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Archetti, Ferraro, and Christofori (2015)

Heterogeneity for IGF-II production maintained by public goods dynamics
in neuroendocrine pancreatic cancer. PNAS 112, 1833–1838

1 2
1 0 λ
2 1 1

2’s produce Insulin-like growth factor-II while 1’s free ride on that produced
by other cells. Since they do not produce the growth factor λ > 1.
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Homogeneously mixing environment

Frequencies of strategies follow the replicator equation

dxi

dt
= xi (Fi − F̄ )

Fi =
∑

j Gi ,jxj is the fitness of strategy i , F̄ =
∑

i xiFi , average fitness

If we add a constant to a column of G then Fi − F̄ is not changed.
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Replicator equation for our example

Subtract a constant to make the diagonal 0.

1 2
1 0 b
2 c 0

b = λ− 1, c = 1. Let u = u1. Replicator equation is

du

dt
= u(1− u)[b − (b + c)u]

If b, c > 0, u(t) → b/(b + c) = (λ− 1)/λ.
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Spatial Model

Space is the d-dimensional integer lattice, d ≥ 3. Interaction kernel
p(x) = 1/2d for the nearest neighbors x ± ei , ei is the ith unit vector.

ξ(x) is strategy used by x . Fitness is ψ(x) =
∑

y p(y − x)G (ξ(x), ξ(y)).

Birth-Death dynamics: Each individual gives birth at rate ψ(x) and
replaces the individual at y with probability p(y − x).

Death-Birth dynamics: Each particle dies at rate 1. Is replaced by a
copy of y with probability proportional to p(y − x)ψ(y). In our special
case we pick with a probability proportional to its fitness.

To reduce the number of formulas we will consider only Birth-Death
updates.
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Small selection

We are going to consider games with Ḡi ,j = 1 + wGi ,j where 1 is a matrix
of all 1’s, and w is small. Does not change the behavior of the replicator
equation.

If Gi ,j ≡ 1, B-D or D-B dynamics give the voter model. Remove an
individual and replace it with a copy of a neighbor chosen at random
(according to p).

With small selection this is a voter model perturbation in the sense of
Cox, Durrett, Perkins (2013) Astérisque volume 349, 120 pages. Available
on the arXiv and on my web page.
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PDE limit for voter model perturbations

Theorem. Flip rates are those of the voter model +ε2hi ,j(0, ξ). If we
rescale space to εZd and speed up time by ε−2 then in d ≥ 3

uε
i (t, x) = P(ξε

tε−2(x) = i)

converges to the solution of the system of PDE:

∂ui

∂t
=
σ2

2
∆ui + φi (u)

where
φi (u) =

∑
j 6=i

〈1(ξ(0)=j)hj ,i (0, ξ)− 1(ξ(0)=i)hi ,j(0, ξ)〉u

and the brackets are expected value with respect to the voter model
stationary distribution νu in which the densities are given by the vector u.
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Reaction term

Let p(0|x |y) be the probability that the three random walks started from
0, x and y never hit and let p(0|x , y) be the probability that the walks
starting from x and y coalesce, but they do not hit the one starting at 0.

Let v1, v2 be independent with P(vi = x) = p(x).

p1 = Ep(0|v1|v1 + v2) p2 = Ep(0|v1, v1 + v2)

The reaction term is p1 times the replicator equation for H = G + A where

Ai ,j = θ(Gi ,i + Gi ,j − Gj ,i − Gj ,j).

In the d = 3 nearest neighbor case θ = p2/p1 ≈ 0.5. Adding a constant to
a column does not change A. (False for DB).
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Back to our example

When the diagonal is 0, Hi ,j = (1 + θ)Gi ,j − θGj ,i .
In d = 3 nearest neighbor case θ = 1/2.

1 2
1 0 b̄ = (3/2)(λ− 1)− 1/2
2 c̄ = (3/2)− (λ− 1)/2 0

When the diagonal is 0, Hi ,j = (1 + θ)Gi ,j − θGj ,i .

1 2
1 0 b̄ = (3/2)λ− 2
2 c̄ = 2− λ/2 0
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Example continued

1 2
1 0 b̄ = (3/2)λ− 2
2 c̄ = 2− λ/2 0

If λ > 4 we have c̄ < 0 so 1 � 2 and 1’s win.
If λ < 4/3 we have b̄ < 0 so 2 � 1 and 2’s win.
If 4/3 < λ < 4 then coexistence occurs, equilibrium frequencies

≈ (b̄/(b̄ + c̄), c̄/(b̄ + c̄)

Homogeneously mixing case: coexistence for all λ > 1.
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Simulation data

λ 4/3 3/2 3 3.5 4

Original game 0.11 0.25 0.75 0.83 0.89
w = 1/2 0.01 0.19 0.79 0.88 0.96

w = 1/10 0.00 0.16 0.82 0.92 0.98
w to 0 limit 0 0.17 0.83 0.93 1
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3D Simulation λ = 3, w = 1/2, blue = 1

(Notre Dame 4/25/2018) 12 / 33



Three strategy games

If there are no unstable edge equilibria and 1, 2, or 3 edge equilibria that
are attracting and can be invaded by the other strategy then results in
Durrett (2014) EJP show that there is coexistence (all three strategies
present in equilibrium) when w is small
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Rock Paper Scissors

If the αi > 0, βi < 0 then 1 � 2 � 3 � 1

1 2 3
1 0 α3 β2

2 β3 0 α1

3 α2 β1 0

If the game G has an interior fixed point it must be:

ρ1 = (β1β2 + α1α3 − α1β1)/D

ρ2 = (β2β3 + α2α1 − α2β2)/D

ρ3 = (β3β1 + α3α2 − α3β3)/D

In RPS the three numerators are positive, so fixed point exists.
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Almost constant sum games

The transformed game has Hi ,j = (1 + θ)Gi ,j − θGj ,i .
If G is RPS then so is H.

Thorem. Suppose that the three strategy game H has (i) zeros on the
diagonal, (ii) an interior equilibrium ρ, and that H is almost constant sum:
Hij + Hji = γ + ηij with γ > 0 and maxi ,j |ηi ,j | < γ/2. Then
V (u) =

∑
i ui − ρi log ui is a convex Lyapunov function. This implies that

there is coexistence and that for any δ > 0 if w < w0(δ) and µ is any
stationary distribution concentrating on configurations with infinitely many
1’s, 2’s and 3’s we have

sup
x
|µ(ξ(x) = i)− ρi | < δ
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Replicator Equation for RPS

Theorem. Hofbauer and Sigmund. Let ∆ = β1β2β3 + α1α2α3. If ∆ > 0
solutions converge to the fixed point. If ∆ < 0 their distance from the
boundary tends to 0. If ∆ = 0 there is a one-parameter family of periodic
orbits.

G1 0 1 2
0 0 4 −3
1 −1 0 5
2 6 −2 0

G2 0 1 2
0 0 1 −2
1 −3 0 2
2 3 −2 0

G1 is constant sum and has ∆ > 0. G2 has ∆ < 0.
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Game G1, Replicator eq converges to fixed point
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Game G2, Replicator eq spirals out to boundary
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Marc Ryser and Kevin Murgas (2016) arXiv

Bone remodeling R = resorption, F = formation, Q = quiescent.

R F Q
R 0 α3 β2

F β3 0 α1

Q α2 β1 0

α1, α2 < 0, β1, β2 > 0, α3, β3 ∈ R. If α3 < 0, β3 > 0 they have a RPS
system. Case 4A stable, Case 4B unstable.
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Stag Hunt

Mentioned in Rousseau’s 1755 A Discourse on Inequality

Stag Hare
Stag 4 0
Hare 2 1

You can go hunt Stag (a large male deer) but if you go alone then you
have no chance to get one.

If you hunt Hare and the other player does also then you split the kill

(1/3, 2/3) unstable equilibrium
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Stag Hunt

Modify so that 0’s on diagonal

G Stag Hare
Stag 0 −1
Hare −2 0

(1/3, 2/3) unstable equilibrium

Hij = (3/2)Gi ,j − (1/2)Gj ,i

H Stag Hare
Stag 0 −1/2
Hare −5/2 0

(1/6, 5/6) unstable equilibrium
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Bistable 2x2 games

Bistable = b, c < 0. Replicator equation is

du

dt
= φ(u) = u(1− u)[b − (b + c)u]

ū = b/b + c . If ū < 1/2, 1’s take over, ū > 1/2 2’s take over.

Why?. PDE du
dt = σ2u′′/2 + u(1− u)[b − (b + c)u] has traveling wave

solution
u(t, x) = w(x − ct), u(−∞) = 1, u(∞) = 0.

1’s take over iff c > 0 iff
∫ 1
0 φ(x) dx > 0 iff ū < 1/2.

(Notre Dame 4/25/2018) 23 / 33



Multiple Myeloma

Dingli et al (2009) British J. Cancer

Normal bone remodeling is a consequence of a dynamic balance between
osteoclast (OC ) mediated bone resorption and bone formation due to
osteoblast (OB) activity.

(i) MM cells produce a variety of cytokines that stimulate the growth of
the OC population.

(ii) Secretion of DKK1 by MM cells inhibits OB activity.

OC cells produce osteoclast activating factors that stimulate the growth of
MM cells where as MM cells are not effected by the presence of OB cells.
These considerations lead to the following game matrix.
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Transformed game

A = (1 + θ)a− θe, . . .D = (1 + θ)d ,F = θd

G OC OB MM
OC 0 a b
OB e 0 −d
MM c 0 0

H 1 2 3
1 0 A B
2 E 0 −D
3 C F 0

a, b, c , d , e > 0. D and F > 0 so 3 � 2. (A,E ), (B,C ) can have any sign
combination except −,−.

If A,B,C ,E > 0. ( A
A+E ,

E
A+E , 0) “normal” and ( B

B+C , 0,
C

C+B ) “cancer”
are stable equilibria on their edges.

3 → (1, 2) if C
E > 1− F

A Only one condition can hold if F = 0

2 → (1.3) if 1− DC
BE > C

E so no three species coexistence.
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a = e = 2, b = c , d = 1. Bistable for c ∈ [0.5, 1.5]. 1,2 wins c = 1.5,
1,3 wins c = 1. Simulation is for c = 1.25.
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c = 1.25 at time 500. 1=blue, 2=red, 3=black
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Coexistence in Spatial MM game

If 1− DC
BE > C

E > 1− F
A then both boundary equilibria can be invaded and

there is coexistence for small w . (Theorem)

G 0 1 2
0 0 2 3
1 4.667 0 −1
2 3 0 0

H 0 1 2
0 0 2/3 3
1 6 0 −1.5
2 3 0.5 0

The stationary distribution for H is (0.19, 0.67, 0.15)
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Simulation with w = 1/7
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Summary

The main contribution is to describe a procedure for determining the
behavior of spatial three strategy games with weak selection, when the
game matrix G has no unstable edge fixed points.

One first forms the modified game Hij = (1 + θ)Gij − θGj ,i , where θ is a
constant that depends on the spatial structure but not on the entries in
the game matrix. θ ≈ 1/2 in the three dimensional nearest neighbor case.

The behavior of the spatial game with matrix G can then be predicted
from that of the replicator equation for H. We say predicted because in
some cases the behavior is not the same.
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For three strategy games without unstable edge fixed points there are
there are three major types:

1. When there are 1,2, or 3 stable edge fixed points and they can all be
invaded there is coexistence in the spatial evolutionary game when
selection is small. This was proved in Durrett (2014) EJP

2. As first observed by Durrett and Levin (1994), when the replicator
equation is bistable, i.e., the limit depends on the starting point, the
spatial game has a stronger equilibrium that is the limit for generic initial
conditions. In two strategy games, the victorious strategy is determined by
the direction of movement of the traveling wave solution of the PDE. For
three strategy games we do not know how to prove the existence of such
traveling waves or compute their speeds, but simulations suggest that the
same result holds.
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3. In the case of rock-paper-scissors games, there is coexistence when the
replicator equation converges to the interior fixed point. This was proved
in Durrett (2014) EJP hen the game is “almost constant sum.” It is
somewhat surprising that when the replicator equation trajectories that
spiral out to the boundary, space exerts a stabilizing effect and the three
strategies coexist. This result has also been found recently by Ryser and
Murgas (2017).

The results we have presented here are derived in the limit that the
selection w → 0, but simulations show that in many cases the conclusions
are accurate when w = 0.1 or even 0.25.
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