
Two Particle Systems on Random Graphs

Rick Durrett
...

Joint work with
1. Shirshedu Chatterjee

2. Daniel Remenik

Rick Durrett (Cornell) Particle Systems on Random Graphs 1 / 31

Problem 1

Consider the contact process on a random graph with a power law degree
distribution.

Power law random graph. Following Newman, Strogatz, and Watts
(2000, 2001) Let d1, d2 . . . be i.i.d. with P(di = k) ∼ Ck−α with α > 3 so
that var (di ) < ∞.

Condition on {d1 + d2 + · · · + dn is even}, attach di half-edges to vertex i
and then pair the half-edges at random. If you want a nice graph then you
can condition on the event of positive probability that there is no self-loop
and no multiple edges between vertices.

Suppose P(di ≤ 2) = 0 so the graph is connected with high prob, i.e.,
with probability → 1 as n → ∞.
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Picture of the Construction
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Blog network
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Contact process

Each site is either healthy 0 or infected 1.

Infected sites become healthy at rate 1.

Healthy sites become infected at rate λ times the number of infected
neighbors.

Theorem. Berger, Borgs, Chayes, and Saberi. (2005) Consider the
contact process on the Bárabasi-Albert preferential attachment graph
which has α = 3. λc = 0. With high prob the contact process survives for
time ≥ exp(Cn1/2), and the equilibrium density has

bλC ≤ ρ(λ) ≤ Bλc
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Pastor-Satorras and Vespigiani (2001-2002)

Mean-field theory

Let ρk(t) be the fraction of vertices of degree k infected at time t.
θ(λ) = probability a given edge points to an infected site.

dρk(t)

dt
= −ρk(t) + λk(1 − ρk(t))θ

so ρk = kλθ/(1 + kλθ) and

θ =
∑
k

qk
kλθ

1 + kλθ
where qk = kpk/µ

Solve for θ. See Durrett (2007) Random Graph Dynamics. 125–128
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Mean-field predictions

If α ≤ 3 then λc = 0.

If 3 < α < 4 then λc > 0, ρ(λ) ∼ C (λ − λc)
1/(α−3).

If α ≥ 4 then β = 1.

Generalized to bipartite graphs (think men and women and sexually
transmitted diseases) by Gómez-Gardeñes et al. (2008) Proc. Nat. Acad.
Sci. 1399-1404

λc > 0 if αF , αM > 3. (Sweden αF = 3.5, αM = 3.3)
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Chatterjee and Durrett, Ann. Prob. submitted

Despite the fact that the graph is locally tree like. Mean-field theory is
wrong.

Theorem. If α > 3, λc = 0. With high prob starting from all sites
occupied, survives for time ≥ exp(n1−δ) for any δ > 0, and the equilibrium
density has

cλ1+(α−2)(2+δ) ≤ ρn(λ) ≤ Cλ1+(α−2)(1−δ)

When α > 3, 1 + (α − 2)(1 − δ) > 2, so β > 2.

Proof also applies to bipartite case.
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Keys to the Proof: 1. CP on Stars

Theorem. Let G be a star graph with center 0 and leaves 1, 2, . . . , k. Let
At be the set of vertices infected in the contact process at time t.
Suppose λ ≤ 1 and λ2k ≥ 50. Let L = λk/4 and let
T = exp(kλ2/80)/4L. Let PL,i denote the probability when at time 0 the
center is at state i and L leaves are infected. Then

PL,i

(
inf
t≤T

|At | ≤ 0.4L

)
≤ 7e−λ2k/80 for i = 0, 1.
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2. Use more than one vertex of high degree

BBCS: In the Bárabasi-Albert model the maximum degree is O(n1/2), so
the contact process survives for time O(exp(n1/2)).

Look at all of the vertices of degree ≥ nε. Infection persists at each for
time exp(λ2nε)

Diameter of graph is ≤ C log n so you can push the infection from one star
to another in time ≤ C log n with probability ≥ n−B .

Number of infected stars dominates random walk with strong positive drift.
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3. Achieving positive density

Use contact process duality with A = {x} and B = G

P(ξA
t ∩ B �= ∅) = P(ξB

t ∩ A �= ∅)

Survival time for degree k star is exp(Cλ2k). If we can infect a site with
degree ≥ λ−(2+δ) it will last a long time.

If we infect a vertex of degree ≥ λ−(m+δ) with m ≥ 2 then the probability
we fail to reach one with degree ≥ λ−(m+1+δ) is ≤ pm where

∑
m pm < ∞.
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Bounds on density

Degrees of neighbors have size biased distribution pj ∼ Cj−α+1 so∑
k>λ−(2+δ)

pj ∼ λ(α−2)(2+δ)

extra +1 comes from the fact that the site must infect a neighbor before it
heals.

In other direction we show that if no vertex of degree ≥ λ−(1−δ) nearby
dual dies.

Conjecture. Correct power 1 + 2(α − 2) for α > 3

Open problem study 2 < α < 3. Diameter is O(log log n).
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Problem 2. Chaos in a spatial epidemic model

Figure: Gypsy moth infestation
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Model

Inspiration: In the late 1980s gypsy moths infested the Northeast killing
many oak trees. Once the density of gypsy moths got large enough a
nuclear polyhedrosis epidemic wiped them out.

Gn is a graph with n vertices. Discrete time = years. Moths lay eggs that
hatch the next year. Epidemic spreads quickly

An occupied site gives rise to a Poisson mean β number of offspring
sent to locations chosen at random from the entire graph (local
dispersal will be considered later).

Each site is infected with a small probability αn. If the site is
occupied then the infection spreads and wipes out the connected
component of occupied sites containing that vertex.
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Deterministic Limit h(p) = g(f (p))

Growth. If density of occupied sites is p before growth then density after is

f (p) = 1 − e−βp

Epidemic. Suppose Gn is a random 3-regular graph which looks locally
like a tree. Since infection probability is small, only members of the giant
component will be killed. If the density before infection is q the density
after is

g(q) =

{
q if q ∈ [0, 1/2]

(1 − q)3/q2 if q ∈ [1/2, 1]

Theorem. Suppose αn → 0 and αn log n → ∞. If we start in product
measure with density p, densities in process at time k ≥ 0 on graph
converge in probability to hk(p).

Rick Durrett (Cornell) Particle Systems on Random Graphs 15 / 31

Theorem. Suppose αn → 0 and αn log n → ∞. If we start in product
measure with density p, densities in process at time k ≥ 0 on graph
converge in probability to hk(p).

Proof. At almost all x , inside the ball of radius (1/5) log2 n the random
regular graph looks like a tree.

αn log n → ∞ guarantees that a cluster escaping from the ball will be hit
by infection.
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β < 1 dies out

Figure: β = 0.8
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1 < β < 2 log 2 attracting fixed point

Figure: β = 1.2
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β > 2 log 2: unstable fixed point

Figure: β = 2 log 3
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Iterates 500 to 550 of h
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Period 3 implies chaos

Theorem. Li and Yorke (1975) If there is a point with
h3(c) ≤ c < h(c) < h2(c) then

(i) For every k there is a point with period k.

(ii) there is an uncountable S so that if p, q ∈ S and r is periodic

lim sup
N→∞

|hN(p) − hN(q)| > 0 lim inf
N→∞

|hN(p) − hN(q)| = 0

lim sup
N→∞

|hN(p) − hN(r)| > 0
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Theorem. Let a1 = h(1/2). If β > 2 log 2 then the map is chaotic.
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Lasota and Yorke (1973). There is an absolutely continuous invariant
measure if

inf
p∈[a1,1/2]

|(hn)′(p)| > 1

Figure: n = 3 condition holds for β ∈ (2 log 2, 2.48]
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Histogram of orbits for β = 2 log 3

Rick Durrett (Cornell) Particle Systems on Random Graphs 24 / 31



Gn = (Z mod L)2

Let αn be epidemic probability and rn be dispersal range.

Theorem. If αn → 0 and αnrn → ∞ then densities converge to hk(p)
where h(p) = g(f (p)).

f (p) = 1 − e−βp

g(p) = p − Pp(|C0| = ∞) for site percolation.

Conjecture. Chaotic for β > βc = 1
pc

log
(

1
1−pc

)
≈ 1.516.

Theorem. Absolutely continuous invariant measure for β ∈ (βc , βc + δ).

Why? g ′(p) → −∞ as p ↓ h−1(pc).
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Simulation on Z
2 with rn fixed
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Nontrivial Stationary Distribution on Z
2

AE: this is an obvious application of the block construction, so the details
should not be added to the paper.

Main idea. After growth the density of the process is ≤ f (1) = 1 − e−β so
even after the most severe epidemic there will be a positive density of sites.

Let δ = (1 − e−β)e−4β . If the neighborhood for growth is [−L, L]2, divide
space into square of side L/2 and say that the square is occupied if the
fraction of occupied sites > δ/2.

Now do a block construction.
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Problem 3: Random Boolean Networks

Work in progress with Shirshendu Chatterjee.

Let Gn be a random directed graph in which vertex has in degree r ≥ 3.
(Put r oriented half-edges at each vertex and pair at random).

ηn(x) ∈ {0, 1} discrete time particle system

Each site x has a random function φx : {0, 1}r → {0, 1} where the values
are i.i.d. and = 1 with probability p

ηn+1(x) = φx(ηn(y1(x)), . . . ηn(yr (x)))

where the yi (x) are the vertices with edges pointing to x .
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These are cartoons of regulatory networks
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Simplified Problem

Think of ξn(x) = 1 if ηn(x) �= ηn−1(x)

Definition. ξn(x) is a threshold voter model in which ξn+1(x) = 1 with
probability q = 2p(1 − p) if

max
1≤i≤r

ξn(yi (x)) = 1

Why? One of the inputs has changed so the new value will be different
from the old with probability 2p(1 − p)

Conjecture. If r ≥ 3 prolonged persistence if qr > 1.

Chaos is bad news for a regulatory network. Stuart Kauffman argues that
they evolve to the edge of chaos.
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Theorem. If q(r − 1) > 1 then persistence for time O(eγn)

Look at the dual which branches from x to all of {y1(x), . . . yr (x)} with
probability q.

Reverse the arrows and let A∗ = {y : x → y for some x ∈ A}. This is not
the boundary since we may have y ∈ A.

If ε is small then with high prob, |A∗| ≥ (r − 1 − ε)|A| for all A with
|A| ≤ nε.

r − 1 is sharp. Start with 1 then add a vertex x that points to some y with
1 → y , etc.

Theorem. If qr > 1 persistence for time O(exp(nβ(q))) where β(q) → 0
as q ↓ 1/r .
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