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Over the past two decades, the theory of tumor evolution has been based
on the notion that the tumor evolves by a succession of selective sweeps.
Sottoriva et al 1 sampled 349 individual tumor glands from the opposite
sides of 15 colorectal tumors and large adenomas. Based on this they
suggested that all of the driver mutations are present at the time of the
initial expansion. In this talk we will describe a simple mathematical model
that reproduces the observed phenomena and makes quantitative
predictions.

1Nature Genetics. 47 (2015), 209-216
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Clonal Expansion in Barrett’s Esophagus
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Observed Clonal Structure in AML

Clonal fractions at diagnosis: 13%, 29%, 5%, and 53%. Small clone was
dominant at relapse. Had 78 new mutations compared to first sampling.

Figure: Ding et al. (2012) Nature. 481, 506–510
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Sottoriva et al: sampling

Figure: 349 individual tumor glands were sampled from the opposite sides of 15
colorectal tumors and large adenomas.
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Big Bang Picture

Figure: Temporal and spatial patterns of mutations
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Progression of Colon Cancer

Rick Durrett (Duke) 7 / 36



Mutation patterns: adenomas

Figure: Adenomas were characterized by mutations and copy number aberrations
(CNA) that segregated between tumor sides.
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Mutation patterns: carcinomas

Figure: In contrast the majority of carcinomas exhibited the same private CNA in
individual glands from different sides of the tumor.
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The difference is early mixing

Kang et al (list of authors contains Sottoriva, Cristinda Curtis, and Darryl
Shibata.) J. Pathology 237 (2015), 355–362.

In order to be detectable (at a frequency of 10%) a private mutation must
occur in the first few cell divisions (1/8 = 12.5%). Our work will show this
is wrong.

Ryser, Min, Siegmund and Shibata, manuscript in preparation
Found evidence of early abnormal cell movement in 8 of 15 invasive
colorectal carcinomas (“born to be bad”) but not in four benign adenomas
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Figure: Genealogy in a hepatocellular carcinoma
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Hallatschek et al (2007) PNAS 104, 19926–19930

Figure: Competition of flourescently labelled yeast cells

Rick Durrett (Duke) 12 / 36



Model 1: Biased voter model

In the biased voter model, ξt , 0’s (normal cells) give birth at rate 1, and
1’s (cancer cells) at rate λ. In either case the new individual is sent to a
randomly chosen nearest neighbor on Zd .

Williams, T., and Bjerknes, R. (1972) Stochastic model for abnormal clone
spread through epithelial basal layer. Nature. 235, 19–21

Bramson, M., and Griffeath, D. On the Williams-Bjerknes tumour growth
model. II. Math. Proc. Cambridge Philos. Soc. 88 (1980), 339–357. I.
Ann. Probab. 9 (1981), 173–185.

Durrett, R., Foo, J., Leder, K. (2016) Spatial Moran Models. II. Cancer
inititaion in spatially structured tissue. J. Math. Biol. 72, 1369–1400

J. Foo, K, Leder, M.D. Ryser. (2014) Multifocality and recurrence risk: a
quantitative model of field cancerization. J. Theor. Biol. 355, 170–184
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Construction of the Biased Voter Model
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1 1 0 0 1 1 0

1 1 1 1 1 1 0

0

t

�

- δ
- δ

�δ

-

-

�

�δ

�δ

Rick Durrett (Duke) 14 / 36



Duality with coalescing branching random walk

Particles in the dual ζB,t
t jump to each nearest neighbor at rate 1/2d , give

birth onto each nearest neighbor at rate (λ− 1)/2d . When two particles
occupy the same site they immediately coalesce into one particle.

{ξAt ∩ B 6= ∅} = {ζB,t
t ∩ A 6= ∅}

Harris (1976), Griffeath (1978).

ζx ,t
t gives the set of potential ancestors of the individual at x at time t. To

determine the actual ancestor we introduce an ordering on ζx ,t
s . Ancestor

is first occupied site in the order. In population genetics, this construction
is called the ancestral selection graph.

Krone, S.M., and Neuhauser, C. (1997) Genetics. 145, 519–534

Rick Durrett (Duke) 15 / 36



−3 −2 −1 0 1 2

in state 1 ?

0

t

�

- δ

�δ

-

-

�

�δ

state of dual

−1

−1, 0

−2, 0

−2, 1

−2,−3, 1

−2,−3, 1, 2

−1,−3, 1, 2

Rick Durrett (Duke) 16 / 36



Shape theorem

Bramson and Griffeath (1980,1981) showed that if we start with a single
type 1 at the origin then when ξ0t does not die out, it grows linearly and
has an asymptotic shape D. That is, for any ε > 0, there is a tε (which
depends on the outcome ω) so that on {T0 = ∞} we have

(1− ε)tD ∩ Zd ⊂ ξt ⊂ (1 + ε)tD for t ≥ tε(ω). (1)

In the interior of the growing ball the branching arrows have no effect
since they go from one site occupied by 1 to another. The genealogy
becaomes a random walk, which moves by O(

√
t) in time t.
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Mental Picture

By duality the genealogy does make its way back to the origin. However, it
seems very difficult to study what happens at the boundary.
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Motivation for Model 2: d = 1 scaling limit

Hallatschek and Nelson (2008) studied genealogies in a one dimensional
system where sites (demes) can carry up to N individuals. and concluded
that if space, time, and parameters arre rescaled appropriately then the
system (observed from a reference frame moving at rate v) converged to
the solution of the stochastic PDE

∂tu(x , t) = D∂2
xu(x , t) + v∂xu(x , t) + su(1− u) + σ

√
u(1− u) η

where η is space-time white noise.

Rick Durrett (Duke) 20 / 36



Explanation of the Limit

D∂2
xu(x , t) = diffusion from the voter model component → δ

v∂xu(x , t) = drift due to moving reference frame

su(1− u) = influence of selection

σ
√

u(1− u) η fluctuation due to random reproduction

To get a random limit selection has to go to 0 at the right rate, otherwise
we get a PDE
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Genealogies in SPDE

Using arguments about the behavior of tracer particles placed into an
expanding fluid they argue that the probability density G (y , t|x ,T ) that
an individual at x at time T was descended from an ancestor that lived at
time y at time t satisfies

∂tG (y , t|x ,T ) = D∂2
yG − ∂y [(v + 2D∂y ln(u(y , t))G ]

If u is the solution to then SPDE, then it is not smooth enough for the
drift ∂y log[u(y , t)] to make sense mathematically. Even worse, in two
dimensions SPDE on the previous slide does not have function-valued
solutions.
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Simplified model

Suppose the fraction of cancer cells near y at time t is

u(y , t) = exp[ϕ((|y | − vt)/tα)]

where ϕ(z) converges to 0 as z →∞ and → −∞ as z →∞. α = 1/2
would be central limit theorem fluctuations. Simulations of the Eden
model suggest it has α = 1/3.

By analogy with HN(2008) the coordinates of the ancestor in a fixed
reference frame will be a diffusion process with generator

Lf (y) =
1

2
∆f (y) +∇ ln(u(y , τ)) · ∇f (y)

where τ = T − t since we are working backwards in time starting from x
at time t.
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Change to polar coordinates

Since the drift is radial, in polar coordinates its angular part has

dθt = dB2
t /Rt

If τ = T − t the radial component

dRt = dB1
t +

(
1

Rt
+ τ−αϕ′((Rt − vτ)/τα)

)
dt

where ψ = ϕ′/ϕ. Dropping the small first term and writing
Ut = Rt − v(T − t) to return to the moving frame of reference

dUt ≈ dB1
t +

(
v + τ−αϕ′(Ut/τ

α)
)

dt
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Radial component

If we let ψ(u) = vu + ϕ(u/τα) then we can write the radial SDE as

dUt = dB1
t + ψ′(Ut) ds

Its generator LU f (u) = (1/2)f ′′(u) + ψ′(u)f ′(u)

=
1

2
e−2ψ(u) d

du

(
e2ψ(u) d

du
f

)
so if we let 〈f , g〉 =

∫
f (u)g(u)e2ψ(u) du then

〈g , LU f 〉 = 〈LUg , f 〉

That is, LU is self-adjoint with respect to e2ψ (stationary distribution).
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Concrete example

ϕ(u) =

{
0 u ≤ 0

−u2/2 u ≥ 0
2ψ(u) =

{
2vu u ≤ 0

2vu − u2/τ2α u ≥ 0

When e2ψ(u) is normalized to be a probability measure it is almost a
normal with mean vτ2α and variance τ2α/2. (τ = T − t)

If α > 1/2 the mean at time s = 0 is T 2α � T = R (recall v = 1) so the
distance from the edge is larger than the tumor radius which makes no
sense. (α = 1/2??)

If α ≤ 1/2 then Xt = Ut − τ2α is an Ornstein-Uhlenbeck process with a
time dependent drift

dXt = dBt − Xt/τ
2α dt
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Discretization

Two Brownian motions in d = 2 won’t hit it each other so we have to
consider the model on εZ2 to allow lineages to coalesce. To fix units we
will think of

space is measured in cm

time is measured in years

cell have diameter ≈ 10µm = 10−3cm, so ε = 10−3

for simplicity we set v = 1

In this talk I’ll ignore the discretization.
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Coalescence: lower bound

θt − θ0 ≈ normal(0, σ2
t ) where

σ2
t =

∫ t

0

1

R2
s

ds =

∫ t

0

1

(R − s)2
ds =

t

R(R − t)

Conclusion 1. Consider two points on the boundary whose angles from
the center differ by θ0 = aR−1/2. The time for the lineages to hit has
mean ≥ a2R/(1 + a2).

θt − σ2
t is martingale. t/R(R − t) = a2R−1 when t = a2R/(1 + a2).

a = 3, t = 0.9R. R = 5000 cells or 5 cm. 3R1/2 ≈ 210 cells.
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Comparison with data

Kang et al. Two 0.5 cm3 bulk samples from a 6 cm adenoma

mitotic ages were estimated as 250–1130 cell divisions

Big bang data. Adenomas (sizes in cm) 2.5, 3.5, 6, 6

Carcinomas: 1.8, 2, 2.3, 3.0, 3.4, 3.5, 3.5, 3.9, 4, 5, 5.6, 5.7, 6.1, 6.4, 9.5

Complication: tumor glands (crypts) have 10,000 cells and are typically
clonal since the population of cells is produced by a small number of stem
cells.
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Coalescence: two lineages on the boundary

Let Xt be the radial part and scale the angular part to Yt = Rθt .

Consider two starting points X1(t),Y1(t) and X2(t),Y2(t) on the edge of
the tumor, in a ball of radius Rβ

Tc = min{t : (X1(t),Y1(t)) = (X2(t),Y2(t))}.
Tθ = min{t : Y1(t) = Y2(t)}

Conclusion 2. If α < β ≤ 1/2 then

Tc = Tθ + O(R2α log2 R)

Since Tθ = O(R2β) the second term is smaller. Most of the lineages in the
ball of radius Rβ will coalesce at a time o(R).
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OU equilibrates in time τ 2α

Consider first times t � T let β = 1/τ2α to simplify notation.

dXt = dBt − βXt dt has solution

Xt = e−βt

(
X0 +

∫ t

0
eβs dBs

)
From this we see that when X0 = x , Xt is normal with mean e−βtx and
variance ∫ t

0
e−2β(t−s) ds =

1

2β
(1− e−2βt)

As t →∞ this converges to normal(0,1/2β). In addition we can see from
the formula if t � 1/β = τ2α we are close to equilibrium.
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Proof of Upper Bound

Since Tθ � Rα

P(X̄1(Tθ + s) = X̄2(Tθ + s)) ≈ C1εR
−α

E

∫ t

0
P(Z1(Tθ + s) = Z2(Tθ + s)) ds = C1εR

−α · ε
∫ t

0
(2πs)−1/2 ds

= C2ε
2R−αt1/2

The result now follows from

Px1,x2(Tc ≤ t) ≥
∫ t
0 Px1,x2(Z1(Tθ + s) = Z2(Tθ + s)) ds∫ t
0 Px1=x2(Z1(Tθ + s) = Z2(Tθ + s)) ds

Denominator is C3ε
2 log t. Take t = R2α log2 R.
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Coalescence: one boundary, one interior

If a lineage starts at bR then until time (1− b)R it and its nearby lineages
will do two dimensional a coalescing random walk. A result of Bramson
and Griffeath implies that the density of particles decays to 0 like
c(log t)/t. Thus at time (1− b)R a walker will contain O(R/ log R)
lineages but they will be scattered throughout the tumor and will not be
detectable by a biopsy.

Even if the boundary lineage starts at the exact same angle the two will be
separated by ≈

√
(1− b)R when they are at the same radius. By earlier

results they will take roughly time R(1− b)/(2− b) to coalesce.
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Problems with the model

In d = 3 if two cells are separated by log R at time t then with high
probability they coalesce at a time o(R) from time 0. (Three dimensional
random walk is transient.)

The genealogies we follow are τ2α behind the front where the density of
tumor cells is very small.

exp(ϕ(τα)) = exp(−τ2α/2)

Taking ϕ(u) = uγ/γ keeps genealogies closer but still the density at their
location is low.
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A better model?

Thinking of the competing yeast species, we seed a small region of the grid
with a number of cells of different colors. Given an occupied site x and a
vacant neighbor y , x gives birth at rate λ to a cell of its color that is
placed at y . We draw an arrow from y to x indicate where it came from.

This looks like a very simple model but the genealogies are geodesics in
first passage percolation, which are not understood after 50 years of trying.

Determining the size of the fluctuations of the boundaries between sectors
is an open mathematical question. Physicists (see e.g., Derrida and
Dickman (1991) J. Phys A. 24, L191–L195) tell us that the fluctuation
exponent χ = 2/3 in d = 2.
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