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Evolutionary games with weak selection

The investigation is inspired by two papers. The first is for two strategy
games. The second for games with n > 3 strategies.

Q. When is a strategy favored by selection in a spatial games? l.e.,
in equilibrium its frequency > 1/n.

Tarnita, C.E., Ohtsuki, H., Antal, T., Feng, F., and Nowak, M.A. (2009)
Strategy selection in structured populations. J. Theoretical Biology 259,
570-581

Tarnita, C.E., Wage, N., and Nowak, M. (2011) Multiple strategies in
structured populations. Proc. Natl. Acad. Sci. 108, 2334-2337
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Evolutionary games: Homogeneously mixing

Given is a game matrix G;; > 0 and the frequencies x; of strategies in the
population, F; = Zj G;i jx;j is the fitness of strategy i. Moran model like
dynamics: each individual dies at rate 1, and is replaced by an individual
chosen at random with probability proportional its fitness. Frequencies of
strategies follow the replicator equation

% = X,'(F,' — F)

where F = > xiFi, average fitness

Note: If we add a constant to a column of G then F; — F is not changed.
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Spatial Model

Suppose space is the d-dimensional integer lattice. Interaction kernel
p(x) is a probability distribution with p(x) = p(—x), finite range,
covariance matrix 2/. E.g., p(x) = 1/2d for the nearest neighbors x + e;,
ej is the ith unit vector.

§(x) is strategy used by x. Fitness is ®(x) = - p(y — x)G(£(x), &(y))-

Birth-Death dynamics: Each individual gives birth at rate ®(x) and
replaces the individual at y with probability p(y — x).

Death-Birth dynamics: Each particle dies at rate 1. Is replaced by a copy
of y with probability proportional to p(y — x)®(y). When p(z) =1/m for
a set of neighbors N\, we pick with a probaiblity proportional to its fitness.
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Small selection

We are going to consider games with @,-,j =1+ wG;;j where 1 is a matrix
of all 1's, and w is small. (Selection is small rather than weak since the
population size is infinite.)

If the game matrix is 1, B-D or D-B dynamics give the voter model.
Remove an individual and replace it with a copy of a neighbor chosen at
random (according to p). The evolutionary game with small selection is a
voter model perturbation in the sense of Cox, Durrett, Perkins (2013)
Astérisque volume 349, or arXiv:1103.1676

Restrict our attention to d > 3 so that the voter model has a one
parameter family of stationary distributions.
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PDE limit

Theorem. Flip rates are those of the voter model +¢2h; j(0,&). If we
rescale space to €Z9 and speed up time by €2 then in d > 3

ui(t,x) = P(Er—2(x) =)

converges to the solution of the system of partial differential equations:

8u,- 02
= —Au; + ¢;
5; = 5 Auitdi(u)

where the reaction term

$i(u) =Y (L(e(0)=iy Mi.i(0,€) = Lgoy=yhij(0,€))u
ik

and the brackets are expected value with respect to the voter model

stationary distribution v, in which the densities are given by the vector u.
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Key to proof is duality

Voter model is dual to coalescing random walk. ¢2°" is the individual at

time t — s who is responsible for the opinion of x at time t. Two lineages
that hit coalesce to one.

To handle the perturbation at times of a rate O(e?) Poisson process T, a
particle at x branches to include x + y for all y with p(y) > 0.

The collection of particles 12 is called the influence set. If we know the
values in I°" at time t — s then we can compute the value of x at time t.

If we run time at rate €2 the influence set converges to branching
Brownian motion. This shows u(t, x) converges. Easy to check it satisfies
PDE. See Chapter 2 of CDP.
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Birth-Death dynamics

Recall the replicator equation:

du,

—¢R ZGIkUk ZUJ 7,k Uk

Let v1, v» be independent with distribution p and define random walk
coalescence probabilities

p1 = p(0|vi|vi + o) p2 = p(O|v1, v1 + v2)

PDE is du;/0t = (1/2d)Au + ¢i5(u) where

¢IB(U) :p1¢R +P2ZU:UJ i I+ Gi,j_ GJ,J)
J#i
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Two features of the answer

1. Space enters into the answer through the values of two constants.
pr=p(O[vilvi +v2)  p2=p(Ofvi, v1 + v2)

(Also true for Tarnita's formulas.)

2. ¢p is p1 times the RHS of the replicator equation for the game matrix
G + A where
Aij=22(Gii+ Gij— G — G)
p1
“The effect of space is equivalent to changing the game matrix.” (Ohtsuki
and Nowak proved this for the pair approximation.)
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Evolutionary games on the torus

T,=(Zmod L)) N=L9 G=1+wG. w=¢
Regime 1. w > N2/,

Run time at rate ¢ 2. Scale space by multiplying by € > L=, Scaled torus
converges to RY and the limit is the PDE we saw on Z¢

Regime 2. N2/ > w > N1

In this case the time scale for the perturbation to have an effect, €72 is
much larger than the time O(L?) needed for a random walk to come to
equilibrium, but much smaller than the time O(L?) it takes for two
random walks to hit. Because of this, the particles in the dual will (except
for times O(L? log L) after the initial time or a branching event) be
approximately independent and uniformly distributed across the torus.
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Regime 2 limit theorem

U(t) = 5 30 1 (€20 =)

xeT;

Theorem Suppose that N=2/9 > w > N=1 If U;(0) — u;(0) then U;(t)
converges uniformly on compact sets to u;(t), the solution of

du;
d% =¢i(u)  ui(0) = y;

where ¢; is the reaction term in the PDE.

Thus in Regime 2, we have “mean-field” behavior, but the reaction
function in the ODE is computed using the voter model equilibrium, not
the product measure that is typically used in heuristic calculations.
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Tarnita’s formula

Suppose that in addition to the game dynamics each individual switches to
a strategy chosen at random from the n possible strategies at rate p.

Theorem. Suppose that N=2/4 > w > N1 If 4 — 0 and w/w — 0o
slowly enough, then in an n-strategy game strategy k is favored by slection
if and only if

6x(1/n,... . 1/n) >0,
or (c1Gik — Grx — Guk — €1Gux) + c2( G — G) > 0

Intuitively, in this regime the change from uniformity will be due to
lineages that have one branching event. Our result shows that ¢; and ¢
can be expressed in terms of coalescence probabilities.
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Configuration model

Let G, be a graph generated by the configuration model. Vertices have
degree k with probability px. We assign i.i.d. degrees d; to the vertices

and condition the sum dj + - - - + d,, to be even. We attach d; half-edges
to vertex i and then pair the half-edges at random. We will assume that

(AQ) the graph G, has no self-loops or parallel edges.
If >, k?pk < co then P(AOQ) is bounded away from 0 as n — oo.
(A1) pp =0 for m > M, i.e., the degree distribution is bounded.

(A2) px =0 for k < 2, so random walks have good mixing properties.
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Latent Voter Model

The Latent Voter Model introduced by Lambiotte, Saramaki, and Blondel
in 2009 models the spread of a technology through a social network. If you
have just bought a new iPad and see your neighbors Microsoft Surface
tablet then you are unlikely to change. We have states 1, 1%, 2, and 2*.
The number indicates the technology that the individual owns while *
indicates they are in a latent state where they will not change their
opinion. Our process takes place on a graph generated by the
configuration model. Letting f; be the fraction of neighbors in state I, the
transition rates are as follows

1— 2% atrate f» 2% — 2 at rate A
2—1*atrate fi 1* — 1 at rate \
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Construction

Each site x has a Poisson process with rate 1. For each arrival we have a
random choice of neighbor Y, n > 1. At time T, we draw an arrow from
Y/ to x to indicate that to indicate that if the individual at x is active
(not in state 1* or 2*) at time t then they will imitate the opinion at Y} .

We introduce for each site x, a rate A Poisson process W), n > 1 of
“wake-up dots" that return the voter to the active state.

@ If there is only one voter arrow between two wake up dots, the result

is an ordinary voter event.

o If between two wake up dots there are voter arrows to x from two
different neighbors, an event of probability O(A~?), then x will
change its opinion if and only at least one of the two neighbors has a

different opinion.
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LV as a voter model perturbation

There are O(\) wake up dots at a site in time t. We run time at rate A so
we have some events with two arrows between successive wake-up dots.
The probability of three or more arrows between two wake up dots — 0.

If we let y1,...yq(x) be an enumeration of the nearest neighbors of x, the
perturbation is

2
h12(x,€) = Lig,(x)=1} d(x)? Z Lie(n) or (vo)e(2.2})
1<k<(<d(x)

Similar formulas hold when the roles of 1 and 2 are interchanged.
hl*’j:hg*’jEO.

The reaction term is

P(u) = (h21(0,&) — m2(0,8))u = cu(l — u)(1 - 2u)
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ODE limit on random graph

Let m(x) = d(x)/D be the stationary distribution for the reandom walk.

Un(t) =Y () Lie, (=1

X

Theorem. Suppose that logn < A\, < n. If U"(0) — ug then U"(t)
converges in probability and uniformly on compact sets to u(t), the
solution of

du

— =cgu(l —u)(1—2u) u(0) = up.

dt
log n < A, implies that random walks will randomize their positions

between non-voter events. A\, < n since two random walks take time
O(n) to hit.
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Long time survival on random graph

The latent voter model has two absorbing states =1 and =2 so on a
finite graph it will eventually reach one of them. However, by analogy with
the contact process on the torus and or on power-law random graphs, we
expect survival for time exp(yn) for some vy > 0.

Theorem. Suppose that logn < A\, < n. Lete >0 and m < co. If
U"(0) — ug € (0,1) there is a Ty(e€) that depends on the initial density so
that for any m < oo if n is large then with high probability

\Un(t) —1/2] <e  for all t € [To(e), n™].

The result is proved using ideas from Darling, RW.R., and Norris, J.R.

(2008) Differential equation approximation for Markov chains. Probability
Surveys. 5, 37-79
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