Probability models for cancer development and progression

Rick Durrett

John Mayberry (Cornell)
Stephen Moseley (Cornell)
Deena Schmidt (MBI)
Jason Schweinsberg (UCSD)

Armitage and Doll (1954)

log-log plots of incidence versus age

Pancreas
157
Pancreas (F)

Figure: Slopes Stomach: 5.91 M, 5.27 F; Pancreas M 5.76, F 6.48

Why a power law?

If mutations from stage $i-1$ to stage i occur at rate u_{i}, the probability density of reaching stage k at time t is

$$
\approx u_{1} u_{2} \cdots u_{k} \frac{t^{k-1}}{(k-1)!}
$$

so the slope is the number of stages -1 .
Slopes Stomach: 5.91 M, 5.27 F; Pancreas M 5.76, F 6.48

Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to incidence of colon cancer by age.

Incidence of Retinoblastoma

Knudson's two hit hypothesis

The Problem

Given a population of size N, how long does it take until τ_{k} the first time we have an individual with a prespecified sequence of k mutations?

- Initially all individuals are type 0 .
- Each individual is subject to replacement at rate 1.
- A copy is made of an individual chosen at random from the population.
- Type $j-1$ mutates to type j at rate u_{j}.

Theorem. If $N u_{1} \rightarrow 0$ and $N \sqrt{u_{2}} \rightarrow \infty$

$$
P\left(\tau_{2}>t / N u_{1} \sqrt{u_{2}}\right) \rightarrow e^{-t}
$$

10,000 simulations of $n=10^{3}, u_{1}=10^{-4}, \sqrt{u_{2}}=10^{-2}$

Waiting for k mutations

Total progeny of a critical binary branching process has $P(\xi>k) \sim C k^{-1 / 2}$, so the sum of M such random variables is $O\left(M^{2}\right)$.
To get 1 individual of type 4 , we need of order
$1 / u_{4}$ births of type 3.
$1 / \sqrt{u_{4}}$ mutations to type 3 .
$1 / u_{3} \sqrt{u_{4}}$ births of type 2 .
$1 / u_{3}^{1 / 2} u_{4}^{1 / 4}$ mutations to type 2 .
$1 / u_{2} u_{3}^{1 / 2} u_{4}^{1 / 4}$ births of type 1 .
$1 / u_{2}^{1 / 2} u_{3}^{1 / 4} u_{4}^{1 / 8}$ mutations to type 1 .

Idea of Proof

Since 1's mutate to 2's at rate u_{2}, τ_{2} will occur when there have been $O\left(1 / u_{2}\right)$ births of individuals of type 1 .

The number of 1 's is roughly a (time change of) symmetric random walk, so τ_{2} will occur when the number of 1 's reaches $O\left(1 / \sqrt{u_{2}}\right)$.
$N \gg 1 / \sqrt{u_{2}}$ guarantees that up to τ_{2} the number of 1 's is $o(N)$, so 1 mutations occur at rate $N u_{1}$, and 1's that have 2 descendants occur at rate $N u_{1} \sqrt{u_{2}}$

The waiting time from the 1 mutation until the 2 mutant appears is of order $1 / \sqrt{u_{2}}$. For this to be much smaller than the overall waiting time $1 / N u_{1} \sqrt{u_{2}}$ we need $N u_{1} \ll 1$.

Rick Durrett (Cornell) Banff 9/10/09

Durrett, Schmidt, and Schweinsberg

Probability type j has a type k descendant.

$$
\sim r_{j, k}=u_{j+1}^{1 / 2} u_{j+2}^{1 / 4} \cdots u_{k}^{1 / 2^{k-j}} \quad \text { for } 1 \leq j<k
$$

Theorem. Let $k \geq 2$. Suppose that:
(i) $N u_{1} \rightarrow 0$.
(ii) For $j=1, \ldots, k-1, u_{j+1} / u_{j}>b_{j}$ for all N.
(iii) There is an $a>0$ so that $N^{a} u_{k} \rightarrow 0$.
(iv) $N r_{1, k} \rightarrow \infty$.

Then for all $t>0, \lim _{N \rightarrow \infty} P\left(\tau_{k}>t / N u_{1} r_{1, k}\right)=\exp (-t)$.

Exponentially growing population, 1

Joint work with Stephen Moseley.
Some chronic myeloid leukemia patients show resistance to imatinib at diagnosis, and many others develop resistance during the first year of treatment. Iwasa, Nowak, and Michor (2006) and Haeno, Iwassa, Michor (2007), both in Genetics.

Model is a multi-type branching process in which type i cells have $i \geq 0$ mutations.
Type i cells give birth at rate a_{i} and die at rate b_{i}.
$\lambda_{i}=a_{i}-b_{i}$ increases in i.
Type i 's mutate at rate u_{i+1} becoming type $i+1$.

Math questions

Compute the distribution of τ_{k} be the time of the occurrence of the first type $k . k=1,2$ most relevant to development of immunity.
Let $Z_{k}(t)$ be the number of type k cells at time t. Find the limiting behavior of $e^{-\lambda_{k} t} Z_{k}(t)$.

$$
P\left(\tau_{1}>t \mid Z_{0}(s), s \leq t, \Omega_{\infty}^{0}\right)=\exp \left(-u_{1} \int_{0}^{t} Z_{0}(s) d s\right)
$$

$\left(e^{-\lambda_{0} s} Z_{0}(s) \mid \Omega_{\infty}^{0}\right) \rightarrow V_{0}=\operatorname{exponential}\left(\lambda_{0} / a_{0}\right)$ so

$$
\begin{aligned}
P\left(\tau_{1}>t \mid \Omega_{\infty}^{0}\right) & \left.\approx E \exp \left(-u_{1} V_{0} e^{\lambda_{0} t} / \lambda_{0}\right)\right) \\
& =\frac{\lambda_{0}}{\lambda_{0}+a_{0} u_{1} e^{\lambda_{0} t} / \lambda_{0}}
\end{aligned}
$$

Growth of the 1's

$\left(Z_{t}^{0}, Z_{t}^{1}, \ldots Z_{t}^{k}\right)$ is a decomposable Galton-Watson process, which Kesten and Stigum studied in discrete time.
For any $k \geq 1$

$$
M_{t}^{k}=e^{-\lambda_{k} t} Z_{k}(t)-\int_{0}^{t} u_{k} e^{-\lambda_{k} s} Z_{k-1}(s) d s \text { is a martingale }
$$

Show that M_{t}^{1} is L^{2} bounded and conclude
Theorem. $e^{-\lambda_{1} t} Z_{1}(t) \rightarrow W_{1}$ a.s. with

$$
E W_{1}=u_{1} /\left(\lambda_{1}-\lambda_{0}\right)
$$

Proof of power law tail

Let $Z_{i}^{*}(t)$ be the number of type-i's at time t in a system with $Z_{0}^{*}(t)=e^{\lambda_{0} t} V_{0}$ for all $t \in(-\infty, \infty)$.
Theorem. $e^{-\lambda_{1} t} Z_{1}^{*}(t) \rightarrow V_{1}$ a.s. with

$$
E e^{-\theta V_{1}}=1 /\left(1+u_{1} c_{\theta, 1} \theta^{\lambda_{0} / \lambda_{1}}\right)
$$

and hence

$$
P\left(V_{1}>x\right) \sim c_{V, 1} x^{-\lambda_{0} / \lambda_{1}}
$$

Actually W_{1} does not have a power law tail but $P\left(W_{1} \neq V_{1}\right)=u_{1} a_{0} / \lambda_{0}^{2}$ is small.
Figure: Simulated distribution

Results from Sjoblom et al (2006): 35 tumors

Figure: Last three columns: APC (24), p53 (17), K-ras (16)

Results from Wood et al. (2007) Science

Flawed Methodology?

Wood et al. (2007): 40 of the top 119 genes, selected based on the pathways in which they occur, were chosen for further sequencing. 15 of the 40 genes (38%) were not mutated in any of the 96 tumors studied.
False Discovery Rate of 10 \% ??

Exponentially growing population, 2

Joint work with John Mayberry
In some cancers, e.g., colon cancer, an early stage is the growth of a "benign tumor," before progression to malignancy.
Genetic Progression and the Waiting Time to Cancer
Niko Beerenwinkel, Tibor Antal, David Dingli, Arne Traulsen, Kenneth W. Kinzler, Victor E. Velculescu, Bert Vogelstein, Martin A. Nowak
PLoS Computational Biology 3 (2007) e225
Wright-Fisher model in exponentially growing population. Cells with k mutations have relative fitness $(1+\gamma)^{k}$.

Figure: Simulation from Beerenwinkel et al.

Populations of fixed size

Theorem. Suppose that $X_{0}(0)=N$ and $N=\mu^{-\alpha}$ for some $\alpha>1$. Let $L=\log (1 / \mu)$. As $\mu \rightarrow 0$,

$$
Y_{k}^{N}(t) \equiv \frac{1}{L} \log ^{+}\left(X_{k}(L t / \gamma)\right) \rightarrow y_{k}(t)
$$

uniformly on compact subsets of $(0, \infty)$.
The limit $y_{k}(t)$ is deterministic and piecewise linear. In applications γ is small, e.g., 0.01 , and the limit process is almost independent of γ.

Inductive definition

Suppose we have defined the timit to time s_{n}.
Let $m=\max \left\{j: y_{j}\left(s_{n}\right)=\alpha\right\}$. Suppose that
(i) $y_{j}\left(s_{n}\right)=0$ for $j>k, y_{j}\left(s_{n}\right)>0$ for $m<j \leq k$,
(ii) $y_{j+1}\left(s_{n}\right) \geq y_{j}\left(s_{n}\right)-1$

Let $K=k$ if $y_{k}\left(s_{n}\right)<1$, and $K=k+1$ if $y_{k}\left(s_{n}\right)=1$.
$\gamma_{m}=(1+\gamma)^{m}-1$. Then for $t \leq \Delta_{n}$

$$
y_{j}\left(s_{n}+t\right)= \begin{cases}\left(y_{j}\left(s_{n}\right)+t \gamma_{j-m} / \gamma\right)^{+} & j<m \\ y_{j}\left(s_{n}\right)+t \gamma_{j-m} / \gamma & m \leq j \leq K \\ 0 & j>K\end{cases}
$$

First regime $\alpha \in(1,3 / 2)$. Limit when $\alpha=1.3$

Second regime $\alpha \in(3 / 2,11 / 6)$. Limit for $\alpha=1.82$

Third regime $\alpha \in(11 / 6,25 / 12)$. Limit for $\alpha=1.95$

Figure: Simulation from Beerenwinkel et al.

