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COEXISTENCE IN STOCHASTIC SPATIAL MODELS*

By Rick DURRETT !

Cornell University

In this paper I will review twenty years of work on the question:
When is there coexistence in stochastic spatial models? The answer,
announced in Durrett and Levin (1994), and that we explain in de-
tail in this paper is that this can be determined by examining the
mean-field ODE. There are a number of rigorous results in support
of this picture, but we will state eight challenging and important open
problems.

Introduction. There is an incredible diversity of species that coexist in
the world. At the Botanic Garden in Singapore one can see 1000 species of
orchids. These are cultivated, of course, but if one examines the food web in
a small lake one finds dozens of species coexisting. An important problem in
ecology is to identify mechanisms that permit the coexistence of species. In
this paper we will examine that question in the context of stochastic spatial
models. In these interacting particle systems, space is represented by the
d-dimensional integer lattice Z?. With ecological problems in mind, we will
usually take d = 2.

Historically the first multi-species system to be considered was

Example 1. Competing contact processes

e Each site in Z? can be in state 0 = vacant, or in state i = 1,2 to
indicate that it is occupied by one individual of type %

e Individuals of type i die at rate J;, give birth at rate ;. Here, at rate A
means that these events happen at times of a rate A Poisson process.

e A type i born at z goes to x + y with probability p;(y). If the site is
vacant it changes to state i, otherwise nothing happens.

When there is only one type this reduces to the system introduced by Harris
(1974). After several decades of work this model is very well understood. See
Liggett (1999) for a survey.

*Based on the third Wald lecture given at the World Congress of Probability and
Statistics, Singapore, July 14-19, 2008
TPartially supported by an NSF grant from the probability program.
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If we assume that the states of adjacent sites are independent then the
fraction of sites w; in state i = 1,2 satisfies

du1

(1) 7 Brur (1 —ug —ug) — dug
dusg
o2 1 — s — _
7 Bauz(l — ug — ug) — dous

This is called the mean-field ODE, because if we consider the system on N
sites with a uniform dispersal distribution then in the limit as N — oo the
densities converge to this limit. In the spatial model adjacent sites are not
independent. However, writing and analyzing the mean-field ODE is a good
first step in guessing what the system will do.

In (1) du;/dt = 0 when (1 — u; — u2) = d;/0;. These lines are parallel, so
they either do not intersect or coincide. Figure 1 shows the mean-field ODE
when ﬂl = 4, ﬁg = 2, and (51 = 52 =1.

Fic 1. Competing contact process ODE

In (1992) Neuhauser proved the following result:

THEOREM 1. If the dispersal distributions py = pa = p, 61 = d2, and
81 > B2 then species 1 out competes species 2. That is, if the initial condition
is translation invariant and has P(&y(x) = 1) > 0 then P(&(x) =2) — 0.

Sketch of proof. We construct the process from a “graphical representation.”
For each site x there is a rate 1 Poisson process D, m > 1 that kills the
particle at x (if there is one). For each x and y, there are Poisson processes

BXY . n > 1 and A%Y, n > 1 with rates S1p(y) and (B2 — B1)p(y). The first
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STOCHASTIC SPATIAL MODELS 3

causes births from x to z +y if x is occupied and = + y is vacant. The second
causes births z to x + y if « is occupied by a 1 and = + y is vacant. To see if
0 is occupied at time t we work backwards in time to define a dual process

¢! which has the property that
£/(0) = 1 if and only if &_(x) = 1 for some = € £

If ég = () for some s < t then 0 is vacant. If é; # () then there is a natural
ordering on é}g so that the first occupied site at time 0 dictates the type at 0
at time t. One then argues that due to the fact that the 1’s have their own
special arrows, the site will be a 1 with high probability. We refer the reader
to Neuhauser (1992) for more details. |

The behavior in Theorem 1 is what biologists expect based on the Com-
petitive Exclusion Principle. A version of this can be found in work of Levin
(1970). Consider an ODE of the form:

dui
dt

=uifi(z1,...2m) 1<i<n

Here the z; are resources. In previous model there is one resource: z; =
1 — uq — uy free space.

THEOREM 2. Ifn > m then no stable equilibrium in which all n species
are present is possible.

In words, the number of coexisting species is smaller than the number of
resources.

PROOF. Linearize around the fixed point. n > m implies there is a zero
eigenvalue, so the fixed point cannot be locally attracting. O

In the mean-field ODE, only the ratios 3;/0; matters, so it is natural to
guess.

Problem 1. Show that the conclusion holds if the dispersal distributions are
the same and (1/61 > B2/0ds.

To try to build some excitement about Problem 1, we note that Chan and
Durrett (2006) proved that a “fugitive species” that disperses long distances
(with a truncated power law distribution) and at a fast rate, can coexist with
a superior competitor with a nearest neighbor dispersal distribution. This
does not contradict the competitive exclusion principle, because in addition
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Fic 2. Simulation of competing contact process. 31 = 3.9, 61 = 2 (black) versus B2 = 2,
01 =1 (gray). The picture is a snapshot of part of the grid at time 300.

to single site deaths their model has forest fires, which destroy large squares
of occupied sites at a small rate. Thus the model has a second type of space,
“recently disturbed space,” and is entitled to have two coexisting species.

As announced in the abstract, one goal of this paper is to explain the
idea of Durrett and Levin (1994) that one can determine whether coexis-
tence happens in the stochastic spatial model by examining properties of
the mean-field ODE. The discussion is divided into three cases according to
the properties of the ODE.

Case 1. Attracting Fixed Point

When the mean-field ODE has an attracting fixed point, we expect co-
existence in the spatial model, i.e., there is a stationary distribution which
concentrates on configurations that have infinitely many sites occupied by
each species.

Example 1.1. Durrett and Swindle (1991). Grass Bushes Trees

In this variant of the contact process there is a hierarchy of types. In hind
sight this is a very natural model. However, it owes its invention to talking
to Simon Levin about successional sequences in a forest.

e Each site in Z? can be in state 0 = grass, 1 = bush, 2 = tree.

e Individuals of type ¢ die at rate J;, give birth at rate ;.

e A type i born at z goes to x + y with probability p;(y). If the site is
in state j < 7 it changes to state ¢, otherwise nothing happens.
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STOCHASTIC SPATIAL MODELS 5

The mean field ODE is

dU1

(2) il Brui(l —uy —ug) — d1uy — Bauguy
dUQ
o2 1 — ) —
7 Bauz(1 — uy) — daus

If By > 02, us = (B2 —062) /2. Given this, one can solve for uj and see when it
is positive. However, it is better to approach the question by examining when
the 1’s can invade 2’s in equilibrium, i.e., if the 2’s are in equilibrium and
the 1’s are at a small density then the density of 1’s will increase. Ignoring
the possibility that a 1 will see another 1 nearby, the condition is:

2 B2 — b2
(3) B 3 o1+ 2 5
The left hand-side gives the rate at which 1’s give birth onto vacant sites,
while on the right, the first term is the death rate of 1’s and the second is
the rate at which they eliminated by births of 2’s.
When 6; = 6 = 1, (3) becomes $; > 32 > 1. For simplicity, we will
consider only this case.

THEOREM 3. Durrett and Swindle (1992). If f1 > B3 > 1 then when
p; is uniform on {x : 0 < ||z|| < L} and L is large, there is a stationary
distribution 1o that concentrates on configurations with infinitely many 1’s
and 2’s.

SKETCH OF PROOF. The survival of the 2’s is not a problem because they
are a contact process and don’t feel the presence of the 1’s. To prove that
the 1’s can persist in the space that remains, we use a “block construction,”
which consists of comparing the particle system with a mildly dependent
oriented percolation in which sites are open with probability close to 1.
For an account of this method and a number of examples, see my St. Flour
lecture notes, Durrett (1995). Suppose, for simplicity, that d = 1. At an
intuitive level, what one shows is that “one pile can make two piles with
high probability.” That is, L and T" can be chosen so that if [ L, L] is good
at time 0, i.e., there are not too many 2’s in [—L, L] and there are enough
1’s, then [-3L, —L] and [L,3L] will be good at time T" even if we kill all of
the 1’s that wander outside [-10L, 10L]. The last condition is needed so that
there is a finite range of dependence between the events in the construction.
The block construction gives a lower bound on the density of sites occu-
pied by 1’s. Taking the Cesaro average of the distribution from time 0 to
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6

time ¢, and finding a convergent subsequence produces the desired stationary
distribution. For more details on this point, see Liggett (1985). O

The block construction technology has improved quite a bit since 1992,
so at this point it should be fairly routine to do the following:

Exercise. Show that if § = d = 1, B2 > 1 and 31 < (2 then the 1’s die
out when the range is large.

In the setting of Theorem 3, in addition to existence of a stationary distri-
bution, we have a uniqueness result.

THEOREM 4. Durrett and Moller (1991). Suppose 61 = 6o = 1, 1 >
(3 > 1. If the range is large then whenever the 1’s and the 2’s do not die
out then the process converges to 2.

There are stationary distributions p; and pe with only 1’s and 2’s respec-
tively. By results for the one-type contact process, these are unique if one
specifies that there is no mass on the all 0’s state. In addition there is the
trivial stationary distribution ug that assigns mass 1 to all 0’s. The con-
vergence result in Theorem 4 when combined with results for the one-type
contact process implies that all stationary distributions are convex combi-
nations of pg, p1, po and pi2. There are many situations in which we can
prove the existence of stationary distributions, but convergence results like
Theorem 4 are rare.

There are, at this point, a number of coexistence results for particle sys-
tems with long range interactions: Durrett (1992), Durrett and Schinazi
(1993), Durrett and Neuhauser (1997), Durrett and Lanchier (2008), etc.
However, the proofs of these results are done on a case by case basis. Things
are simpler if, instead of long range, we assume that there is “fast stirring:”
suppose that for each pair of nearest neighbors = and y, at rate e 2 exchange
the values &(z) and &(y). In this case there is a general result.

THEOREM 5. Suppose there is a repelling function ¢ that (i) decreases
along solutions of the mean-field ODE, and (i) ¢(u) — oo when min; u; — 0.
Then there is coexistence in the model with fast stirring when e < €.

Durrett (2002) applies this result to a wide variety of systems: epidemics,
predator-prey models, predator mediated coexistence, etc.
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STOCHASTIC SPATIAL MODELS 7

SKETCH OF PROOF The existence of a repelling function and a few lines of
calculus implies that for solutions of the PDE

d

— = Du+ f(u)

min; u;(t,x) > e for t > T, |z| < ct. As ¢ — 0 the particle system on €Z?
converges to the solution of the PDE. Using this with the result for the PDE,
we have shown that “one pile makes two piles” with high probability and
the result follows from the block construction. O

Question. Is there a similar general result for systems with long-range in-
teractions?

Example 1.2. Host-pathogen models

In Durrett (2002) it was shown that predation can cause two competing
species to coexistence. Durrett and Lanchier (2008) have shown that coex-
istence can occur if there is a pathogen in one species. In the next model 1
and 3 are the two species, while 2 is species 1 in the presence of a pathogen.
Letting f; be the fraction of neighbors in state i, the rates are

1—2 afoy
2—-1 Y (f1 + f2)
3—1 Y3(f1+ f2)
1—-3 m/f3
2—-3 Y2f3

The first condition says that if we think of 1=vacant and 2=occupied then
the 1’s and 2’s are a contact process. To explain the other four rates: at rate
v; individuals of type ¢ are replaced by the offspring of a randomly chosen
neighbor. If the neighbor is in state j = 1 or 3 then the offspring has the
same type as the parent. However if the neighbor is of type 2, the offspring
is of type 1 because the pathogen is not passed into the seeds.

It is straightforward to write down the mean-field ODE, so we content
ourselves to draw a picture. Here the 1’s and 2’s are a contact process so on
the boundary uz = 0, u; = 72/« is an attracting fixed point.

THEOREM 6. Suppose v1 < v3 < y2 < a and
2 2
(4) N2 4 <1—7) > 73
o o

imsart-aap ver. 2007/12/10 file: waldpaper.tex date: August 7, 2008



F1c 4. Host-pathogen examples with coexistence and no coezistence.

then there is coexistence for large range.

The displayed condition says that the 3’s can invade the 1’s and 2’s in
equilibrium. The key to the proof is using an understanding of the ODE
to show that if the density of some type becomes small then a sequence of
events will occur that results in all of the densities being bigger than some
€. Figure 4 gives two simulations. 1 = black, 2 = white, 3 = gray.

Problem 2. Coexistence is not possible if vy < v3 < 71, (mutualist).

Why should this be true? If we start with the 1’s and 2’s in equilibrium and
a small density of 3’s then once the invasion of the 3’s starts the fraction of
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STOCHASTIC SPATIAL MODELS 9

2’s gets smaller, and the 3’s have an even bigger advantage over the 1’s and
2’s. It is not hard to check in this case that there is no interior fixed point.
For more results and problems about host-pathogen models see Lanchier
and Neuhauser (2006).

Case 2. Two locally attracting fixed points

In this case, the limiting behavior of the ODE depends on the initial
density. However, this is not the expected behavior for the particle system,
and in this case the outcome of competition is dictated by the behavior of
the PDE. The reason is that even if the initial distribution is translation
invariant and hence has a well-defined density, there will be regions of space
where the density of 1’s is close to 1 and others where it is close to 0. To
explain this, we consider an example:

Example 2.1. Sexual reproduction. Durrett-Neuhauser (1994).

The flip rates are as follows:

e 1 —0atratel
e 0 — 1 at rate Bk(k — 1)/n(n — 1) if k of the n neighboring sites are
occupied.

In words, at rate 3, a vacant site picks two of its neighbors at random and
become occupied if they both are.

The mean-field equation is:

du
(5) o= —u+ Bu?(1 —u) = u(=1 4+ Bu(l — u))
Remembering that u(1 —u) is maximized at 1/2, where the value is 1/4, we
see that there are nontrivial fixed points p; < po if and only if 5 > 4, while
if =4, 1/2 is a double root.

At this point one might think that in the presence of fast stirring, 8. ~ 4
but that is not correct. To determine the asymptotics of the critical value
you have to consider the mean-field PDE:

0
8;: = Au+g(u)
where g(u) = u(—1+ fu(l — u)).

A solution of the form u(t, x) = w(x—ct) with w(—o00) = p2 and w(+00) =

0 is called a traveling wave. In order to be a solution w must satisfy

—cw' =w" + g(w)
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10

Multiplying by w’ and integrating from —oo to co
—c/(w’)2dx = /w”w’d:c—i—/g(w)w'dx

The first antiderivative on the right is (w’)?/2 which vanishes at —oc and
oo. Changing variables y = w(x) in the second we have

C/(w')2dl‘ = /Omg(y) dy

Thus the sign of ¢ = the sign of [[” g(u) du. When 8 = 4.5, the cubic has
roots at 2/3, 1/3, and 0 and symmetry dictates that [§* g(y) dy = 0. Thus
¢ > 0 if and only if 8 > 4.5.

THEOREM 7. If we introduce fast stirring at rate €2 then in the sexual
reproduction model, B, — 4.5 as € — 0.

SKETCH OF PROOF. The key is the PDE fact that if the initial condition
is u(0,z) > p1 + € for |z| < L and L is large enough then u(t,z) ~ po for
|z| < (¢ — d0)t. Combining this with the convergence of the particle system
with fast stirring to the PDE, we have the “one pile makes two piles with
high probability” needed for the block construction. O

Example 2.2. Catalyst

Moving away from ecology, our next system is a model for the catalytic
converter in a car’s exhaust system. States are 0 = vacant, 1 = CO (carbon
monoxide attached to the surface), 2 = O (single oxygen atom attached to
the surface). The rates are as follows:

e 0 — 1 at rate p.
e A pair of neighboring 0’s — 22 at rate ¢/4.
e Adjacent 12 — 00 at rate r/4 (reaction to form COz).

In this model all 1’s and all 2’s are absorbing states corresponding to
poisoning of the catalyst surface. In order for the catalytic converter to
work and turn CO into COs there must be coexistence in the spatial model.
Ziff, Gulari and Barshad (1986) considered the case in which r = oo and
q/2 = 1 — p (the latter condition can be imposed by scaling time). Their
simulations shows coexistence for 0.389 < p < 0.525.

Since 1’s land at rate p and two 2’s land at rate < g = 2(1 — p), it seems
clear that the system converges to all 1’s when p > ¢. There is a simple
argument, see Theorem 1 in Durrett and Swindle (1992), which shows that
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STOCHASTIC SPATIAL MODELS 11

if p > g then P(&(x) = 0) — 0 and if z and y are neighbors, P(&(z) =
17§t(y) = 2) - 07 S0

P(¢&(z) =1on [-K,K]*) + P(&(z) =2 on [-K, K]?) — 1

but we do not know how to prove that if we start from the = 0 configuration,
the system converges to all 1’s. It is not hard to show, see Theorem 2 in
Durrett and Swindle (1992), that the system converges to all 2’s for small
p. However, it is much more interesting to

Problem 3. Prove coexistence for p € (p1,p2).
Simulations suggest that the density of O atoms in equilibrium drops to 0
discontinuously at the upper critical value.

Bramson and Neuhauser (1992) have proved coexistence when the Os’s
are replaced by an N x N polymer. Durrett and Swindle (1994) proved
coexistence in the original model by introducing fast stirring. The mean-
field PDE is:

8u1

(6) 5 = Aug +p(1 —ug — ug) — rugug
0
% = Aug +q(1 —uy —ug)? — rujug

If p < q, ODE has four fixed points: two stable (1,0) and (a, ) and two
unstable: (0,1) and (3, «), where

(¢ —p) £ /(g —p)? —4qp%/r
2q

a<fp=

The PDE results which were routine for the sexual reproduction model
are now difficult. To prove the existence of a traveling wave with u(—o0) =
(o, B) and u(oo) = (1,0) one goes to the four dimensional phase plane:
(u1, uf,ug,ub), and looks for a curve connecting («,0,3,0) and (1,0,0,0)
which will exist only for one value of the speed c. Fortunately this was done
previously by Volpert and Volpert (1988). With the existence of a traveling
wave established the next step is to prove a convergence theorem for PDE,
which can be done with comparison techniques because of monotonicity
property of system (uy, —usz). Once the PDE result is established the rest is
a routine application of the block construction.

Example 2.3. Colicin

Durrett and Levin (1997) considered a competition between two types of E.
coli, one of which produces colicin (a chemical that kills other E. coli):
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Fic 5. Mean-field ODE for the catalyst

birth rate death rate
0—1 G1f1 1—0 01
0—2 B2 fo 2-0 92+ f1

Here the rates are like the two-species contact process, except for the v f;
in the death rate 2 — 0, which comes from 1’s killing 2’s with colicin. For
simplicity we suppose that the basic death rates are equal §; = ds = 1.
Having done this it is natural to suppose that 51 < (32, for otherwise it is
clear that the 1’s will out compete the 2’s.
A little algebra shows that when
0; < 0 é<ﬁ< 02 47
B2 B P2ty

the mean-field ODE has an interior fixed point but it is unstable. Figure 6
shows the situation when 81 = 3, vy = 2.5 and (G = 4.

Figure 7 gives the density versus time in the system on a 200 x 200 grid.
To emphasize that the behavior is different from the ODE, we start the gray
colicin producer (1’s) at a small density. By time 1000 it has eliminated the
black colicin sensitive strain (2’s). The other panel shows the state at time
600. Note that the two types have segregated. A movie would show that the
interface moves in a direction that favors the 1’s. It would be interesting to
show that if one started the model in one dimension with 1’s on one half line
and 2’s on the other then a well-defined interface existed and had a speed
which predicts who wins the competition.
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Fia 7. Simulation of colicin model

Problem 4. Show that coexistence is not possible in the colicin model when
61 < B2 and 61 = §o = 1.

Case 3. Cyclic systems, Periodic orbits

In this case, we see coexistence with significant spatial structure. The
pictures are pretty but the problems are hard.

Example 3.1. Multitype biased voter model.

Each site can be in state 1, 2, ...k, and j — ¢ at rate f;)\;;. In words, i’s
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eat j’s at rate \;j. The mean field ODE is

dui
o = w (N = Ay

Silvertown et al. (1992) who were interested in the competition of grass
species, studied the five species case in which

0 0.09 032 023 0.37
0.08 0 0.16 0.06 0.09
Aij=10.06 0.06 0 044 0.11
0.02 0.06 005 0 0.03

0.02 0.03 0.05 0.03 O

This example is not very interesting because Ai; > ;1 for 2 < 5 < 5,
so using ideas of Grannan and Swindle (1991) and their improvement by
Mountford and Sudbury (1992) one can show that if A} is the event 1’s are
alive at time t then

so if the 1’s don’t die out they take over the system. The key to the proof is
that if 0 is small

Zy = Z e 7 is a submartingale.
z:&(z)=1

0.15

Fic 8. Cyclic particle system with 51 = 0.3, B2 = 0.7, 83 = 1.0
Durrett and Levin (1998) studied the cyclic case in which A\j3 = 0,
Ao1 = (9, A3 = f3, and the other )\ij = 0. This system with §; = 1

and the corresponding discrete time deterministic cellular automata had
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STOCHASTIC SPATIAL MODELS 15

been studied earlier by Bramson and Griffeath (1989), Fisch, Gravner, and
Griffeath (1991), and Durrett and Griffeath (1993). The mean-field ODE
has equilibrium:

pi = Bi—1/(B1 + B2 + B3)

where 7 — 1 is computed modulo 3 with the result in {1,2,3}. Around this
fixed point are concentric periodic orbits. To prove mathematically that this
occurs, write H(u) = >, p;logu; and check that H(u) is constant along
solutions of the ODE.

Problem 5. Show that coexistence occurs in the cyclic case of Silvertown’s
model.

Figure 9 gives a proof by simulation.

Fic 9. Simulation of cyclic particle system with $1 = 0.3, B2 = 0.7, B3 = 1.0

May and Leonard (1975) studied a related model. Let o < 1 and a4 > 1.
If we let ©u = w1 4+ uo + ug the ODE is

% - ul(l - u) - (a - 1)U1U2 — (ﬁ - 1)u1u3
M 1~ (o Vo — (3~
% = uz(l—u)— (= Dusu; — (B — 1)usus

The solutions to the ODE spiral out toward the boundary, and the system
cycles from being composed almost wholly of population 1, to almost wholly
2, to almost wholly 3, and then back to 1.

imsart-aap ver. 2007/12/10 file: waldpaper.tex date: August 7, 2008



16

To define the corresponding particle system we say write 1 < 2 <3 < 1
and read 1 < 2 as 2 outcompetes 1.

e Vacant sites become occupied by type i at rate f;

e An occupied site x at rate §—1 attacks a randomly chosen neighboring
site y.

e [f y is occupied by the type that z can outcompete the individual at y
is killed, and a new individual of the type at x is born with probability

(1—-a)/(B—1)
Example 3.2. Three species colicin.

Durrett and Levin (1997) considered an E. coli competition model with rates

birth rate death rate
0—1 611 1—-0 01

0—2 B2 fo 2-0 92

0—3 B3f3 3—0 03 +71f1 + 72 f2

Here, 1’s and 2’s are colicin producers, while 3 is colicin sensitive. In the
two species system (we conjecture) there is no coexistence, but as we will
see coexistence is possible with three species.

Consider for concreteness, the situation when §; = 1, 51 = 3, B2 = 3.2,
B3 = 4.0, v1 = 3, and 2 = 0.5. In this case the 2’s beat the ones since they
have a larger birth rate, the 3’s beat the 2’s since the colicin they make is
not nasty enough, while the 1’s beat the 3’s.

Thus again the three competitors have the same relationship as in the
child’s game paper-rock-scissors. Such systems exist in nature. In the side-
blotched lizard (Uta stansburiana), males have one of three throat colors,
each one declaring a particular strategy. Dominant, orange-throated males
establish large territories within which live several females. But these ter-
ritories are vulnerable to infiltration by males with yellow-striped throats
— known as sneakers — who mimic the markings and behavior of receptive
females. The orange males can’t successfully defend all their females against
these disguised interlopers, who cluster on the fringes of the territories held
by the orange lizards.

However, a large population of sneakers, which have no territory of their
own to defend, can be quickly overrun by blue-throated males, who defend
territories large enough to hold just one female. Sneakers have no chance
against a vigilant, blue-throated guard. But once the sneakers become rare,
powerful orange males flourish, grabbing territory and females from the blue
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STOCHASTIC SPATIAL MODELS 17

lizards. Now, the blue males lose out. See Sinervo and Lively (1996) for more
on this example.

Figure 10 gives a picture of the mean-field ODE for the three-species
colicin model as we look down into the tetrahedron u; > 0, uq +us +us < 1.
On the (u1,0,u3) and (0, ug, us) faces we see the colicin ODE, while on the
(u1,us9,0) face we have the competing contact process.

Fic 10. Three species colicin mean-field ODE

Figure 11 gives a simulation. The graph gives the densities on a 200 x 200
grid, while the picture gives a snapshot of part of the system at the final
time. Coexistence has been verified experimentally by Kirkup and Riley
(2004). They began with a sensitive strain (S) of E. coli, introduced colicin
plasmids to make a colicin-producing strain (C'), and exposed the sensitive
strain to the colicin-producer to obtain a resistant strain (R). A number
of unlucky mice were then chosen to have the competition drama play out
in their colons. After reading the paper, I think I will stick to computer
simulations. In four cases, the experiment had to be discontinued because
the mice were fighting or several mice died.

Problem 6. Prove mathematically that coexistence can occur.

Example 3.3. Spatial Prisoner’s Dilemma: Durrett-Levin (1994).

This time we allow multiple hawks 7;(x) and doves (;(x) at each site.

e Migration. Each individual at rate v migrates to a nearest neighbor.

e Death due to crowding. Each individual at x dies at rate x(n.(x) +
Ge()).

e Game step. Let p(x) be the fraction of hawks in the 5 x 5 square
centered at x. Hawks give birth (or death) at rate ap,(z)+b(1—p:(z)),
doves at rate cpi(x) + d(1 — pi(x)).
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Fic 11. Three species colicin simulation

An interesting choice for the game matrix is a Prisoner’s Dilemma

H D
H a=-06 =09
D ¢=-09 d=0.7

The H strategy dominates D, so it is the better choice, but the payoff
for (D, D) is better than that for (H, H). This is the Prisoner’s Dilemma
“paradox.” If everyone played D then the world would be a nice place, but
this leads to the temptation to play H and increase your payoff.

Fic 12. Hawks-Doves ODE

In a homogeneously mixing population the densities of Hawks and Doves
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would evolve according to

du U v

(7) il u{au+v+bu+v—m(u+v)}
dv v
o = u{au+v+bu+v—fi(u+v)}

In the concrete example under consideration, we have the following behavior.
On the vertical axis one can see that in the absence of Hawks, Doves reach
an equilibrium. However, when both are present, the ratio of Hawks to Doves
increases until the population crashes to 0.

Simulations suggest that in the spatial model Hawks and Doves can coex-
ist. Intuitively this occurs because the dynamics of the ODE happen locally,
but when the Hawk population crashes to 0 then there are some Doves left
behind to recolonize space, but when the Doves grow to a significant density
then the remaining Hawks again take over.

Problem 7. Prove that the hawks and doves can coexist.

Fi1G 13. Hawks-Doves simulation

Example 3.4. Deterministic spatial games.

The Hawks-Doves model is complicated because each site is in a state (m,n)
where m is the number of Hawks and n is the number of Doves. Nowak and
May (1992) introduced a much simpler discrete time model in which each
site is occupied by a cooperator or a defector. The payoft’s to the first player
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in the game are

C D
C a c
D b d

To evolve the spatial model in discrete time, we calculate for each site
the total payoff when the game is played with its eight neighbors. The cell
is taken over by the type in the 3 x 3 square that has the highest payoff.
The discrete time model is said to have synchronous updating because all
sites are changed at once. One can also consider the continuous time case
or asynchronous updating, where repeatedly a site is chosen at random and
the rule is applied.

Nowak and May (1992) mostly consider the case d=1,¢>1,a=b=0.
Since the possible values for a cooperator are 1 < j < 8 and for a defector
are jb where 1 < j < 8, then for b < 2 the behavior changes at

8/7,7/6,6/5,5/4,8/6,7/5,3/2,8/5,5/3,7/4,9/5.
The most interesting pictures occur when 1.75 < b < 1.8.

Problem 8. Prove coexistence results for the deterministic version in dis-
crete or continuous time (asynchronous updating).

For more on this model see Nowak, Bonhoeffer, and May (1994) and refer-
ences therein.
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