Evolving voter model

Rick Durrett ${ }^{1}$, James Gleeson ${ }^{5}$, Alun Lloyd ${ }^{4}$, Peter Mucha ${ }^{3}$, Bill Shi ${ }^{3}$, David Sivakoff ${ }^{1}$, Josh Socolar ${ }^{2}$, and Chris Varghese ${ }^{2}$

1. Duke Math, 2. Duke Physics, 3. UNC Math,
2. NC State Math, 5. MACSI, U of Limerick, Ireland

A result of the 2010-2011 SAMSI program on complex networks
PNAS 109 (2012) 3682-3687

Holme and Newman (2006)

They begin with a network of N nodes and M edges, where each node x has an opinion $\xi(x)$ from a set of G possible opinions and the number of people per opinion $\gamma_{N}=N / G$ stays bounded as N gets large.
On each step a vertex x is picked at random. If its degree $d(x)=0$, nothing happens. If $d(x)>0$,
(i) with probability α an edge attached to vertex x is selected and the other end of that edge is moved to a vertex chosen at random from those with opinion $\xi(x)$.
(ii) otherwise (i.e., with probability $1-\alpha$) a random neighbor y of x is selected and the opinion of x is set to $\xi(y)$.
Eventually there are no edges that connect different opinions and the system freezes at time τ_{N}.

Extreme Cases

When $\alpha=1$ only rewiring steps occur, so once all of the M edges have been touched the graph has been disconnected into G components, each of which is small. By results for the coupon collector's problem, $\tau_{N} \sim M \log M$ updates.
When $\phi=0$ this is a voter model on a static graph. If we use an Erdös-Renyi random graph in which each vertex has average degree $\lambda>1$ then there is a giant component with a positive fraction of the vertices and a large number of small components with size $O(\log N)$. The giant component will reach consensus after $\tau_{N}=O\left(N^{2}\right)$ updates, so the end result is one opinion with a large number of followers while all of the other populations are small.

Finite size scaling

Community sizes $N=3200, M=6400, \gamma=10$.

Our model: continuous time

Events happen on each oriented edge (x, y) at times of a rate one Poisson process. (Isothermal voter model.) N^{2} updates \rightarrow time N.
If the voters at the two ends of the edge agree then we do nothing.
If they disagree, then with probability $1-\alpha$ the voter at x adopts the opinion of the voter at y.
With probability α, x breaks its connection to y and makes a new connection to a voter chosen at random:
(i) from all of the vertices in the graph "rewire to random",
(ii) from those that share its opinion "rewire to same."

Opinions $\{0,1\}$. Initial state product measure with density u.

Rewire to random with $u=1 / 2$

Figure: Erdos-Renyi, $\lambda=4, N=100,000$

Rewire to random: A universal curve?

Figure: Critical value $\alpha_{c}(u)$ depends on u, but when $\alpha<\alpha_{c}(u)$ minority fraction agrees with curve for $u=1 / 2$.

The simulation that showed us the answer

Figure: $N=1000, \lambda=4, u=1 / 2$, Initial $N_{10}=1000$.

Cox and Greven (1990)

The voter model on the torus in $d \geq 3$ at time $N t$ then it locally looks like $\nu_{\theta(t)}$ where the density changes according to the Wright-Fisher diffusion:

$$
d \theta_{t}=\sqrt{\beta_{d} \cdot 2 \theta_{t}\left(1-\theta_{t}\right)} d B_{t}
$$

The quantity under the square root is the fraction of discordant edges under $\nu_{\theta(t)}$.
There is a one parameter family of quasi-stationary distributions, and the parameter changes according to a diffusion.
quasi-stationary since in the finite voter model all 0 's and all 1's are absorbing.
N_{01} versus $N_{1}, \alpha=0.5$

Figure: Process comes quickly to the arch then diffuses along it, splitting into two when it reaches the end.

Graph fission for $\alpha=0.65$

N_{010} versus $N_{1}, \alpha=0.5$

Evolution Equations

$$
\begin{aligned}
\frac{d N_{10}}{d t} & =-(2-\alpha) N_{10}+(1-\alpha)\left[N_{100}-N_{010}+N_{110}-N_{101}\right] \\
\frac{1}{2} \frac{d N_{11}}{d t} & =(1-\alpha(1-u)) N_{10}+(1-\alpha)\left[N_{101}-N_{011}\right] \\
\frac{1}{2} \frac{d N_{00}}{d t} & =(1-\alpha u) N_{10}+(1-\alpha)\left[N_{010}-N_{100}\right]
\end{aligned}
$$

Of course $N_{11}+2 N_{10}+N_{00}=M$, the number of edges.

$$
\begin{aligned}
\sum_{i j k} N_{i j k} & =\sum_{y} d(y)(d(y)-1) \\
\frac{d}{d t} \sum_{i j k} N_{i j k} & =-2 \alpha\left[N_{101}+N_{010}+N_{100}+N_{110}\right]+4 \alpha N_{10} \cdot \frac{M}{N}
\end{aligned}
$$

One equation short

When $\lambda=4, \alpha=0.5$

	from equations	from simulation
N_{101} / N_{01}	$\left(2 a_{3}+2 b_{3}\right)-2 b_{3} u$	$-0.23+2.96 u$
N_{010} / N_{01}	$2 a_{3}+2 b_{3} u$	$2.73-2.96 u$
N_{110} / N_{01}	$\left(2 a_{3}+2 b_{3}+1\right)-\left(2 b_{3}-1\right) u$	$0.77+3.96 u$
N_{100} / N_{01}	$\left(2 a_{3}+2\right)+\left(2 b_{3}-1\right) u$	$4.73-3.96 u$

From $(d / d t) \sum_{i j k} N_{i j k}=0$ we get

$$
2 \lambda(1-\alpha)=4 a_{3}+2+2 b_{3}-\alpha
$$

Equations and simulation agree if $2 a_{3}=2.73$ and $2 b_{3}=-2.96$.

Arches for rewire to random

Arches for rewire to same

Figure: Note that constant term ≈ 0, explaining discontinuous distribution.

Extensions

We get the same result if we start with a random 4-regular graph
OR
if we designate $u N$ vertices as 1 and $(1-u) N$ as 0 and connect an i node to a j node with probability $p_{i j} / N$.
In the second case by choosing the $p_{i j}$ correctly we can achieve any possible value of N_{1} / N and N_{10} / M where $M=\lambda N / 2$.

For these initial conditions we quickly move to the arch of quasistationary distributions.

Degree distribution Poisson?

Poisson iff fraction of \neq neighbors is constant

Fraction of degree \mathbf{k} nodes $=1$

Open Problems

Prove quasi-stationary distributions exist when α is small.
When $\alpha=0$ we know the quasi-stationary distributions for the voter model, so it is natural to try a perturbation argument. However when we consider (G, ξ) for the voter model the G does not change.

Singular perturbation problem.
Work with Jonathan Mattingly and David Sivakoff.
First step: understand $\lim _{\alpha \rightarrow 0}$ which is \neq system with $\alpha=0$.
Answer: rewire, voter model equilibrates, rewire again.
Harder second step: There is a unique stationary distribution on the space of graphs with N vertices and M edges.

Conjecture. In the rewire to random model if $\alpha<\alpha_{c}(1 / 2)$ and $v(\alpha)<u \leq 1 / 2$ then starting from product measure with a density u of 1's, the evolving voter model converges rapidly to a quasi-stationary distribution $\nu_{\alpha, u}$. At time $t N$ the evolving voter model looks locally like $\nu_{\alpha, \theta(t)}$ where the density changes according to a generalized Wright-Fisher diffusion process

$$
d \theta_{t}=\sqrt{(1-\alpha)\left[c_{\alpha} \cdot \theta_{t}\left(1-\theta_{t}\right)-b_{\alpha}\right]} d B_{t}
$$

until θ_{t} reaches $v(\alpha)$ or $1-v(\alpha)$.
Rewire to same is similar but $b_{\alpha}=0$.
What happens with more than two initial types?

Arch is $c_{\alpha}\left(1-\sum_{i} u_{i}^{2}\right) / 2-b_{\alpha}$ for same c_{α}, b_{α} ?

c_{α} and b_{α} as a function of $\beta=\alpha /(1-\alpha)$

Generator $L=V+\beta R$, Voter, Rewire

Figure: Conjecture. $c_{\alpha}=a+2 b \beta, b_{\alpha}=-b \beta$

Linear in β, not a power series.

Infinitely many phase transitions

Suppose $c_{\alpha}=a+2 b \beta, b_{\alpha}=-b \beta, \beta=\frac{\alpha}{1-\alpha}$
If there are k opinions the smallest value of $1-\sum_{i} u_{i}^{2}$ is $1-1 / k$
$N_{\neq}=\frac{c_{\alpha}}{2}(1-1 / k)-b_{\alpha}$
This is 0 when $\beta_{k}=a(k-1) / 2 b$. (needs $2 b$ and $-b$).
$a=1.3, b=0.25$
$k=2, \beta_{2}=2.6, \alpha_{2}=\beta_{2} /\left(1+\beta_{2}\right)=0.72$
$k=3, \beta_{3}=5.2, \alpha_{3}=0.84$
α_{k} is the critical value for starting with k types.
If we start with a large number types then for $\alpha<\alpha_{2}$ we may end up with two or more types at the end, but if $\alpha_{2}<\alpha<\alpha_{3}$ we will always end up with three or more, etc.

Higher order statistics

$\alpha \quad y=N_{010} / N$ versus $x=N_{1} / N$
$0.1 \quad y=8.3256 x^{3}-16.8145 x^{2}+8.6220 x-0.14048$
$0.2 y=8.3574 x^{3}-16.7826 x^{2}+8.6622 x-0.24319$
$0.3 y=8.6960 x^{3}-17.2870 x^{2}+9.0065 x-0.41525$
$0.4 y=8.9222 x^{3}-17.6819 x^{2}+9.3873 x-0.63602$
$0.5 \quad y=9.9584 x^{3}-19.2445 x^{2}+10.3545 x-1.0078$
$0.6 y=11.7247 x^{3}-21.7348 x^{2}+11.8134 x-1.5414$
$0.7 \quad y=16.9464 x^{3}-29.4114 x^{2}+16.2660 x-2.7904$
$\alpha=0 \quad a x(1-x)^{2}+b x(1-x)=a x^{3}-(2 a+b) x^{2}+(a+b) x$

$$
a=c_{\lambda} \bar{p}(x|y| z) \quad b=c_{\lambda} \bar{p}(x z \mid y)
$$

$c_{\lambda}=\sum_{x} d_{x}\left(d_{x}-1\right) / N, \bar{p}$ coalesce probs averaged over triples

Graph statistics N_{01}, N_{010}, N_{100}, etc. are polynomials in u and β
Unfortunately there does not seem to be a dual for the evolving voter model.

Exactly solvable model?

$$
N_{010}-N_{100}=(1+\beta u) N_{01}
$$

