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The Problem

Given a population of size N, how long does it take until τk the first time
we have an individual with a prespecified sequence of k mutations?

Initially all individuals are type 0.

Each individual is subject to replacement at rate 1.

A copy is made of an individual chosen at random from the
population.

Type j − 1 mutates to type j at rate uj .
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Even-skipped stripe 2 enhancer in Drosophila
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Incidence of Retinoblastoma
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The Limits of Darwinism

The malaria parasite Plasmodium falciparum has evolved resistance to
chloroquine. This is due to two amino acid altering substituions in PfCRT.
Michael Behe in his book The Edge of Evolution calls such an event a
chloroquine complexity cluster, or CCC. He concludes:

“There are 5000 species of modern mammals. If each species had an
average of a million members and if a new generation appeared every year,
and if this went on for two hundred million years, the likelihood of a single
CCC appearing in the whole bunch over that entire time would only be 1
in a hundred.”
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Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to
incidence of colon cancer by age.
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Theorem 1. If Nu1 → 0 and N
√

u2 → ∞

P(τ2 > t/Nu1
√

u2) → e−t

10,000 simulations of n = 103, u1 = 10−4,
√

u2 = 10−2
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Behe is wrong

If N = 106, u1 = u2 = 10−9, waiting time is exponential 107.5 = 31.6
million years for one prespecified pair of mutations in one species.

“There are 5000 species of modern mammals. If each species had an
average of a million members and if a new generation appeared every year,
and if this went on for two hundred million years, the likelihood of a single
CCC appearing in the whole bunch over that entire time would only be 1
in a hundred.”
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References for k=2 result

Komarova, Sengupta, Nowak (2003) J. Theor. Biol. 223, 433–450

Iwasa, Michor, Nowak (2004) Genetics. 166, 1571–1579

Iwasa, Michor, Komorova, and Nowak (2005) J. Theor. Biol. 233, 15–23
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Idea of Proof

Since 1’s mutate to 2’s at rate u2, τ2 will occur when there have been
O(1/u2) births of individuals of type 1.

The number of 1’s is roughly a symmetric random walk, so τ2 will occur
when the number of 1’s reaches O(1/

√
u2).

N >> 1/
√

u2 guarantees that up to τ2 the number of 1’s is o(N), so 1
mutations occur at rate Nu1.

The waiting time from the 1 mutation until the 2 mutant appears is of
order 1/

√
u2. For this to be much smaller than the overall waiting time

1/Nu1
√

u2 we need Nu1 << 1.
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A few details

Consider the multitype branching process in which individuals die at rate
1, give birth to a new individual of the same type at rate 1, and individuals
mutate from type j − 1 to type j at rate uj .

The probability q that an individual of type 1 eventually has a descendant
of type 2 satisfies

q =
1

2 + u2
(2q − q2) +

u2

2 + u2

0 = q2 + u2q − u2

q =
−u2 +

√
u2

2 + 4u2

2
∼ √

u2
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The probability that an individual of type 1 eventually has a descendant of
type 2, ∼ √

u2.

If there were always N individuals of type 0, 1 mutants occur at times of a
Poisson process with rate Nu1. The time σ2 of the birth of the 1 individual
that has a 2 descendant will be exponential with rate ∼ Nu1

√
u2.

If Nu1 << 1, τ2 − σ2 = O(1/
√

u2) = o(1/Nu1
√

u2).

If we wait for fixation, replace u2 by u2β, where β = fixation probability.
Small surprise is time is only increased by 1/

√
β.

If 1’s are mildly deleterious, which means fitness 1 − ρ
√

u2, instead of
the usual 1 − O(1/N), time is increased by 1/R where
R = (−ρ +

√
4 + ρ2)/2
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Drosophila

Suppose a transcription factor binding site consists of 10 nucleotides.
Taking 10−8 as mutation rate, u1 = 10−7 and u2 = (1/3) × 10−8.

N = 5× 106 chromosomes, so waiting time has mean 1/Nu1
√

u2 = 34, 600
generations or 3,460 years assuming 10 generations per year.

Nu1 is not small, but Theorem 2 and simulations suggest this adds 25% to
total = 4, 325 years.

In neutral case β = 1/2N increasing time by a factor of 1/
√

β = 2200 to 9
million years.

If two fitnesses are 1− 10−4 and 1+10−4 answer is roughly 1 million years.
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When Nu1 �→ 0

Theorem 2. Suppose that Nu1 → λ ∈ (0,∞), u2 → 0, and N
√

u2 → ∞
as N → ∞. Then τ2 · Nu1

√
u2 converges to a limit that has density

function

f2(t) = h(t) exp

(
−

∫ t

0
h(s) ds

)
where h(s) =

1 − e−2s/λ

1 + e−2s/λ
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10,000 simulations of N = 103, u1 = 10−3,
√

u2 = 10−2. The exponential
with mean 1/Nu1

√
u2 is given by the thin line. The approximation from

Theorem 2 by the thick line.
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Sketch of proof

Let Q1 be the law of the process starting from a single 1 and modified to
have no further 1 mutations. Let g2(t) = Q1(τ2 ≤ t).

g ′
2(t) = −u2g2(t) − g2(t)

2 + u2

Solve the ODE and then compute

P(τ2 ≤ t) = 1 − exp

(
−Nu1

∫ t

0
g(s) ds

)

Wodarz and Komorova (2005), Computational Biology of Cancer. World
Scientific, solve hyperbolic PDE for generating function.
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Waiting for k mutations

Total progeny of a critical binary branching process has
P(ξ > k) ∼ Ck−1/2, so the sum of M such random variables is O(M2).

To get 1 individual of type 4, we need of order

1/u4 births of type 3.

1/
√

u4 mutations to type 3.

1/u3
√

u4 births of type 2.

1/u
1/2
3 u

1/4
4 mutations to type 2.

1/u2u
1/2
3 u

1/4
4 births of type 1.

1/u
1/2
2 u

1/4
3 u

1/8
4 mutations to type 1.
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Probability type j has a type k descendant.

∼ rj ,k = u
1/2
j+1u

1/4
j+2 · · · u1/2k−j

k for 1 ≤ j < k

Theorem 3. Let k ≥ 2. Suppose that:
(i) Nu1 → 0.
(ii) For j = 1, . . . , k − 1, uj+1/uj > bj for all N.
(iii) There is an a > 0 so that Nauk → 0.
(iv) Nr1,k → ∞.

Then for all t > 0, limN→∞ P(τk > t/Nu1r1,k) = exp(−t).
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Explanation of the Conditions

rj ,k = u
1/2
j+1u

1/4
j+2 · · · u1/2k−j

k for 1 ≤ j < k

(i) Nu1 → 0 implies we can ignore τk − σk , where σk is the birth time of
the type 1 with a type k descenation

(iv) Nr1,k → ∞ guarantees the number of mutants stays o(N).

(ii) uj+1/uj > bj for all N. In cancer applications later mutation rates are
larger, but in regulatory sequence example u2 = u1/30.

(iii) Nauk → 0 for some a > 0. Mutation rates can’t be too big.
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Ideas in Proof

rj ,k = u
1/2
j+1u

1/4
j+2 · · · u1/2k−j

k for 1 ≤ j < k

In the branching process, the probability a type j has a type k descendant.

pj ,k =
1

2 + uj+1
(2pj ,k − p2

j ,k) +
uj+1

2 + uj+1
pj+1,k .

Solving gives

pj ,k =
−uj+1 +

√
u2
j+1 + 4uj+1pj+1,k

2
.

Using (ii) and (iii) we conclude pj ,k ∼ rj ,k
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If k = 4 and uj = µ then there are µ−1/2 3’s; µ−3/4 2’s; µ−7/8 1’s.

Processes live on different time scales.

Use induction to reduce to two type case.

Rick Durrett (Cornell) Waiting for k mutations 21 / 25

Back to reality

Our results are appropriate for the regulatory sequence application since
one is interested in the typical amount of time that the process takes.

However, most cancers occur in less than 1% of the population so we are
looking at the lower tail of the distribution. Let gk(t) = Q1(τk ≤ t) where
Q1 is the probability for the branching process started with one type 1. In
the case uj ≡ µ

g ′
j (t) = µgj−1(t) − (1 − µ)gj(t)

2 − 2µgj(t)

One can inductively solve the differential equations and finds

If t << µ−1/2 then gk(t) ≈ µk−1tk−1/(k − 1)!
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When Nr1,k �→ ∞

Fixation of 1 before τk and stochastic tunneling each have positive
probability.

Theorem 4. Let k ≥ 2. Assume
(i) Nu1 → 0.
(ii) For j = 1, . . . , k − 1, uj+1/uj > bj for all N.
(iii) There is an a > 0 so that Nauk → 0.
(iv) (Nr1,k)2 → γ > 0, and we let

α =
∞∑

k=1

γk

(k − 1)!(k − 1)!

/ ∞∑
k=1

γk

k!(k − 1)!
> 1

then for all t > 0, limN→∞ P(u1τk > t) = exp(−αt).
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10,000 simulations with N = 103, u1 = 10−4,
√

u2 = 10−3

γ = 1, α = 1.433
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Let Xj(t) be the number of type j at time t.

If X1(0) = Nε then N−1X1(Nt) → Zt where Zt is the Wright-Fisher
diffusion process with infinitesimal generator x(1 − x)d2/dx2.

When X1(Nt) = Nx , mutations to type 2 that eventually lead to a type k
individual occur at rate approximately

N · Nx · u2r2,k ∼ N2r2
1,kx → γx ,

so if we let u(x) be the probability that the process Zt hits 0 before
reaching 1 or generating a type m mutation, then u(x) satisfies

x(1 − x)u′′(x) − γxu(x) = 0, u(0) = 1, u(1) = 0

The constant α = limε→0(1 − u(ε))/ε.
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