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The Problem

Given a population of size N, how long does it take until τk the first time
we have an individual with a prespecified sequence of k mutations?
We use the Moran model.

Initially all individuals are type 0.

Each individual is subject to replacement at rate 1.

A copy is made of an individual chosen at random from the
population.

Type j − 1 mutates to type j at rate uj .
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Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to
incidence of colon cancer by age.
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k=2 : Iwasa, Michor, Nowak (2004) Genetics

Theorem. If Nu1 → 0 and N
√

u2 →∞
P(τ2 > t/Nu1

√
u2)→ e−t

10,000 simulations of n = 103, u1 = 10−4,
√

u2 = 10−2
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Idea of Proof

Since 1’s mutate to 2’s at rate u2, τ2 will occur when there have been
O(1/u2) births of individuals of type 1.

The number of 1’s is roughly a symmetric random walk, so τ2 will occur
when the number of 1’s reaches O(1/

√
u2).

N >> 1/
√

u2 guarantees that up to τ2 the number of 1’s is o(N), so 1
mutations occur at rate Nu1.

The waiting time from the 1 mutation until the 2 mutant appears is of
order 1/

√
u2. For this to be much smaller than the overall waiting time

1/Nu1
√

u2 we need Nu1 << 1.
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Waiting for k mutations

Total progeny of a critical binary branching process has
P(ξ > k) ∼ Ck−1/2, so the sum of M such random variables is O(M2).

To get 1 individual of type 4, we need of order

1/u4 births of type 3.

1/
√

u4 mutations to type 3.

1/u3
√

u4 births of type 2.

1/u
1/2
3 u

1/4
4 mutations to type 2.

1/u2u
1/2
3 u

1/4
4 births of type 1.

1/u
1/2
2 u

1/4
3 u

1/8
4 mutations to type 1.
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Durrett, Schmidt, Schweinsberg, Ann Prob.

Probability type j has a type k descendant.

∼ rj ,k = u
1/2
j+1u

1/4
j+2 · · · u1/2k−j

k for 1 ≤ j < k

Theorem. Let k ≥ 2. Suppose that:
(i) Nu1 → 0.
(ii) For j = 1, . . . , k − 1, uj+1/uj > bj for all N.
(iii) There is an a > 0 so that Nauk → 0.
(iv) Nr1,k →∞.

Then for all t > 0, limN→∞ P(τk > t/Nu1r1,k) = exp(−t).
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When Nr1,k �→ ∞

Fixation of 1 before τk and stochastic tunneling each have positive
probability. Using convergence to the Wright-Fisher diffusion and the
Feynman-Kac formula we can prove.

Theorem. Let k ≥ 2. Assume (i), (ii), and (iii) from before.
(iv) (Nr1,k)

2 → γ > 0, and we let

α =
∞∑

k=1

γk

(k − 1)!(k − 1)!

/ ∞∑
k=1

γk

k!(k − 1)!
> 1

then for all t > 0, limN→∞ P(u1τk > t) = exp(−αt).
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Back to reality. Armitage and Doll (1954)
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Small time behavior

Our results are appropriate for the regulatory sequence application since
one is interested in the typical amount of time that the process takes.

However, most cancers occur in less than 1% of the population so we are
looking at the lower tail of the distribution. Let gk(t) = Q1(τk ≤ t) where
Q1 is the probability for the branching process started with one type 1. In
the case uj ≡ μ

g ′j (t) = μgj−1(t)− (1− μ)gj(t)
2 − 2μgj(t)

One can inductively solve the differential equations and finds

If t << μ−1/2 then gk(t) ≈ μk−1tk−1/(k − 1)!
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Other results

Schweinsberg (2008) studies all possible limits in the case μj ≡ μ
paper is on the arXiv

When m = 3 the behavior changes at

μ = N−2 N−4/3 N−1 N−2/3

Thus there are five regimes and four borderline cases.
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Moran model

Each individual is replaced at rate 1. That is, individual x lives for an
exponentially distributed amount with mean 1 and then is “replaced.”

To replace individual x , we choose an individual at random from the
population (including x itself) to be the parent of the new individual.

Suppose that we have two alleles A and a, and let Xt be the number of
copies of A. The transition rates for Xt are

i → i + 1 at rate bi = (2N − i) · i

2N

i → i − 1 at rate di = i · 2N − i

2N
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Kingman’s coalescent

Theorem When time is run at rate N, the genealogy of a sample of size n
from the Moran model converges to Kingman’s coalescent.

Proof. If we look backwards in time, then when there are k lineages, each
replacement leads to a coalescence with probability (k − 1)/2N. If we run
time at rate N, then jumps occur at rate N · k/2N = k/2, so the total
rate of coalescence is k(k − 1)/2, the right rate for Kingman’s coalescent.
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Directional Selection

Fecundity selection. Suppose b’s are born at a rate 1− s times that of B’s.

The transition rates for Xt for the number of B’s is now:

i → i + 1 at rate bi = (2N − i) · i

2N

i → i − 1 at rate di = i · 2N − i

2N
(1− s)

Embedded jump chain is a simple random walk that jumps up with
probability p = 1/(2− s) and down with probability 1− p.

Started with X0 = i , B becomes fixed in the population (reaches 2N) with
probability:

1− (1− s)i

1− (1− s)2N
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Three phases of the fixation process

1 While the advantageous B allele is rare, the number of B’s can be
approximated by a supercritical branching process.

2 While the frequency of B’s is ∈ [ε, 1− ε] there is very little
randomness and it follows the solution of the logistic differential
equation: du/dt = su(1− u).

3 While the disadvantageous b allele is rare, the number of a’s can be
approximated by a subcritical branching process.
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Hitchhiking

Due to recombination, each chromosome you inherit from each parent is a
mixture of their two chromosomes, with transitions between the two at
points of a nonhomogeneous Poisson process.

In the absence of recombination, fixation of an allele would result in every
individual in the population having a copy of the associated chromosome.
With recombination, changes in allele frequency occur only near the allele
that went to fixation.
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Maynard-Smith and Haigh (1974)

Alleles B and b have relative fitnesses 1 and 1-s, neutral locus with alleles
A and a, recombination between the two has probability r .

Let p0 = frequency of B before the sweep (1/2N).
Qt = P(A|B). Rt = P(A|b).
Theorem. Suppose Q0 = 0. Under the logistic sweep model, which
ignores the branching process phases 1 and 3,

Q∞ = R0(1− p0)

∫ 2τ

0

re−rt

(1− p0) + p0est
ds

Proof. R0(1− p0) is the frequency of A before the sweep. In order for a
sampled individual to have the A allele, its lineage must escape the sweep
due to recombination.

Rick Durrett (Cornell) Genetics with Jason 17 / 42

Hitchhiking = Population subdivision
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Durrett and Schweinsberg (2004) Th. Pop. Biol.

From the previous theorem, the probability a lineage escapes from the
sweep by recombination is

pinb =

∫ 2τ

0

re−rt

(1− p0) + p0est
ds

Theorem. Under the logisitic sweep model, if N →∞ and
r log(2N)/s → a, pinb → 1− e−a.

Biologists rule of thumb:
“hitchhiking is efficient if r < s and negligible if r ≈ s.”
(should be efficient if r ≈ s/(log(2N))
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Effect on genealogies

Approximation 1 Let pk,i = probability k lineages reduced to i by the
sweep. Under the logistic sweep model, if N →∞ with

r ln(2N)/s → a and s(lnN)2 →∞

then for j ≥ 2

pk,k−j+1 →
(

k

j

)
pj(1− p)k−j where p = e−a

and pk,k → (1− p)k + kp(1− p)k−1.

p-merger. Flip coins with probability p of heads for each lineage and
coalesce all of those with heads. Need at least two heads to get a
coalescence.
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Simulation results

N = 10, 000, s = 0.1. Set r = 0.00516 so pinb ≈ 0.4.

p2inb = P( both lineages escapes the sweep and do not coalesce).
p2cinb = P( both lineages escape the sweep but coalesce).
p1B1b = P( one lineage escapes but the other does not).
p22 = P( no coalescence ) = p2inb + p1B1b

pinb p2inb p2cinb p1B1b p22

Approx. 1 0.4 0.16 0 0.48 0.64
logistic ODE 0.39936 0.13814 0.09599 0.32646 0.46460

Moran sim 0.33656 0.10567 0.05488 0.35201 0.45769
Approx. 2 0.34065 0.10911 0.05100 0.36112 0.47203
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Approximation 2

A stick breaking construction that leads to a coalescent with simultaneous
multiple collisions.

× I1 I4 I6 I7 I10

a1 a2 = a3 = a4 a5 = a6 a7

a8 = a9 = a10

↓ a11

• • • • • •

Pieces of stick are coalesced lineages that escape due to recombination.
Sampled individuals = points random on (0,1). Two in the same piece
coalesce. I1 may be marked (×) or not (escapes sweep).
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× I1 I4 I6 I7 I10

a1 a2 = a3 = a4 a5 = a6 a7

a8 = a9 = a10

↓ a11

• • • • • •

M = [2Ns] number of lineages with an infinite line of descent
ξ�, 2 ≤ � ≤ M iid Bernoulli, 1 (recombination) with prob r/s.
W�, 2 ≤ � ≤ M are beta(1, �− 1) (fraction of lineages)
V� = ξ�W�, T� = V�

∏M
i=�+1(1− Vi )

a� = a�+1 − T�, I� = [a�, a�+1]

Proofs. Schweinsberg and Durrett (2005) Ann. Appl. Prob.
Error is O(1/ log2 N) versus O(1/ logN) for approx 1
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Reduction of π = 0.01 due to a sweep

Kim and Stephan (2002) > D & S (dashed) ≈ answer
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A Drosophila Puzzle

Begun and Aquadro (1992) observed that in Drosophila melanogaster
there is a positive correlation between nucleotide diversity and
recombination rates. Two explanations:

Repeated episodes of hitchhiking caused by the fixation of newly
arising advantageous mutations, which has a greater effect in regions
of low recombination, because the average size of the region affected
depends on the ratio s/r .

Background selection (removal of deleterious alleles) which leads to a
reduction of the “effective population size” has a greater impact in
regions of low recombination, but does not change the site frequency
spectrum.
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Λ-coalescents. Pitman, Möhle and Sagitov

State is a partition. Sets in partition are lineages that have coalesced.
ξ → η is a k-merger if k sets in ξ collapse to one in η, and the rest of η
does not change.

qξ,η =

∫ 1

0
pk−2(1− p)|ξ|−kΛ(dp)

Λ({0}) = 1. Kingman’s coalescent.

If λ =
∫ 1
0 p−2Λ(dp) <∞, p-mergers with a random λ−1p−2Λ(dp)

distributed p occur at rate λ.
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Durrett and Schweinsberg (2005) SPA

Suppose that the recombination rate between 0 and x is β|x |. Mutations
with a fixed selective advantage s occur in the population at rate γ per
unit length.

Theorem. The genealogies converge to a Λ coalescent with
Λ = δ0 + cy dy where c = 2γs2/β.
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Comparison with data on π. Stephan (1995)
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Large family sizes

The original biological motivation for Λ-coalescents is that many species
have a highly variable number of offspring.

Cannings’ model Suppose that the 2N members of the population have
offspring (ν1, . . . ν2N). The νi are exchangeable and sum to 2N.
(Distribution depends on N.)

Möhle (2000). Run time at rate 2N/var (νi ). Convergence to Kingman’s
coalescent occurs if and only if

E [ν1(ν1 − 1)(ν1 − 2)]/N2

E [ν1(ν1 − 1)]/N
→ 0

In words, if and only if no triple mergers.
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Schweinsberg (2003) Stoch. Proc. Appl.

Each individual has Xi offspring (independent) then N are chosen to make
the next generation. Part (c) of Theorem 4 shows

Theorem. Suppose EXi = μ > 1 and P(Xi ≥ k) ∼ Ck−α with 1 < α < 2.
Then, when time is run at rate 2N/var (νi ) ≈ C ′Nα−1, the genealogical
process converges to a Λ-coalescent where Λ is the beta(2− α, α)
distribution, i.e.,

Λ(dx) =
x1−α(1− x)α−1

B(2− α, α)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b), and Γ(a) =
∫∞
0 xa−1e−x dx is the

usual gamma function.
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Genealogy when α = 1.2
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Genealogy when α = 1.9 ≈ Kingman
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Arnason (2004) cytochrome b data, 1278 cod

39 mutations define 59 haplotypes (mutation patterns):

This indicates some sites were hit more than once, for if not, the number
of haplotypes = 1 + the number of mutations

Haplotype frequencies:

696, 193, 124, 112, 29, 15, 9, 7, 6, 5(3), 4(2), 3(6), 2(7), 1(32)
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Site frequency spectrum

J. Berestycki, N. Berestycki, and Schweinsberg (2006a,b).

Theorem Suppose we introduce mutations into the beta coalescent at
rate θ, and let Mn,k be the number of mutations affecting k individuals in
a sample of size n. Then as n →∞,

Mn,k

Sn
→ ak =

(2− α)Γ(α + k − 2)

Γ(α− 1)k!
∼ Cαkα−3.

When α = 2 this reduces to the 1/k behavior found in Kingman’s
coalescent.

When k = 1, ak = 2− α.
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Data set 2

Boom, Boulding, and Beckenbach (1994) did a restriction enzyme digest
of mtDNA on a sample of 141 Pacific Oysters from British Columbia.
They found 51 segregating sites and 30 singleton mutations, resulting in
an estimate of

α = 2− 30

51
= 1.41

However, this estimate is biased. If the underlying data was generated by
Kingman’s coalescent, we would expect a fraction 1/ ln(141) = 0.202 of
singletons, resulting in an estimate of α = 1.8.
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BBB α = 1.19 (uncorr: 1.41), Arnason α = 1.54
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Segregating sites

J. Berestycki, N. Berestycki, and Schweinsberg (2006a,b).

Theorem Suppose we introduce infinite sites mutations into the beta
coalescent at rate θ, and let Sn be the number of segregating sites
observed in a sample of size n. If 1 < α < 2 then as n →∞

Sn

n2−α
→ θα(α− 1)Γ(α)

2− α

In Kingman’s coalescent
Sn

log n
→ θ
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Simulation mean / formula : slow convergence
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Subsampling Arnason, α ≈ 1.50 (vs. 1.54)
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PRF likelihood of SFS – Carlos Bustamante
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Estimation results: Emilia Huerta-Sanchez

Now VIGRE postdoc, U.C. Berkeley Statisitcs.
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