Problem 1

Two Particle Systems on Random Graphs

Rick Durrett

Joint work with

1. Shirshedu Chatterjee
2. Daniel Remenik

Consider the contact process on a random graph with a power law degree distribution.
Power law random graph. Following Newman, Strogatz, and Watts $(2000,2001)$ Let $d_{1}, d_{2} \ldots$ be i.i.d. with $P\left(d_{i}=k\right) \sim C k^{-\alpha}$ with $\alpha>3$ so that $\operatorname{var}\left(d_{i}\right)<\infty$.
Condition on $\left\{d_{1}+d_{2}+\cdots+d_{n}\right.$ is even $\}$, attach d_{i} half-edges to vertex i and then pair the half-edges at random. If you want a nice graph then you can condition on the event of positive probability that there is no self-loop and no multiple edges between vertices.
Suppose $P\left(d_{i} \leq 2\right)=0$ so the graph is connected with high prob, i.e., with probability $\rightarrow 1$ as $n \rightarrow \infty$.

Picture of the Construction

Contact process

Each site is either healthy 0 or infected 1.
Infected sites become healthy at rate 1 .
Healthy sites become infected at rate λ times the number of infected neighbors.

Theorem. Berger, Borgs, Chayes, and Saberi. (2005) Consider the contact process on the Bárabasi-Albert preferential attachment graph which has $\alpha=3$. $\lambda_{c}=0$. With high prob the contact process survives for time $\geq \exp \left(C_{n}^{1 / 2}\right)$, and the equilibrium density has

$$
b \lambda^{c} \leq \rho(\lambda) \leq B \lambda^{c}
$$

Blog network

Pastor-Satorras and Vespigiani (2001-2002)

Mean-field theory

Let $\rho_{k}(t)$ be the fraction of vertices of degree k infected at time t. $\theta(\lambda)=$ probability a given edge points to an infected site.

$$
\frac{d \rho_{k}(t)}{d t}=-\rho_{k}(t)+\lambda k\left(1-\rho_{k}(t)\right) \theta
$$

so $\rho_{k}=k \lambda \theta /(1+k \lambda \theta)$ and

$$
\theta=\sum_{k} q_{k} \frac{k \lambda \theta}{1+k \lambda \theta} \quad \text { where } \quad q_{k}=k p_{k} / \mu
$$

Solve for θ. See Durrett (2007) Random Graph Dynamics. 125-128

Mean-field predictions

- If $\alpha \leq 3$ then $\lambda_{c}=0$.
- If $3<\alpha<4$ then $\lambda_{c}>0, \rho(\lambda) \sim C\left(\lambda-\lambda_{c}\right)^{1 /(\alpha-3)}$.
- If $\alpha \geq 4$ then $\beta=1$.

Generalized to bipartite graphs (think men and women and sexually transmitted diseases) by Gómez-Gardeñes et al. (2008) Proc. Nat. Acad. Sci. 1399-1404
$\lambda_{c}>0$ if $\alpha_{F}, \alpha_{M}>3$. (Sweden $\alpha_{F}=3.5, \alpha_{M}=3.3$)

Chatterjee and Durrett, Ann. Prob. submitted

Despite the fact that the graph is locally tree like. Mean-field theory is wrong.

Theorem. If $\alpha>3, \lambda_{c}=0$. With high prob starting from all sites occupied, survives for time $\geq \exp \left(n^{1-\delta}\right)$ for any $\delta>0$, and the equilibrium density has

$$
c \lambda^{1+(\alpha-2)(2+\delta)} \leq \rho_{n}(\lambda) \leq C \lambda^{1+(\alpha-2)(1-\delta)}
$$

When $\alpha>3,1+(\alpha-2)(1-\delta)>2$, so $\beta>2$.
Proof also applies to bipartite case.

Keys to the Proof: 1. CP on Stars

Theorem. Let G be a star graph with center 0 and leaves $1,2, \ldots, k$. Let A_{t} be the set of vertices infected in the contact process at time t.
Suppose $\lambda \leq 1$ and $\lambda^{2} k \geq 50$. Let $L=\lambda k / 4$ and let $T=\exp \left(k \lambda^{2} / 80\right) / 4 L$. Let $P_{L, i}$ denote the probability when at time 0 the center is at state i and L leaves are infected. Then

$$
P_{L, i}\left(\inf _{t \leq T}\left|A_{t}\right| \leq 0.4 L\right) \leq 7 e^{-\lambda^{2} k / 80} \quad \text { for } i=0,1
$$

2. Use more than one vertex of high degree

BBCS: In the Bárabasi-Albert model the maximum degree is $O\left(n^{1 / 2}\right)$, so the contact process survives for time $O\left(\exp \left(n^{1 / 2}\right)\right)$.
Look at all of the vertices of degree $\geq n^{\epsilon}$. Infection persists at each for time $\exp \left(\lambda^{2} n^{\epsilon}\right)$
Diameter of graph is $\leq C \log n$ so you can push the infection from one star to another in time $\leq C \log n$ with probability $\geq n^{-B}$.

Number of infected stars dominates random walk with strong positive drift.

3. Achieving positive density

Use contact process duality with $A=\{x\}$ and $B=G$

$$
P\left(\xi_{t}^{A} \cap B \neq \emptyset\right)=P\left(\xi_{t}^{B} \cap A \neq \emptyset\right)
$$

Survival time for degree k star is $\exp \left(C \lambda^{2} k\right)$. If we can infect a site with degree $\geq \lambda^{-(2+\delta)}$ it will last a long time.
If we infect a vertex of degree $\geq \lambda^{-(m+\delta)}$ with $m \geq 2$ then the probability we fail to reach one with degree $\geq \lambda^{-(m+1+\delta)}$ is $\leq p_{m}$ where $\sum_{m} p_{m}<\infty$.

Bounds on density

Degrees of neighbors have size biased distribution $p_{j} \sim C_{j}{ }^{-\alpha+1}$ so

$$
\sum_{k>\lambda^{-(2+\delta)}} p_{j} \sim \lambda^{(\alpha-2)(2+\delta)}
$$

extra +1 comes from the fact that the site must infect a neighbor before it heals.
In other direction we show that if no vertex of degree $\geq \lambda^{-(1-\delta)}$ nearby dual dies.
Conjecture. Correct power $1+2(\alpha-2)$ for $\alpha>3$
Open problem study $2<\alpha<3$. Diameter is $O(\log \log n)$.

Figure: Gypsy moth infestation

Model

Inspiration: In the late 1980s gypsy moths infested the Northeast killing many oak trees. Once the density of gypsy moths got large enough a nuclear polyhedrosis epidemic wiped them out.
G_{n} is a graph with n vertices. Discrete time $=$ years. Moths lay eggs that hatch the next year. Epidemic spreads quickly

- An occupied site gives rise to a Poisson mean β number of offspring sent to locations chosen at random from the entire graph (local dispersal will be considered later).
- Each site is infected with a small probability α_{n}. If the site is occupied then the infection spreads and wipes out the connected component of occupied sites containing that vertex.

Deterministic Limit $h(p)=g(f(p))$

Growth. If density of occupied sites is p before growth then density after is

$$
f(p)=1-e^{-\beta p}
$$

Epidemic. Suppose G_{n} is a random 3-regular graph which looks locally like a tree. Since infection probability is small, only members of the giant component will be killed. If the density before infection is q the density after is

$$
g(q)= \begin{cases}q & \text { if } q \in[0,1 / 2] \\ (1-q)^{3} / q^{2} & \text { if } q \in[1 / 2,1]\end{cases}
$$

Theorem. Suppose $\alpha_{n} \rightarrow 0$ and $\alpha_{n} \log n \rightarrow \infty$. If we start in product measure with density p, densities in process at time $k \geq 0$ on graph converge in probability to $h^{k}(p)$.

Theorem. Suppose $\alpha_{n} \rightarrow 0$ and $\alpha_{n} \log n \rightarrow \infty$. If we start in product measure with density p, densities in process at time $k \geq 0$ on graph converge in probability to $h^{k}(p)$.
Proof. At almost all x, inside the ball of radius $(1 / 5) \log _{2} n$ the random regular graph looks like a tree.
$\alpha_{n} \log n \rightarrow \infty$ guarantees that a cluster escaping from the ball will be hit by infection.

$\beta<1$ dies out

Figure: $\beta=0.8$

$1<\beta<2 \log 2$ attracting fixed point

Figure: $\beta=1.2$
$\beta>2 \log 2$: unstable fixed point

Figure: $\beta=2 \log 3$

Period 3 implies chaos

Theorem. Li and Yorke (1975) If there is a point with
$h^{3}(c) \leq c<h(c)<h^{2}(c)$ then
(i) For every k there is a point with period k.
(ii) there is an uncountable S so that if $p, q \in S$ and r is periodic

$$
\begin{aligned}
& \limsup _{N \rightarrow \infty}\left|h^{N}(p)-h^{N}(q)\right|>0 \quad \liminf _{N \rightarrow \infty}\left|h^{N}(p)-h^{N}(q)\right|=0 \\
& \limsup \left|h_{N \rightarrow \infty}^{N}(p)-h^{N}(r)\right|>0
\end{aligned}
$$

Iterates 500 to 550 of h

Theorem. Let $a_{1}=h(1 / 2)$. If $\beta>2 \log 2$ then the map is chaotic.

Histogram of orbits for $\beta=2 \log 3$

$$
G_{n}=(\mathbb{Z} \bmod L)^{2}
$$

Let α_{n} be epidemic probability and r_{n} be dispersal range.
Theorem. If $\alpha_{n} \rightarrow 0$ and $\alpha_{n} r_{n} \rightarrow \infty$ then densities converge to $h^{k}(p)$ where $h(p)=g(f(p))$.
$f(p)=1-e^{-\beta p}$
$g(p)=p-P_{p}\left(\left|\mathcal{C}_{0}\right|=\infty\right)$ for site percolation.
Conjecture. Chaotic for $\beta>\beta_{c}=\frac{1}{p_{c}} \log \left(\frac{1}{1-p_{c}}\right) \approx 1.516$.
Theorem. Absolutely continuous invariant measure for $\beta \in\left(\beta_{c}, \beta_{c}+\delta\right)$.
Why? $g^{\prime}(p) \rightarrow-\infty$ as $p \downarrow h^{-1}\left(p_{c}\right)$.

Nontrivial Stationary Distribution on \mathbb{Z}^{2}

AE: this is an obvious application of the block construction, so the details should not be added to the paper.
Main idea. After growth the density of the process is $\leq f(1)=1-e^{-\beta}$ so even after the most severe epidemic there will be a positive density of sites.
Let $\delta=\left(1-e^{-\beta}\right) e^{-4 \beta}$. If the neighborhood for growth is $[-L, L]^{2}$, divide space into square of side $L / 2$ and say that the square is occupied if the fraction of occupied sites $>\delta / 2$.
Now do a block construction.

Simulation on \mathbb{Z}^{2} with r_{n} fixed

Rick Durrett (Comell)

Problem 3: Random Boolean Networks

Work in progress with Shirshendu Chatterjee.
Let G_{n} be a random directed graph in which vertex has in degree $r \geq 3$. (Put r oriented half-edges at each vertex and pair at random).
$\eta_{n}(x) \in\{0,1\}$ discrete time particle system
Each site x has a random function $\phi_{x}:\{0,1\}^{r} \rightarrow\{0,1\}$ where the values are i.i.d. and $=1$ with probability p

$$
\eta_{n+1}(x)=\phi_{x}\left(\eta_{n}\left(y_{1}(x)\right), \ldots \eta_{n}\left(y_{r}(x)\right)\right)
$$

where the $y_{i}(x)$ are the vertices with edges pointing to x.

Simplified Problem

Think of $\xi_{n}(x)=1$ if $\eta_{n}(x) \neq \eta_{n-1}(x)$
Definition. $\xi_{n}(x)$ is a threshold voter model in which $\xi_{n+1}(x)=1$ with probability $q=2 p(1-p)$ if

$$
\max _{1 \leq i \leq r} \xi_{n}\left(y_{i}(x)\right)=1
$$

Why? One of the inputs has changed so the new value will be different from the old with probability $2 p(1-p)$
Conjecture. If $r \geq 3$ prolonged persistence if $q r>1$.
Chaos is bad news for a regulatory network. Stuart Kauffman argues that they evolve to the edge of chaos.

Theorem. If $q(r-1)>1$ then persistence for time $O\left(e^{\gamma n}\right)$
Look at the dual which branches from x to all of $\left\{y_{1}(x), \ldots y_{r}(x)\right\}$ with probability q.
Reverse the arrows and let $A^{*}=\{y: x \rightarrow y$ for some $x \in A\}$. This is not the boundary since we may have $y \in A$.
If ϵ is small then with high prob, $\left|A^{*}\right| \geq(r-1-\epsilon)|A|$ for all A with $|A| \leq n \epsilon$.
$r-1$ is sharp. Start with 1 then add a vertex x that points to some y with $1 \rightarrow y$, etc.
Theorem. If $q r>1$ persistence for time $O\left(\exp \left(n^{\beta(q)}\right)\right)$ where $\beta(q) \rightarrow 0$ as $q \downarrow 1 / r$.

