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Armitage and Doll (1954)

log-log plots of incidence versus age

Figure: Slopes Stomach: 5.91 M, 5.27 F; Pancreas M 5.76, F 6.48
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Why a power law?

If mutations from stage i − 1 to stage i occur at rate ui , the probability
density of reaching stage k at time t is

≈ u1u2 · · · uk
tk−1

(k − 1)!

so the slope is the number of stages −1.

Slopes Stomach: 5.91 M, 5.27 F; Pancreas M 5.76, F 6.48
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Incidence of Retinoblastoma

Knudson’s two hit hypothesis
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Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to
incidence of colon cancer by age.
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The Problem

Given a population of size N, how long does it take until τk the first time
we have an individual with a prespecified sequence of k mutations?

Initially all individuals are type 0.

Each individual is subject to replacement at rate 1.

A copy is made of an individual chosen at random from the
population.

Type j − 1 mutates to type j at rate uj .
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Theorem. If Nu1 → 0 and N
√

u2 → ∞

P(τ2 > t/Nu1
√

u2) → e−t

10,000 simulations of n = 103, u1 = 10−4,
√

u2 = 10−2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rescaled Time

P
ro

ba
bi

lit
y 

D
en

si
ty

Rick Durrett (Cornell) Banff 9/10/09 7 / 28

Idea of Proof

Since 1’s mutate to 2’s at rate u2, τ2 will occur when there have been
O(1/u2) births of individuals of type 1.

The number of 1’s is roughly a (time change of ) symmetric random walk,
so τ2 will occur when the number of 1’s reaches O(1/

√
u2).

N >> 1/
√

u2 guarantees that up to τ2 the number of 1’s is o(N), so 1
mutations occur at rate Nu1, and 1’s that have 2 descendants occur at
rate Nu1

√
u2

The waiting time from the 1 mutation until the 2 mutant appears is of
order 1/

√
u2. For this to be much smaller than the overall waiting time

1/Nu1
√

u2 we need Nu1 << 1.
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Waiting for k mutations

Total progeny of a critical binary branching process has
P(ξ > k) ∼ Ck−1/2, so the sum of M such random variables is O(M2).

To get 1 individual of type 4, we need of order

1/u4 births of type 3.

1/
√

u4 mutations to type 3.

1/u3
√

u4 births of type 2.

1/u
1/2
3 u

1/4
4 mutations to type 2.

1/u2u
1/2
3 u

1/4
4 births of type 1.

1/u
1/2
2 u

1/4
3 u

1/8
4 mutations to type 1.
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Durrett, Schmidt, and Schweinsberg

Probability type j has a type k descendant.

∼ rj ,k = u
1/2
j+1u

1/4
j+2 · · · u1/2k−j

k for 1 ≤ j < k

Theorem. Let k ≥ 2. Suppose that:
(i) Nu1 → 0.
(ii) For j = 1, . . . , k − 1, uj+1/uj > bj for all N.
(iii) There is an a > 0 so that Nauk → 0.
(iv) Nr1,k → ∞.

Then for all t > 0, limN→∞ P(τk > t/Nu1r1,k) = exp(−t).
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Small time behavior

Most cancers occur in less than 1% of the population so we are looking at
the lower tail of the distribution. Let gk(t) = Q1(τk ≤ t) where Q1 is the
probability for the branching process started with one type 1. In the case
uj ≡ μ

g ′
j (t) = μgj−1(t) − (1 − μ)gj(t)

2 − 2μgj(t)

One can inductively solve the differential equations and finds

If t << μ−1/2 then gk(t) ≈ μk−1tk−1/(k − 1)!

Schweinsberg (2008) Electronic J. Probab. 13, 1442–1478
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Exponentially growing population, 1

Joint work with Stephen Moseley.

Some chronic myeloid leukemia patients show resistance to imatinib at
diagnosis, and many others develop resistance during the first year of
treatment. Iwasa, Nowak, and Michor (2006) and Haeno, Iwassa, Michor
(2007), both in Genetics.

Model is a multi-type branching process in which type i cells have i ≥ 0
mutations.

Type i cells give birth at rate ai and die at rate bi .
λi = ai − bi increases in i .

Type i ’s mutate at rate ui+1 becoming type i + 1.
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Math questions

Compute the distribution of τk be the time of the occurrence of the first
type k. k = 1, 2 most relevant to development of immunity.

Let Zk(t) be the number of type k cells at time t. Find the limiting
behavior of e−λk tZk(t).

P(τ1 > t|Z0(s), s ≤ t, Ω0
∞) = exp

(
−u1

∫ t

0
Z0(s)ds

)

(e−λ0sZ0(s)|Ω0∞) → V0 = exponential(λ0/a0) so

P(τ1 > t|Ω0
∞) ≈ E exp

(
−u1V0e

λ0t/λ0)
)

=
λ0

λ0 + a0u1eλ0t/λ0
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Growth of the 1’s

(Z 0
t , Z 1

t , . . . Z k
t ) is a decomposable Galton-Watson process, which Kesten

and Stigum studied in discrete time.

For any k ≥ 1

Mk
t = e−λk tZk(t) −

∫ t

0
uke−λk sZk−1(s) ds is a martingale

Show that M1
t is L2 bounded and conclude

Theorem. e−λ1tZ1(t) → W1 a.s. with

EW1 = u1/(λ1 − λ0).
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W1 has a power law tail

Figure: Simulated distribution
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Proof of power law tail

Let Z ∗
i (t) be the number of type-i ’s at time t in a system with

Z ∗
0 (t) = eλ0tV0 for all t ∈ (−∞,∞).

Theorem. e−λ1tZ ∗
1 (t) → V1 a.s. with

Ee−θV1 = 1/(1 + u1cθ,1θ
λ0/λ1)

and hence
P(V1 > x) ∼ cV ,1x

−λ0/λ1

Actually W1 does not have a power law tail but
P(W1 �= V1) = u1a0/λ2

0 is small.
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Results from Sjoblom et al (2006): 35 tumors

Figure: Last three columns: APC (24), p53 (17), K-ras (16)
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Results from Wood et al. (2007) Science
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Flawed Methodology?

Wood et al. (2007): 40 of the top 119 genes, selected based on the
pathways in which they occur, were chosen for further sequencing.

15 of the 40 genes (38%) were not mutated in any of the 96 tumors
studied.

False Discovery Rate of 10 % ??
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Exponentially growing population, 2

Joint work with John Mayberry

In some cancers, e.g., colon cancer, an early stage is the growth of a
“benign tumor,” before progression to malignancy.

Genetic Progression and the Waiting Time to Cancer

Niko Beerenwinkel, Tibor Antal, David Dingli, Arne Traulsen, Kenneth W.
Kinzler, Victor E. Velculescu, Bert Vogelstein, Martin A. Nowak

PLoS Computational Biology 3 (2007) e225

Wright-Fisher model in exponentially growing population. Cells with k
mutations have relative fitness (1 + γ)k .
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Figure: Simulation from Beerenwinkel et al.
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Populations of fixed size

Theorem. Suppose that X0(0) = N and N = μ−α for some α > 1. Let
L = log(1/μ). As μ → 0,

Y N
k (t) ≡ 1

L
log+(Xk(Lt/γ)) → yk(t)

uniformly on compact subsets of (0,∞).

The limit yk(t) is deterministic and piecewise linear. In applications γ is
small, e.g., 0.01, and the limit process is almost independent of γ.
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Inductive definition

Suppose we have defined the timit to time sn.

Let m = max{j : yj(sn) = α}. Suppose that

(i) yj(sn) = 0 for j > k, yj(sn) > 0 for m < j ≤ k,

(ii) yj+1(sn) ≥ yj(sn) − 1

Let K = k if yk(sn) < 1, and K = k + 1 if yk(sn) = 1.
γm = (1 + γ)m − 1. Then for t ≤ Δn

yj(sn + t) =

⎧⎪⎨
⎪⎩

(yj(sn) + tγj−m/γ)+ j < m

yj(sn) + tγj−m/γ m ≤ j ≤ K

0 j > K

.
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First regime α ∈ (1, 3/2). Limit when α = 1.3
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Second regime α ∈ (3/2, 11/6). Limit for α = 1.82
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Third regime α ∈ (11/6, 25/12). Limit for α = 1.95
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Exponentially growing population
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Figure: Simulation from Beerenwinkel et al.
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