk g(xk)e
(λ0+x1+···+xk)t

and the desired result follows.

With the Lemma established, when we work backwards∫ t

sj−1

dsj e
(xj+···+xk)(t−sj) =

e(xj+···+xk)(t−sj−1) − 1

xj + · · ·+ xk

∼ e(xj+···+xk)(t−sj−1)

(k − j + 1)b

From this and induction, we see that the contribution from points (x1, . . . xk) with xi ∈ [bt, b]
for all i is

∼ V0u1 · · ·uk

bkk!
g(b)k

∫ b

bt

dx1 · · ·
∫ b

bt

dxk e
(λ0+x1+···+xk)t
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Changing variables yi = t(b− xi) the above

∼ V0u1 · · ·ukg(b)
k

bktkk!
e(λ0+kb)t

which proves the desired result.
In the proof of the last result, we showed that the dominant contribution comes from

mutations with xi > bt. To prove our limit theorem we will also need a result regarding the
times at which the mutations to the dominant types occur.

Lemma 4. Let αk = 2k+1
kb

. The contribution to EZk(t) from points with s1 ≥ αk log t is
o(t−2ke(λ0+kb)t).

Proof. Replace the xi’s in the exponents by b’s, we can see from (4.1) that the expected
contribution from points with s1 ≥ αk log t is

≤ bkGkV0u1 · · ·uk

∫ t

αk log t

ds1

∫ t

s1

ds2 · · ·
∫ t

sk−1

dske
λ0teb(t−s1) · · · eb(t−sk)

≤ Ceλ0t

∫ t

αk log t

ekb(t−s1)ds1

≤ Ce(λ0+kb)tt−αkkb

and the desired result follows.

Recall that

k + pk =
k−1∑
j=0

λ0 + kb

λ0 + jb
.

For the induction used in the next proof, we will also need the corresponding quantity with
λ0 replaced by λ0 + x and k by k − 1

k − 1 + pk−1(x) =
k−2∑
j=0

λ0 + x+ (k − 1)b

λ0 + x+ jb

which means

pk−1(x) =
k−2∑
j=0

(k − 1− j)b

λ0 + x+ jb

The limit will depend on the mutation rates through

u1,k =
k∏

j=1

u
λ0/(λ0+(j−1)b)
j
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Again we will need the corresponding quantity with k − 1 terms

u2,k(x) =
k−1∏
j=1

u
(λ0+x)/(λ0+x+(j−1)b)
j+1 .

We shall write u2,k = u2,k(b) and note that

u1,k = u1u
λ0/(λ0+b)
2,k (4.2)

Proof of Theorem 5. We shall prove the result under the more general assumption that
Z0(t) ∼ V0e

λ0t for some constant V0. The result then holds for k = 1 by Lemma 2. We shall
prove the general result by induction on k. To this end, suppose the result holds for k − 1.
Let Zs,x,v

k (t) be the type-k descendants at time t of the 1 mutant at (s, x, v) ∈ M(t). Since
Zs,x

1 (t) ∼ ve(λ0+x)(t−s) compared to Z0(t) ∼ V0e
λ0t, it follows from the induction hypothesis

that

E exp
(
−θ(t− s)k−1+pk−1(x)e−(λ0+x+(k−1)b)(t−s)Zs,x,v

k (t)
)

→ exp
(
−ck−1(λ0 + x, b)vu2,k(x)θ

(λ0+x)/(λ0+x+(k−1)b)
)

(4.3)

Integrating over the contributions from the three-dimensional point process we have

E exp(−θZk(t)) = exp

(
−
∫ b

0

dx g(x)

∫ t

0

ds u1V0e
λ0s

∫ ∞

0

dv

(
λ0 + x

a0 + x

)2

exp

(
−λ0 + x

a0 + x
v

)
(1− φk−1

x,v,t−s(θ))

)
where φk−1

x,v,t−s(θ) = E exp(−θZ0,x,v
k (t− s)). To prove the desired result we need to replace θ

by θtk+pke−(λ0+kb)t. Doing this with (4.3) in mind we have

E exp(−θtk+pke−(λ0+kb)tZk(t))

= exp

(
−
∫ b

0

dx g(x)

∫ t

0

ds u1V0e
λ0s

∫ ∞

0

dv

(
λ0 + x

a0 + x

)2

exp

(
−λ0 + x

a0 + x
v

)
{
1− φk−1

x,v,t−s(θt
k+pke−(λ0+x+(k−1)b)(t−s)e−(b−x)te−(λ0+x+b(k−1))s)

})
By Lemmas 3 and 4, we can restrict attention to x ∈ [bt, b] and s ≤ αk log t. The first
restriction implies that all of the x’s except the one in (b− x) can be set equal to b and the
second that we can replace t by t− s. Since (k+ pk)− (k− 1 + pk−1(b)) = (λ0 + kb)/λ0, the
term in the exponential is

= −
∫ b

bt

dx g(x)

∫ αk log t

0

ds u1V0e
λ0s

∫ ∞

0

dv

(
λ0 + b

a0 + b

)2

exp

(
−λ0 + b

a0 + b
v

)
(
1− φx,v,t−s(θ(t− s)k−1+pk−1(b)e−(λ0+kb)(t−s)t(λ0+kb)/λ0e−(b−x)te−(λ0+kb)s)

)
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Changing variables s = R(t) + r where R(t) = (1/λ0)(log t), and y = (b − x)t, dy = −tdx
the above becomes

= −g(b)
∫ (2k+1) log t

0

dy

∫ ∞

0

dv

(
λ0 + b

a0 + b

)2

exp

(
−λ0 + b

a0 + b
v

)
∫ αk log t−R(t)

−R(t)

dr u1V0e
λ0r
(
1− φk−1

x,v,t−s(θ(t− s)k−1+pk−1(b)e−(λ0+kb)(t−s)e−ye−(λ0+kb)r)
)

Using (4.3) now we have that the 1− φ term converges to

1− exp
(
−ck−1(λ0 + b, b)vu2,k[θe

−y](λ0+b)/(λ0+kb)e−(λ0+b)r
)

To simplify the exponential we let

r =
1

λ0 + b
(q +Q(v, y)) where Q(v, y) = log

{
ck−1(λ0 + b, b)vu2,k[θe

−y](λ0+b)/(λ0+kb)
}

dr = dq/(λ0 + b). Plugging this into eλ0r results in

eqλ0/(λ0+b)(ck−1(λ0 + b, b)vu2,k)
λ0/(λ0+b)θλ0/(λ0+kb)e−yλ0/(λ0+kb)

so the exponential converges to

−g(b)ck−1(λ0 + b, b)λ0/(λ0+b)

λ0 + b
V0u1u

λ0/(λ0+b)
2,k θλ0/(λ0+kb)∫ ∞

0

dv

(
λ0 + b

a0 + b

)2

vλ0/(λ0+b) exp

(
−λ0 + b

a0 + b
v

)
∫ ∞

0

dy e−yλ0/(λ0+kb)

∫ ∞

−∞

dq

λ0 + b
eqλ0/(λ0+b)(1− exp(−e−q))

To clean this up, we note that letting w = v(λ0 + b)/(a0 + b), dw = dv(λ0 + b)/(a0 + b)∫ ∞

0

dv

(
λ0 + b

a0 + b

)2

vλ0/(λ0+b) exp

(
−λ0 + b

a0 + b
v

)
=

(
a0 + b

λ0 + b

)−1+λ0/(λ0+b)

Γ(1 + λ0/(λ0 + b)) (4.4)

The second integral is easy: ∫ ∞

0

dy e−yλ0/(λ0+kb) =
λ0 + kb

λ0

(4.5)

The third one looks weird but when you put x = e−q, dx = −e−q dq, or dq = −dx/x it is

=

∫ ∞

0

dx x−1−λ0/(λ0+b)(1− e−x) dx
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then integrating by parts f(x) = 1 − e−x, g′(x) = x−1−λ0/(λ0+b), f ′(x) = e−x, g(x) =
x−λ0/(λ0+b)(λ0 + b)/λ0 turns it into

λ0 + b

λ0

Γ(1− λ0/(λ0 + b)) (4.6)

Putting this all together and using (4.2), we have

ck−1(λ0 + b, b)λ0/(λ0+b) · g(b)λ0 + kb

λ0

· V0u1,kθ
λ0/(λ0+kb)

· 1

λ0

(
a0 + b

λ0 + b

)−1+λ0/(λ0+b)

Γ(1 + λ0/(λ0 + b))Γ(1− λ0/(λ0 + b))

Setting ck(λ0, b) equal to the quantity in the last display divided by V0u1,kθ
λ0/(λ0+kb) we have

proved the result.

To work out an explicit formula for the constant and to compare with Durrett and
Moseley (2009), it is useful to let λj = λ0 + jb, aj = a0 + jb and

ch,j =
1

λj−1

(
aj

λj

)−1+λj−1/λj

Γ(1 + λj−1/λj)Γ(1− λj−1/λj)

From this we see that

ck(λ0, b) =ck−1(λ1, b)
λ0/λ1g(b)

λk

λ0

ch,1

=ck−2(λ2, b)
λ0/λ2 ·

(
g(b)

λk−1

λ0

ch,2

)λ0/λ1

· g(b)λk

λ0

ch,1

and hence

ck(λ0, b) =
k∏

j=1

(
g(b)

λk−j+1

λ0

ch,j

)λ0/λj−1

In Durrett and Moseley (2009) if we let Fk−1 be the σ-field generated by Zj(t) for j ≤ k
and all t ≥ 0 then

E(e−θVk |Fk−1) = exp(−ukVk−1ch,kθ
λk−1/λk)

Iterating we have

E(e−θVk |Fk−2) = E(exp(−ukVk−1ch,kθ
λk−1/λk)|Fk−2)

= exp
(
−uk−1u

λk−2/λk−1

k Vk−2ch,k−1c
λk−2/λk−1

h,k θλk−2/λk

)
and hence

E(e−θVk |V0) = exp(−cθ,kV0u1,kθ
λ0/λk)

where cθ,k =
∏k

j=1 c
λ0/λj−1

h,j .
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5 Proofs for unbounded distributions

In this Section, we prove Theorem 7. The first step is to show that unlike in the case of
bounded mutational advances, for unbounded distributions, the main contribution to the
limit is given by the descendants of a single mutations. The largest growth rate will come
from z = O(t(α+1)/α) so the next result is enough. Recall that the mean number of mutations
with growth rate larger than z has

µ(z,∞) = V0u1

∫ t

0

(
z

t− s
− λ0

)β

eλ0s exp

(
−γ
(

z

t− s
− λ0

)α)
ds

= V0u1

∫ t

0

(
z

t− s
− λ0

)β

exp(φ(s, z)) ds

where φ is as in (1.3).

Lemma 5. Let z̄ > λ0t. Then

E

 ∑
(s,x):z(s,x)≤z̄

Zs,x
1 (t)

 ≤ CV0u1z̄e
λ0t+z̄

as t→∞.

Proof. The expected number of individuals produced by mutations with growth rates ≤ z̄ is

V0u1

∫ t

0

∫ z̄
t−s

−λ0

0

eλ0s · yβe−γyα · ez(s,y) dy ds.

Changing variables y 7→ u = z(s, y), that is y = u/(t − s) − λ0, dy = du/(t − s), and using
Fubini’s theorem to switch the order of integration, we can see that the above is

≤ V0u1e
λ0t+z̄

∫ z̄

0

∫ t

0

(u/(t− s)− λ0)
β exp

(
−γ
(

u

t− s
− λ0

)α)
ds

(t− s)
du. (5.1)

But then if we change variables s 7→ r = u/(t− s)− λ0, dr = uds/(t− s)2, we can see that
the inner integral is

≤
∫ ∞

−λ0

rβ

r + λ0

e−γrα

dr ≤ C

yielding the desired bound.

To motivate the proof of the general result, we begin with the case when α = 1.

Proof of Theorme 6. Since

Z1(t) =
∑

(s,x)∈N (t)

Zs,x
1 (t) =

∑
(s,x):z(s,x)≤z

Zs,x
1 (t) +

∑
(s,x):z(s,x)>z

Zs,x
1 (t)
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for any z > 0, we have

1

t
logZ1(t) ∼

1

t

log

 ∑
(s,x):z(s,x)≤z

Zs,x
1 (t)

 ∨ log

 ∑
(s,x):z(s,x)>z

Zs,x
1 (t)


as t → ∞. Lemma 5 tells us that if there is a mutation with growth rate z = O(t2), then
the contribution from mutations with growth rates smaller than z − ε can be ignored so it
suffices to describe the distribution of the largest growth rates. We will show that

µ(z,∞) →

4cβ0 (π/λ0)
1/2V0u1 exp(γλ0 − 2λ0x/2c0) if z = c0t

2
(
1 + (2β+1) log t

λ0t
+ x

c0t

)
0 if z � c0t

2
(
1 + (2β+1) log t

λ0t

)
(5.2)

so that the largest growth rate is O(t2) and comes from the rightmost particle in the point
process with intensity given by (1.6).

To prove (5.2), we first need to locate the maximum of φ. Let z > λ0t so that there exists
a unique maximum sz. Solving φs(s, z) = 0 and using the expression for φs in (1.4) yields

sz = t− a0z
1/2

where a0 = (γ/λ0)
1/2 = (4c0)

−1/2 which leads to the expression

φ(sz, z) = λ0t− λ0(t− sz)− γ

(
z

t− s
− λ0

)
= λ0t− λ0a0z

1/2 − γz1/2/a0 + γλ0

= λ0(t− 2a0z
1/2) + γλ0. (5.3)

If we take

zx = c0t
2

(
1 +

κ log t

t
+

x

c0t

)
=

(
t

2a0

)2(
1 +

κ log t

t
+

4a2
0x

t

)
in (5.3) and use (1 + y)1/2 = 1 + y/2 +O(y2), we obtain

φ(szx , zx) = −λ0κ log t

2
− 2λ0a

2
0x+ γλ0 + o(1) (5.4)

as t→∞. Furthermore, (1.5) implies that

φss(szx , zx) = − 2γzx

(t− szx)
3

= − 2γ

a3
0z

1/2
x

= −a
t

+ o(1)

φsss(szx , zx) = − 6γzx

(t− szx)
4

= − 6γ

a4
0z

= − 24γ

a2
0t

2
+ o(1)

as t→∞ with a = 4γ/a2
0. Since φs(sz, z) = 0, taking a Taylor expansion around sz yields

φ(s, zx) = φ(szx , zx)−
a

2t
(s− szx)

2 + g(s, zx) (5.5)
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where |g(s, z)| ≤ C|s− sz|3/t2 for all s. Also note that letting

ψ(s, z) =

(
z

t− s
− λ0

)β

we have

ψ(szx , zx) =

(
zx

t− szx

− λ0

)β

= zβ/2
x /aβ

0 + o(zβ/2
x )

= (2c0)
βtβ + o(tβ)

so that

ψ(s, zx) = (2c0)
βtβ + g2(s, zx)

where |g2(s, z)||s− sz|−1t−β = o(1).
Write ∫ t

0

ψ(s, zx)e
φ(s,zx) ds =

∫
A

ψ(s, zx)e
φ(s,zx) ds+

∫
Ac

ψ(s, zx)e
φ(s,zx) ds

where A = {s : |s− szx| ≤ C(t log t)1/2} ∩ [0, t]. Since concavity implies that for s ∈ Ac and
C sufficiently large, we have

exp(φ(s, zx)) ≤
1

t2+β
exp(φ(szx , zx))

the contribution of the second integral is negligible. After the change of variables s =
szx + (t/a)1/2r, when t is large, the first integral becomes∫

A

ψ(s, zx)e
φ(s,zx) ds = ((2c0)

βtβ + o(1))eφ(szx ,zx)

∫ C(log t)1/2

−C(log t)1/2

eg(s,zx)e−r2/2(t/a)1/2 dr.

and therefore since |g(s, zx)| ≤ C(t log t)3/2/t2 when s ∈ A, we have

µ(zx,∞) = V0u1

∫ t

0

ψ(s, zx)e
φ(s,zx) ds ∼ bV0u1t

β+1/2eφ(szx ,zx) (5.6)

where b = (2c0)
β
√

2π/a = (2c0)
β(π/λ0)

1/2. Since

φ(szx , zx) = −κλ0 log t

2
− 2λ0a

2
0x+ γλ0

we can conclude that

µ(zx,∞) →

{
V0u1b exp(γλ0 − 2λ0a

2
0x) = V0u1b exp(γλ0 − 2λ0x/2c0) if κ = 2β+1

λ0

0 if κ > 2β+1
λ0

which proves (5.2) since this argument remains true even if κ = κ(t) and lim inf κ(t) >
2β+1

λ0
.

23



When α 6= 1, we no longer have an explicit formula for the maximum value sz which com-
plicates the process of identifying the largest growth rate. We shall assume for convenience
that α > 0 is an integer.

Proof of Theorem 7. As in the proof of Theorem 6, it suffices to describe the distribution for
the largest growth rates. Let z > λ0t so the maximum sz exists. To find a useful expression
for the value of φ(sz, z), we write

φ(s, z) = λ0t− λ0(t− s)− γ

(
z

t− s
− λ0

)α

.

Using the definition of sz as the solution to φs(sz, z) = 0 yields the condition that

(t− sz)
α+1 =

αγ

λ0

zα(1− λ0
t− sz

z
)α−1

i.e.,

t− sz =

(
αγ

λ0

)1/(α+1)

zα/(α+1)

(
1− λ0

t− sz

z

)(α−1)/(α+1)

.

If we substitute the right side of this equation back in for t − sz in the parenthesis, then
writing a0 = (αγ/λ0)

1/(α+1), we have

t− sz = a0z
α/(α+1)

(
1− λ0a0z

−1/(α+1)

(
1− λ0(t− sz)

z

)α−1
α+1

)α−1
α+1

= a0z
α/(α+1)

1− λ0a0z
−1/(α+1)

(
1− λ0a0z

−1/(α+1)

(
1− λ0(t− sz)

z

)α−1
α+1

)α−1
α+1


α−1
α+1

We repeat this α times and then use the approximation (1−x)n = 1−nx+O(x2) repeatedly
with n = (α− 1)/(α+ 1) to obtain

t− sz = zα/(α+1)

(
α∑

j=0

ajz
−j/(α+1) +O(z−1)

)
(5.7)

where

aj = a0

(
λ0a0(α− 1)

α+ 1

)j

for j ≥ 1. The error term is O(z−1) because

0 < (1− λ0(t− s)/z) ≤ 1
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for all z > λ0t and s ≤ t. Factoring out a0 in (5.7) and using (1 + x)−1 =
∑

(−x)j when
|x| < 1, we have that

z

t− s
− λ0 = a−1

0 z1/α+1

(
1−

α∑
i1=1

a−1
0 ai1z

−i1/(α+1) +
α∑

i1,i2=1

a−2
0 ai1ai2z

−(i1+i2)/(α+1)

− · · ·+ (−1)α

α∑
i1,...,iα=1

a−α
0

α∏
j=1

aijz
−

Pα
j=1 ij/(α+1) +O(z−1)

)
− λ0z

1/(α+1)z−1/(α+1)

= z1/(α+1)

(
α∑

j=0

bjz
−j/(α+1) +O(z−1)

)
(5.8)

for large z where the bj are given by

b0 = 1/a0

b1 = −a1/a
2
0 − λ0

b2 = −(a2 − a2
1)/a

3
0

b3 = −(a4 − 2a1a3 − a2
2 − 3a2

1a2 + a4
1)/a

4
0

and in general,

bi =
α∑

k=1

∑
i1,...,ik:i1+···+ik=i

(−a0)
−(k+1)

k∏
j=1

aij .

(5.8) implies that

−γ
(

z

t− s
− λ0

)α

= −γzα/(α+1)
(
bα0 + αbα−1

0 b1z
−1/(α+1)

+

(
αbα−1

0 b2 +

(
α

2

)
bα−2
0 b21

)
z−2/(α+1) + · · ·

+
(
αbα−1

0 bα + · · ·+ bα1
)
zα/(α+1) +O(z−1)

)
and therefore,

φ(sz, z) = λ0t+ λ0(t− s)− γ

(
z

t− s
− λ0

)α

= λ0t+
α∑

j=0

djz
α−j
α+1 +O(z−1/(α+1)) (5.9)
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where the dj can be calculated explicitly, for example:

d0 = −λ0a0 − γbα0
d1 = −λ0a1 − γαbα−1

0 c1

d2 = −λ0a2 − γ

(
αbα−1

0 b2 +

(
α

2

)
bα−2
0 b21

)
d3 = −λa3 − γ

(
αbα−1

0 b3 +

(
α

2

)
bα−2
0 b1b2 +

(
α

3

)
bα−3
0 b31

)
.

To figure out the distribution of the growth rate for the largest mutant, we let c0 =
(−λ0/d0)

(α+1)/α and then search for κj, j = 1, ..., α− 1 and κ so that plugging

zx = c0t
(α+1)/α

(
1 +

α−1∑
j=1

κjt
−j/α +

x

c0t
+
κ log t

t

)

into (5.9) yields
φ(szx , zx) = k1 − k2x− k3 log t (5.10)

for some constants k1, k2, k3. Substituting zx into (5.9) and writing κ0 = 1, κα = x/c0 to
ease the notation we obtain

φ(szx , zx) = λ0t+
α∑

j=0

dj

(
−λ0t

d0

)(α−j)/α
(

α∑
j=0

κjt
−j/α + κt−1 log t

)(α−j)/(α+1)

+O(t−1/α).

Since λ0t+d0(−λ0t/d0) = 0, the first order terms in this expansion is t(α−1)/α and after using
the Taylor series expansion

(1 + x)p = 1 + px+ p(p− 1)x2/2 + · · ·+ p(p− 1) · · · (p− α+ 1)xα/α! +O(xα+1)

we obtain

φ(sz0 , z0) =
α∑

j=1

ρjt
(α−j)/α + ρ log t+O(t−1/α log t) (5.11)

where

ρ = d0

(
−λ0

d0

)(
α

α+ 1

)
κ = − αλ0

α+ 1
κ

ρ1 = d0

(
−λ0

d0

)(
α

α+ 1

)
c1 + d1

(
−λ0

d0

)(α−1)/α

ρ2 = d0

(
−λ0

d0

)[
α

α+ 1
c2 +

α

α+ 1

(
α

α+ 1
− 1

)
c21

]
+ d1

(
−λ0

d0

)(α−1)/α(
α− 1

α

)
c1 + d2

(
−λ0

d0

)(α−2)/α
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and in general

ρj =

j∑
i=0

di

(
−λ0

d0

)(α−i)/α j−i∑
k=1

k∏
`=1

(
α− i

α+ 1
− `+ 1

)
κi`

j = 1, 1, ..., α where for each i and k, in the inner product, i1, ..., ik are always chosen to
satisfy i1 + i2 + · · ·+ ik = j− i. Since ρj depends only on κi, i ≤ j, then after noting that the
coefficient of κj in ρj is −αλ0/(α + 1), we can use forward substitution to solve the system
ρj = 0, j = 1, 2, ..., α− 1 for κj to obtain the recursive formulas

cj ≡ κj = −α+ 1

αλ0

(
ρj −

−αλ0

α+ 1
κj

)
(5.12)

for i = 1, 2, ..., α− 1. Setting ρ = −k3 yields

κ =
(α+ 1)k3

αλ0

and for this choice of cj, κ, we obtain (5.10) with

k2 = − α

α+ 1

d0

c0

(
−λ0

d0

)
=

αλ0

(α+ 1)c0

and k1 = −(ρα − k2x). Since(
zx

t− szx

− λ0

)β

= zβ/(α+1)
x /aβ

0 + o(zβ/(α+1)
x )

=

(
c
1/(α+1)
0

a0

)β

tβ/α + o(zβ/(α+1)
x )

choosing k3 = (2β/α+ 1)/2 replaces (5.4) in the proof of Theorem 6.
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Now substituting (5.7) and (5.8) in (1.5) yields

φss(sz, z) = −α(α− 1)γz
α−2
α+1

(
α∑

j=0

bjz
−j/(α+1) +O(z−1)

)α−2

× z2

z4α/(α+1)
(∑α

j=0 ajz−j/(α+1) +O(z−1)
)4

− αγz
α−1
α+1

(
α∑

j=0

bjz
−j/(α+1) +O(z−1)

)α−1

× 2z

z3α/(α+1)
(∑α

j=0 ajz−j/(α+1) +O(z−1)
)3

= [−α(α− 1)γbα−2
0 /a4

0 − αγbα−1
0 /a3

0]z
−α/(α+1) + o(z−α/(α+1))

= − α2γ

aα+2
0

z−α/(α+1) + o(z−α/(α+1))

where in the second to last line we have used the fact that b0 = a−1
0 . When z = zx, this

becomes
φss(szx , zx) = −a

t
+ o(t−1)

where

a =
α2γ

aα+2
0 c

α/(α+1)
0

.

Since φs(sz, z) = 0 and a calculation similar to the one above shows that φsss(szx , zx) =
O(t−2), we have

φ(s, zx) = φ(szx , zx)−
a

2
(s− szx)

2 + g(szx , zx)

where |g(s, z)| ≤ C|s − sz|3/t2 for all s. This replaces (5.5) from the α = 1 proof and the
rest of the proof is the same. Note that the intensity for the limiting point process is given
by (

c
1/(α+1)
0

a0

)β√
2π/a exp(k1 − k2x). (5.13)

Remark 1. From (5.7), we have

t− szx ∼ a0(c0t
(α+1)/α)(α+1)/α =

αt

α+ 1

which tells us that the time at which the mutant with largest growth rate is born is ∼ t/(α+1).
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6 Discussion

In this paper, we have analyzed a multi-type branching process model of tumor progression
in which mutations increase the birth rates of cells by a random amount. We studied both
bounded and unbounded distributions for the random fitness advances and calculated the
asymptotic rate of expansion for the kth generation of mutants.

In the bounded setting, we found that there are only two parameters of the distribution
that affect the limiting growth rate of the kth generation (see Theorems 1, 2, 4, and 5): the
upper bound for the support of the distribution and the value of its density at the upper
bound. This is a rather intuitive result since one would expect that in the long run, the kth
generation will be dominated by mutants with the maximum possible fitness. In addition, we
found that there is a polynomial correction to the exponential growth of the kth generation.
This correction is not present in the case where the fitness advances are deterministic. We
have discussed this point in further detail in Section 1.1 and after the proof of Theorem
5 in Section 4. Finally, we showed that the limiting population is descended from several
different mutations (see Theorem 3).

In the unbounded setting, we assumed that the distribution of the fitness advance has
the form

P (X > x) = xβe−γxα

where α, β, and γ are parameters. We found that the population of cells with a single
mutation grows asymptotically at a super-exponential rate exp(t(α+1)/α) (see Theorems 6
and 7) and at large times, most of the first generation is derived from a single mutation (see
Lemma 5). The super-exponential growth rate suggests that the exponential distribution,
which is often used for the fitness advances of an organism due to natural selection, is not a
good choice for modeling the mutational advances in the progression to cancer where there
is very little evidence for populations growing at a super-exponential rate.

These conclusions provide several interesting contributions to the existing literature on
evolutionary models of cancer progression. First, our model generalizes previous multi-type
branching models of tumor progression by allowing for random fitness advances as mutations
are accumulated and provides a mathematical framework for further investigations into the
role played by the fitness distribution of mutational advances in driving tumorigenesis. Sec-
ond, we have discovered that bounded distributions lead to exponential growth whereas
unbounded distributions lead to super-exponential growth. This dichotomy might provide a
new method for testing whether a tumor population has evolved with an unbounded distri-
bution of mutational advances. Third, we observe that in the case of bounded distributions,
the growth rate of the tumor is somewhat ‘robust’ with respect to the mutational fitness
distribution and depends only on its upper endpoint. Finally, our calculations of the growth
rates for the kth generation of mutants serve as a groundwork for studying the evolution and
role of heterogeneity in tumorigenesis. These implications will be explored further in future
work.
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Figure 1: Plot of the exact Laplace transform (LT) for t(1+p)e−(λ0+b)tZ1(t) at times t =
60, 80, 100, 120, the approximations from Monte Carlo (MC) simulations at the corresponding
times, and the asymptotic Laplace transform from Theorem 2. Parameter values: a0 = 0.2,
b0 = 0.1, b = 0.01, and u1 = 10−3. g is uniform on [0, .01].
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Figure 2: Plot of the approximations to the Laplace transform of t2+p2e−(λ0+2b)tZ2(t) from
Monte Carlo (MC) simulations at times t = 80, 100, 120 along with the asymptotic Laplace
transform from Theorem 5. Parameter values: a0 = 0.2, b0 = 0.1, b = 0.01, and u1 = u2 =
10−3. g is uniform on [0,0.01].
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