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Coexistence in Stochastic Spatial Models
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The plan

In this talk I will review 20 years of work on

Q. When is there coexistence in stochastic spatial models?

The answer, announced in Durrett and Levin (1994), is that this can be
determined by the properties of the mean-field ODE. (We will explain this
later.)

There are a number of rigorous results in support of this picture, but we
will state 8 open problems. Solve one before the next WCPS and win a
trip to Ithaca and a $1000 honorarium.
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Two type contact process

Each site in Z
2 can be in state 0 = vacant, or in state i = 1, 2 to

indicate that it is occupied by one individual of type i

Individuals of type i die at rate δi , give birth at rate βi .

A type i born at x goes to x + y with probability pi (y). If the site is
vacant it changes to state i , otherwise nothing happens.
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Mean field ODE

If we assume that the states of adjacent sites are independent then the
fraction of sites ui in state i = 1, 2 satisfies

du1

dt
= β1u1(1 − u1 − u2) − δ1u1

du2

dt
= β2u2(1 − u1 − u2) − δ2u2

dui/dt = 0 when (1 − u1 − u2) = δi/βi , so null clines are parallel.
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β1 = 4, δ1 = 1. β2 = 2, δ2 = 1

Rick Durrett (Cornell) Coexistence in Stochastic Spatial Models 6 / 46



Neuhauser (1992)

Theorem. If the dispersal distributions are the same for the two species,
δ1 = δ2, and β1 > β2 then species 1 out competes species 2. That is, if
the initial condition is translation invariant and has P(ξ0(x) = 1) > 0 then
P(ξt(x) = 2) → 0.

Problem 1. Show that the conclusion holds if the dispersal distributions
are the same and β1/δ1 > β2/δ2.
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Blue: β1 = 3.9, δ1 = 2. Green: β2 = 2.0, δ1 = 1.0
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State at time 300
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Competitive Exclusion Principle, Levin (1970)

dui

dt
= ui fi (z1, . . . zm) 1 ≤ i ≤ n

zi are resources. In previous model z1 = 1 − u1 − u2 free space.

Theorem. If n > m no stable equilibrium in which all n species are
present is possible.

Proof. Linearize around the fixed point. n > m implies there is a zero
eigenvalue.

In words, coexisting species ≤ resources.
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Case 1: Attracting Fixed Point

Coexistence in the spatial model,
i.e., there is a nontrivial stationary distribution

Boring pictures, easy theorems
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Durrett and Swindle (1991): Grass Bushes Trees

Each site in Z
2 can be in state 0 = grass, 1 = bush, 2 = tree.

Biologists call this a successional seqeunce.

Particles of type i die at rate δi , give birth at rate βi .

A particle of type i born at x goes to x + y with probability pi (y). If
the site is in state j < i it changes to state i , otherwise nothing
happens.
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Mean field ODE

du1

dt
= β1u1(1 − u1 − u2) − δ1u1 − β2u2u1

du2

dt
= β2u2(1 − u1) − δ2u2

If β2 > δ2, u∗
1 = (β2 − δ2)/β2.

If the 1’s can invade 2’s in equilibrium, that is,

β1 · δ2

β2
> δ1 + β2 · β2 − δ2

β2

then u∗
1 > 0. When δ1 = δ2 = 1, we want β1 > β2

2 > 1.
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β1 = 4, δ1 = 1, β2 = 2, δ2 = 1
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Results for large range

For simplicity suppose δ1 = δ2 = 1.

Durrett and Swindle (1992). If β1 > β2
2 > 1 then when pi is uniform on

{x : 0 < ‖x‖ ≤ L} and L is large, there is a stationary distribution µ12 that
concentrates on configurations with infinitely many 1’s and 2’s.

Exercise. Show that if β2 > 1 and β1 < β2
2 then the 1’s die out when the

range is large.

Durrett and Moller (1991) prove a complete convergence theorem. In
particular, if the 1’s and the 2’s do not die out then the process converges
to µ12.
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A general result

fast stirring: for each pair of nearest neighbors x and y , at rate ε−2

exchange the values ξt(x) and ξt(y)

Theorem. Suppose there is a convex function φ that decreases along
solutions of the mean-field ODE, and → ∞ when mini ui → 0. Then there
is coexistence in the model with fast stirring.

Durrett (2002) Mutual invadability implies coexistence.
Memoirs of the AMS, 740 (118 pages)

epidemics, predator-prey models, predator mediated coexistence, etc.
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Sketch of Proof

1. Lyapunov function implies that for solutions of the PDE

du

dt
= ∆u + f (u)

mini ui (t, x) ≥ ε for t ≥ T , |x | ≤ ct.

2. Particle system on εZd converges to PDE

3. Comparison with oriented percolation “block construction”

Rick Durrett (Cornell) Coexistence in Stochastic Spatial Models 17 / 46

Host-pathogen models

It is known that predation can cause two competing species to
coexistence. Durrett and Lanchier (2007) have shown that coexistence can
occur if there is a pathogen in one species. In the next model 1 and 3 are
the two species, while 2 is species 1 in the presence of a pathogen. Letting
fi be the fraction of neighbors in state i , the rates are

1 → 2 αf2

2 → 1 γ2(f1 + f2)

3 → 1 γ3(f1 + f2)

1 → 3 γ1f3

2 → 3 γ2f3
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Host-pathogen ODE
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Theorem. Suppose γ1 < γ3 < γ2 < α and

γ1
γ2

α
+ γ2

(
1 − γ2

α

)
> γ3

then there is coexistence for large range.

The displayed condition says that the 3’s can invade the 1’s and 2’s in
equilibrium.

Problem 2. Coexistence is not possible if γ2 < γ3 < γ1, (mutualist).

Once the invasion of the 3’s starts the fraction of 2’s gets smaller, and the
3’s have an even bigger advantage.
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Coexistence: 1= red, 2 = yellow, 3 = blue

Rick Durrett (Cornell) Coexistence in Stochastic Spatial Models 21 / 46

No coexistence: 1= red, 2 = yellow, 3 = blue
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Case 2: Two locally attracting fixed points

Outcome of competition is dictated
by sign of speed of traveling wave

Fast stirring results are available
IF you can handle the PDE
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Sexual reproduction: Durrett-Neuhauser (1994)

1 → 0 at rate 1

0 → 1 at rate βk(k − 1)/n(n − 1) if k of the n neighboring sites are
occupied.

Mean field equation:

du

dt
= −u + βu2(1 − u) = u(−1 + βu(1 − u))

There are nontrivial fixed points ρ1 < ρ2 if and only if β > 4.
If β = 4, 1/2 is a double root.
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Let φ(u) = u(−1 + βu(1 − u)) and consider the PDE:

∂u

∂t
= ∆u + φ(u)

A solution of the form u(t, x) = w(x − ct) with w(−∞) = ρ2 and
w(+∞) = 0 is called a traveling wave.

sign of c = the sign of
∫ ρ2

0 φ(u) du so c > 0 if and only if β > 4.5.

Theorem. Introduce fast stirring: exchange the values at nearest neighbor
sites at rate ε−2. Then βc → 4.5 as ε → 0.
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Catalyst

States are 0 = vacant, 1 = CO (carbon monoxide), 2 = oxygen atom.

0 → 1 at rate p.

A pair of neighboring 0’s → 22 at rate q/4.

Adjacent 12 → 00 at rate r/4 (reaction to form CO2).

Ziff et al. (1986) r = ∞, q/2 = 1 − p

Simulation shows coexistence for 0.389 ≤ p ≤ 0.525. Otherwise converges
to all 1’s or all 2’s.

Problem 3. Prove coexistence for p ∈ (p1, p2).
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Durrett and Swindle (1994)

Prove coexistence by introducing fast stirring. Mean-field PDE is:

∂u1

∂t
= ∆u1 + p(1 − u1 − u2) − ru1u2

∂u2

∂t
= ∆u2 + q(1 − u1 − u2)

2 − ru1u2

If p < q, ODE has four fixed points: two stable (1, 0) and (α, β) and two
unstable: (0, 1) and (β, α).

Existence of traveling wave requires finding a curve between two points in
four dimensional space (u1, u

′
1, u2, u

′
2) using the Conley index theorem

Convergence theorem for PDE uses a monotonicty property of system
(u1,−u2).
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Colicin

Durrett and Levin (1997) considered a competition between two types of
E. coli, one of which produces colicin

birth rate death rate
0 → 1 β1f1 1 → 0 δ1

0 → 2 β2f2 2 → 0 δ2 + γf1

1’s is a colicin producer, while 2 is colicin sensitive.

Suppose δ1 = δ2 = 1 and β1 < β2
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Mean-field ODE. Prove 4: no coexistence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rick Durrett (Cornell) Coexistence in Stochastic Spatial Models 29 / 46

(yellow producer β1 = 3, γ = 2.5), β2 = 4, δi = 1
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Time 600
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Case 3 : Cyclic systems, Periodic orbits

Coexistence with significant spatial structure

Pretty pictures, hard problems
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The sneaker strategy of yellow-throated males beats
the ultra-dominant polygynous orange-throated males beats
the more monogamous mate guarding blues who beat the yellow sneakers.
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Silvertown’s (1992) multitype biased voter model

States 1, 2, . . . k. i → j at rate λij fj

Durrett and Levin (1998) studied the cyclic case:
β1 = λ31, β2 = λ12, β3 = λ23

Mean field ODE: (arithmetic mod 3 in 1,2,3)

dui

dt
= ui (βiui−1 − βi+1ui+1)

Equilibrium: ρi = βi−1/(β1 + β2 + β3)
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β1 = 0.3, β2 = 0.7, β3 = 1.0
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Simulation. Problem 5: Prove coexistence.
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Rock-Paper-Scissors

Durrett and Levin (1997) considered an E. coli competition model with
rates

birth rate death rate
0 → 1 β1f1 1 → 0 δ1

0 → 2 β2f2 2 → 0 δ2

0 → 3 β3f3 3 → 0 δ3 + γ1f1 + γ2f2

1’s and 2’s are colicin producers, while 3 is colicin sensitive.

Coexistence was verified experimentally by Kirkup and Riley, Nature 2004.

Problem 6. Prove mathematically that coexistence can occur.
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β1 = 3, β2 = 3.2, β3 = 4, δi = 1, γ1 = 3, γ2 = 0.5
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β1 = 3, β2 = 3.2, β3 = 4, δi = 1, γ1 = 3, γ2 = 0.5
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State at time 1000
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Spatial Prisoner’s Dilemma: Durrett-Levin (1994)

This time we allow multiple hawks ηt(x) and doves ζt(x) at each site.

Migration. Each individual at rate ν migrates to a nearest neighbor.

Death due to crowding. Each individual at x dies at rate
κ(ηt(x) + ζt(x).

Game step. Let pt(x) be the fraction of hawks in the 2 × 2 square
centered at x . Hawks give birth (or death) at rate
apt(x) + b(1 − pt(x)), doves at rate cpt(x) + d(1 − pt(x)).

H D
H a = −0.6 b = 0.9
D c = −0.9 d = 0.7

The H strategy dominates D, but if there are only hawks then they die out.
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Hawks-Doves ODE
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Simulation. Problem 7: prove coexistence
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Nowak and May (1992) Nature 359, 826–829

In these discrete time deterministic spatial game dynamics, each site is
occupied by a cooperator or a defector. The payoff’s to the first player in
the game are

C D
C a c
D b d

We calculate for each site the total payoff when the game is played with
its eight neighbors. The cell is taken over by the type in the 3 × 3 square
that has the highest payoff.

They mostly consider the case a = 1, c = 0, d = ε, very small.
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1.8 < b < 2

C → C blue, D → D red, D → C green, C → D yellow
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Since the possible values for a cooperator are 1 ≤ j ≤ 8 and for a defector
are jb where 1 ≤ j ≤ 8, then for b < 2 the behavior changes at

8/7, 7/6, 6/5, 5/4, 8/6, 7/5, 3/2, 8/5, 5/3, 7/4, 9/5.

Problem 8. Prove coexistence results for the deterministic version in
discrete or continuous time (asynchronous updating).

For the latter version see Nowak, Bonhoffer and May (1994) PNAS 91,
4877–4881
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