#### Two Particle Systems on Random Graphs

#### **Rick Durrett**

Joint work with

- 1. Shirshedu Chatterjee
  - 2. Daniel Remenik

Problem 1

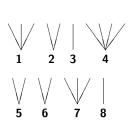
Consider the contact process on a random graph with a power law degree distribution.

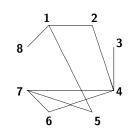
Power law random graph. Following Newman, Strogatz, and Watts (2000, 2001) Let  $d_1, d_2 \dots$  be i.i.d. with  $P(d_i = k) \sim Ck^{-\alpha}$  with  $\alpha > 3$  so that  $var(d_i) < \infty$ .

Condition on  $\{d_1 + d_2 + \cdots + d_n \text{ is even}\}$ , attach  $d_i$  half-edges to vertex iand then pair the half-edges at random. If you want a nice graph then you can condition on the event of positive probability that there is no self-loop and no multiple edges between vertices.

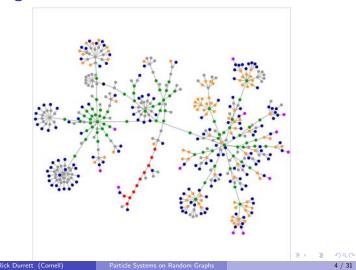
Suppose  $P(d_i \le 2) = 0$  so the graph is connected with high prob, i.e., with probability  $\rightarrow 1$  as  $n \rightarrow \infty$ .

#### Picture of the Construction





**Blog** network



#### **Contact process**

Each site is either healthy 0 or infected 1.

Infected sites become healthy at rate 1.

Healthy sites become infected at rate  $\lambda$  times the number of infected neighbors.

Theorem. Berger, Borgs, Chayes, and Saberi. (2005) Consider the contact process on the Bárabasi-Albert preferential attachment graph which has  $\alpha = 3$ .  $\lambda_c = 0$ . With high prob the contact process survives for time  $\geq \exp(Cn^{1/2})$ , and the equilibrium density has

$$b\lambda^C \le \rho(\lambda) \le B\lambda^c$$

# Pastor-Satorras and Vespigiani (2001-2002)

#### Mean-field theory

Let  $\rho_k(t)$  be the fraction of vertices of degree k infected at time t.  $\theta(\lambda)$  = probability a given edge points to an infected site.

$$\frac{d\rho_k(t)}{dt} = -\rho_k(t) + \lambda k(1 - \rho_k(t))\theta$$

so  $ho_k = k\lambda \theta/(1+k\lambda \theta)$  and

$$heta = \sum_k q_k rac{k\lambda heta}{1+k\lambda heta} \quad ext{where} \quad q_k = k p_k/\mu$$

Solve for  $\theta$ . See Durrett (2007) Random Graph Dynamics. 125–128

### Mean-field predictions

- If  $\alpha \leq 3$  then  $\lambda_c = 0$ .
- If  $3 < \alpha < 4$  then  $\lambda_c > 0$ ,  $\rho(\lambda) \sim C(\lambda \lambda_c)^{1/(\alpha 3)}$ .
- If  $\alpha > 4$  then  $\beta = 1$ .

Generalized to bipartite graphs (think men and women and sexually transmitted diseases) by Gómez-Gardeñes et al. (2008) Proc. Nat. Acad. Sci. 1399-1404

$$\lambda_c > 0$$
 if  $\alpha_F, \alpha_M > 3$ . (Sweden  $\alpha_F = 3.5, \alpha_M = 3.3$ )

Keys to the Proof: 1. CP on Stars

# 2. Use more than one vertex of high degree

**Theorem.** Let G be a star graph with center 0 and leaves  $1, 2, \ldots, k$ . Let  $A_t$  be the set of vertices infected in the contact process at time t. Suppose  $\lambda \le 1$  and  $\lambda^2 k \ge 50$ . Let  $L = \lambda k/4$  and let  $T = \exp(k\lambda^2/80)/4L$ . Let  $P_{L,i}$  denote the probability when at time 0 the center is at state *i* and *L* leaves are infected. Then

$$P_{L,i}\left(\inf_{t < T} |A_t| \le 0.4L\right) \le 7e^{-\lambda^2 k/80} \quad \text{ for } i = 0, 1.$$

BBCS: In the Bárabasi-Albert model the maximum degree is  $O(n^{1/2})$ , so the contact process survives for time  $O(\exp(n^{1/2}))$ .

Chatterjee and Durrett, Ann. Prob. submitted

Despite the fact that the graph is locally tree like. Mean-field theory is

occupied, survives for time  $\geq \exp(n^{1-\delta})$  for any  $\delta > 0$ , and the equilibrium

 $c\lambda^{1+(\alpha-2)(2+\delta)} < \rho_n(\lambda) < C\lambda^{1+(\alpha-2)(1-\delta)}$ 

**Theorem.** If  $\alpha > 3$ ,  $\lambda_c = 0$ . With high prob starting from all sites

When  $\alpha > 3$ ,  $1 + (\alpha - 2)(1 - \delta) > 2$ , so  $\beta > 2$ .

Proof also applies to bipartite case.

Look at all of the vertices of degree  $\geq n^{\epsilon}$ . Infection persists at each for time  $\exp(\lambda^2 n^{\epsilon})$ 

Diameter of graph is  $\leq C \log n$  so you can push the infection from one star to another in time  $< C \log n$  with probability  $> n^{-B}$ .

Number of infected stars dominates random walk with strong positive drift.

density has

### 3. Achieving positive density

Use contact process duality with  $A = \{x\}$  and B = G

$$P(\xi_t^A \cap B \neq \emptyset) = P(\xi_t^B \cap A \neq \emptyset)$$

Survival time for degree k star is  $\exp(C\lambda^2 k)$ . If we can infect a site with degree  $> \lambda^{-(2+\delta)}$  it will last a long time.

If we infect a vertex of degree  $\geq \lambda^{-(m+\delta)}$  with  $m \geq 2$  then the probability we fail to reach one with degree  $\geq \lambda^{-(m+1+\delta)}$  is  $\leq p_m$  where  $\sum_m p_m < \infty$ .

### **Bounds on density**

Degrees of neighbors have size biased distribution  $p_j \sim C j^{-\alpha+1}$  so

$$\sum_{k > \lambda^{-(2+\delta)}} p_j \sim \lambda^{(\alpha-2)(2+\delta)}$$

extra +1 comes from the fact that the site must infect a neighbor before it

In other direction we show that if no vertex of degree  $\geq \lambda^{-(1-\delta)}$  nearby

**Conjecture.** *Correct power*  $1 + 2(\alpha - 2)$  *for*  $\alpha > 3$ 

Open problem study  $2 < \alpha < 3$ . Diameter is  $O(\log \log n)$ .

#### Problem 2. Chaos in a spatial epidemic model



Figure: Gypsy moth infestation

#### Model

Inspiration: In the late 1980s gypsy moths infested the Northeast killing many oak trees. Once the density of gypsy moths got large enough a nuclear polyhedrosis epidemic wiped them out.

 $G_n$  is a graph with n vertices. Discrete time = years. Moths lay eggs that hatch the next year. Epidemic spreads quickly

- An occupied site gives rise to a Poisson mean  $\beta$  number of offspring sent to locations chosen at random from the entire graph (local dispersal will be considered later).
- ullet Each site is infected with a small probability  $\alpha_n$ . If the site is occupied then the infection spreads and wipes out the connected component of occupied sites containing that vertex.

# **Deterministic Limit** h(p) = g(f(p))

**Growth.** If density of occupied sites is *p* before growth then density after is

$$f(p) = 1 - e^{-\beta p}$$

**Epidemic.** Suppose  $G_n$  is a random 3-regular graph which looks locally like a tree. Since infection probability is small, only members of the giant component will be killed. If the density before infection is q the density after is

$$g(q) = egin{cases} q & ext{if } q \in [0, 1/2] \ (1-q)^3/q^2 & ext{if } q \in [1/2, 1] \end{cases}$$

**Theorem.** Suppose  $\alpha_n \to 0$  and  $\alpha_n \log n \to \infty$ . If we start in product measure with density p, densities in process at time  $k \ge 0$  on graph converge in probability to  $h^k(p)$ .

**Theorem.** Suppose  $\alpha_n \to 0$  and  $\alpha_n \log n \to \infty$ . If we start in product measure with density p, densities in process at time  $k \ge 0$  on graph converge in probability to  $h^k(p)$ .

**Proof.** At almost all x, inside the ball of radius  $(1/5) \log_2 n$  the random regular graph looks like a tree.

 $\alpha_n \log n \to \infty$  guarantees that a cluster escaping from the ball will be hit by infection.

#### $\beta < 1$ dies out

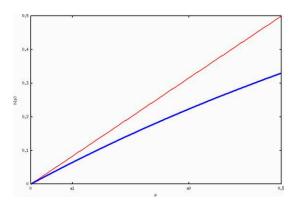


Figure:  $\beta = 0.8$ 

### $1 < \beta < 2 \log 2$ attracting fixed point

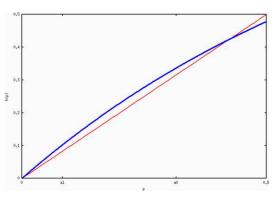


Figure:  $\beta = 1.2$ 

### $\beta > 2 \log 2$ : unstable fixed point

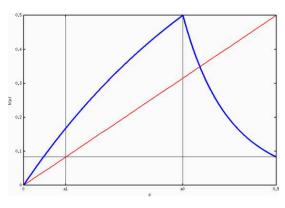


Figure:  $\beta = 2 \log 3$ 

0.1

0.05

0.5

# 0.45 0.4 0.35 0.3 0.25 0.2 0.15

Iterates 500 to 550 of h

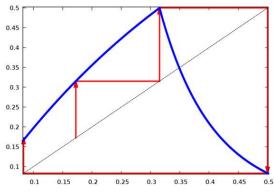
### Period 3 implies chaos

Theorem. Li and Yorke (1975) If there is a point with  $h^3(c) \le c < h(c) < h^2(c)$  then

- (i) For every k there is a point with period k.
- (ii) there is an uncountable S so that if  $p, q \in S$  and r is periodic

$$\limsup_{N\to\infty}|h^N(p)-h^N(q)|>0\qquad \liminf_{N\to\infty}|h^N(p)-h^N(q)|=0$$
 
$$\limsup_{N\to\infty}|h^N(p)-h^N(r)|>0$$

**Theorem.** Let  $a_1 = h(1/2)$ . If  $\beta > 2 \log 2$  then the map is chaotic.

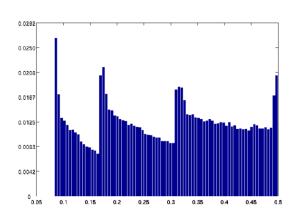


Lasota and Yorke (1973). There is an absolutely continuous invariant measure if  $\inf_{p \in [a_1,1/2]} |(h^n)'(p)| > 1$ 

Figure: n = 3 condition holds for  $\beta \in (2 \log 2, 2.48]$ 

1.6

**Histogram of orbits for**  $\beta = 2 \log 3$ 



# $G_n = (\mathbb{Z} \mod L)^2$

Let  $\alpha_n$  be epidemic probability and  $r_n$  be dispersal range.

**Theorem.** If  $\alpha_n \to 0$  and  $\alpha_n r_n \to \infty$  then densities converge to  $h^k(p)$ where h(p) = g(f(p)).

$$f(p) = 1 - e^{-\beta p}$$

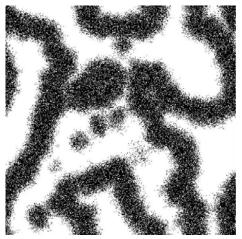
$$g(p) = p - P_p(|\mathcal{C}_0| = \infty)$$
 for site percolation.

**Conjecture.** Chaotic for  $\beta > \beta_c = \frac{1}{\rho_c} \log \left( \frac{1}{1 - \rho_c} \right) \approx 1.516$ .

**Theorem.** Absolutely continuous invariant measure for  $\beta \in (\beta_c, \beta_c + \delta)$ .

Why?  $g'(p) \to -\infty$  as  $p \downarrow h^{-1}(p_c)$ .

### Simulation on $\mathbb{Z}^2$ with $r_n$ fixed



### Nontrivial Stationary Distribution on $\mathbb{Z}^2$

AE: this is an obvious application of the block construction, so the details should not be added to the paper.

Main idea. After growth the density of the process is  $\leq f(1) = 1 - e^{-\beta}$  so even after the most severe epidemic there will be a positive density of sites.

Let  $\delta = (1 - e^{-\beta})e^{-4\beta}$ . If the neighborhood for growth is  $[-L, L]^2$ , divide space into square of side L/2 and say that the square is occupied if the fraction of occupied sites  $> \delta/2$ .

Now do a block construction.

**Problem 3: Random Boolean Networks** 

Work in progress with Shirshendu Chatterjee.

Let  $G_n$  be a random directed graph in which vertex has in degree  $r \geq 3$ . (Put r oriented half-edges at each vertex and pair at random).

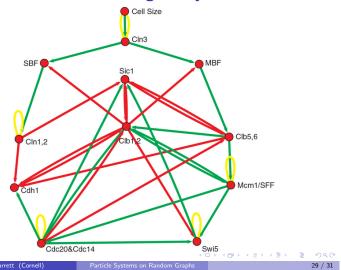
 $\eta_n(x) \in \{0,1\}$  discrete time particle system

Each site x has a random function  $\phi_x:\{0,1\}^r \to \{0,1\}$  where the values are i.i.d. and = 1 with probability p

$$\eta_{n+1}(x) = \phi_x(\eta_n(y_1(x)), \dots \eta_n(y_r(x)))$$

where the  $y_i(x)$  are the vertices with edges pointing to x.

# These are cartoons of regulatory networks



#### Simplified Problem

Think of  $\xi_n(x) = 1$  if  $\eta_n(x) \neq \eta_{n-1}(x)$ 

Definition.  $\xi_n(x)$  is a threshold voter model in which  $\xi_{n+1}(x)=1$  with probability q = 2p(1-p) if

$$\max_{1 \le i \le r} \xi_n(y_i(x)) = 1$$

Why? One of the inputs has changed so the new value will be different from the old with probability 2p(1-p)

**Conjecture.** *If*  $r \ge 3$  *prolonged persistence if* qr > 1.

Chaos is bad news for a regulatory network. Stuart Kauffman argues that they evolve to the edge of chaos.

**Theorem.** If q(r-1) > 1 then persistence for time  $O(e^{\gamma n})$ 

Look at the dual which branches from x to all of  $\{y_1(x), \dots y_r(x)\}$  with probability q.

Reverse the arrows and let  $A^* = \{y : x \to y \text{ for some } x \in A\}$ . This is not the boundary since we may have  $y \in A$ .

If  $\epsilon$  is small then with high prob,  $|A^*| \geq (r-1-\epsilon)|A|$  for all A with  $|A| \leq n\epsilon$ .

r-1 is sharp. Start with 1 then add a vertex x that points to some y with  $1\to y,$  etc.

**Theorem.** If qr > 1 persistence for time  $O(\exp(n^{\beta(q)}))$  where  $\beta(q) \to 0$  as  $q \downarrow 1/r$ .

4 D > 4 B > 4 E > 4 E > E 990

Rick Durrett (Cornell

Particle Systems on Random Graphs

31 / 3