The Problem

Wald Lecture 2
 My Work in Genetics with Jason Schweinsbreg

Rick Durrett

Given a population of size N, how long does it take until τ_{k} the first time we have an individual with a prespecified sequence of k mutations? We use the Moran model.

- Initially all individuals are type 0.
- Each individual is subject to replacement at rate 1.
- A copy is made of an individual chosen at random from the population.
- Type $j-1$ mutates to type j at rate u_{j}.

Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to incidence of colon cancer by age.

Idea of Proof

Since 1's mutate to 2 's at rate u_{2}, τ_{2} will occur when there have been $O\left(1 / u_{2}\right)$ births of individuals of type 1 .

The number of 1 's is roughly a symmetric random walk, so τ_{2} will occur when the number of 1 's reaches $O\left(1 / \sqrt{U_{2}}\right)$.
$N \gg 1 / \sqrt{u_{2}}$ guarantees that up to τ_{2} the number of 1 's is $o(N)$, so 1 mutations occur at rate $N u_{1}$.

The waiting time from the 1 mutation until the 2 mutant appears is of order $1 / \sqrt{u_{2}}$. For this to be much smaller than the overall waiting time $1 / N u_{1} \sqrt{u_{2}}$ we need $N u_{1} \ll 1$.

k=2 : Iwasa, Michor, Nowak (2004) Genetics

Theorem. If $N u_{1} \rightarrow 0$ and $N \sqrt{u_{2}} \rightarrow \infty$

$$
P\left(\tau_{2}>t / N u_{1} \sqrt{u_{2}}\right) \rightarrow e^{-t}
$$

10,000 simulations of $n=10^{3}, u_{1}=10^{-4}, \sqrt{u_{2}}=10^{-2}$

Waiting for k mutations

Total progeny of a critical binary branching process has
$P(\xi>k) \sim C k^{-1 / 2}$, so the sum of M such random variables is $O\left(M^{2}\right)$.
To get 1 individual of type 4 , we need of order
$1 / u_{4}$ births of type 3.
$1 / \sqrt{u_{4}}$ mutations to type 3 .
$1 / u_{3} \sqrt{u_{4}}$ births of type 2 .
$1 / u_{3}^{1 / 2} u_{4}^{1 / 4}$ mutations to type 2.
$1 / u_{2} u_{3}^{1 / 2} u_{4}^{1 / 4}$ births of type 1 .
$1 / u_{2}^{1 / 2} u_{3}^{1 / 4} u_{4}^{1 / 8}$ mutations to type 1 .

Durrett, Schmidt, Schweinsberg, Ann Prob.

Probability type j has a type k descendant.

$$
\sim r_{j, k}=u_{j+1}^{1 / 2} u_{j+2}^{1 / 4} \cdots u_{k}^{1 / 2^{k-j}} \quad \text { for } 1 \leq j<k
$$

Theorem. Let $k \geq 2$. Suppose that:
(i) $N u_{1} \rightarrow 0$.
(ii) For $j=1, \ldots, k-1, u_{j+1} / u_{j}>b_{j}$ for all N.
(iii) There is an $a>0$ so that $N^{a} u_{k} \rightarrow 0$.
(iv) $N r_{1, k} \rightarrow \infty$.

Then for all $t>0, \lim _{N \rightarrow \infty} P\left(\tau_{k}>t / N u_{1} r_{1, k}\right)=\exp (-t)$.

When $N r_{1, k} \nrightarrow \infty$

Fixation of 1 before τ_{k} and stochastic tunneling each have positive probability. Using convergence to the Wright-Fisher diffusion and the Feynman-Kac formula we can prove.
Theorem. Let $k \geq 2$. Assume (i), (ii), and (iii) from before.
(iv) $\left(N r_{1, k}\right)^{2} \rightarrow \gamma>0$, and we let

$$
\alpha=\sum_{k=1}^{\infty} \frac{\gamma^{k}}{(k-1)!(k-1)!} / \sum_{k=1}^{\infty} \frac{\gamma^{k}}{k!(k-1)!}>1
$$

then for all $t>0, \lim _{N \rightarrow \infty} P\left(u_{1} \tau_{k}>t\right)=\exp (-\alpha t)$.

Back to reality. Armitage and Doll (1954)

Moran model

- Each individual is replaced at rate 1 . That is, individual x lives for an exponentially distributed amount with mean 1 and then is "replaced."
- To replace individual x, we choose an individual at random from the population (including x itself) to be the parent of the new individual.

Suppose that we have two alleles A and a, and let X_{t} be the number of copies of A. The transition rates for X_{t} are

$$
\begin{array}{lll}
i \rightarrow i+1 & \text { at rate } & b_{i}=(2 N-i) \cdot \frac{i}{2 N} \\
i \rightarrow i-1 & \text { at rate } & d_{i}=i \cdot \frac{2 N-i}{2 N}
\end{array}
$$

Kingman's coalescent

Theorem When time is run at rate N, the genealogy of a sample of size n from the Moran model converges to Kingman's coalescent.

Proof. If we look backwards in time, then when there are k lineages, each replacement leads to a coalescence with probability $(k-1) / 2 N$. If we run time at rate N, then jumps occur at rate $N \cdot k / 2 N=k / 2$, so the total rate of coalescence is $k(k-1) / 2$, the right rate for Kingman's coalescent.

Three phases of the fixation process

(1) While the advantageous B allele is rare, the number of B 's can be approximated by a supercritical branching process.
(2) While the frequency of $B^{\prime} s$ is $\in[\epsilon, 1-\epsilon]$ there is very little randomness and it follows the solution of the logistic differential equation: $d u / d t=s u(1-u)$.
(3) While the disadvantageous b allele is rare, the number of a's can be approximated by a subcritical branching process.

Directional Selection

Fecundity selection. Suppose b 's are born at a rate $1-s$ times that of B 's.
The transition rates for X_{t} for the number of B 's is now:

$$
\begin{array}{lll}
i \rightarrow i+1 & \text { at rate } & b_{i}=(2 N-i) \cdot \frac{i}{2 N} \\
i \rightarrow i-1 & \text { at rate } & d_{i}=i \cdot \frac{2 N-i}{2 N}(1-s)
\end{array}
$$

Embedded jump chain is a simple random walk that jumps up with probability $p=1 /(2-s)$ and down with probability $1-p$.
Started with $X_{0}=i, B$ becomes fixed in the population (reaches $2 N$) with probability:

$$
\frac{1-(1-s)^{i}}{1-(1-s)^{2 N}}
$$

Hitchhiking

Due to recombination, each chromosome you inherit from each parent is a mixture of their two chromosomes, with transitions between the two at points of a nonhomogeneous Poisson process.

In the absence of recombination, fixation of an allele would result in every individual in the population having a copy of the associated chromosome. With recombination, changes in allele frequency occur only near the allele that went to fixation.

Maynard-Smith and Haigh (1974)

Alleles B and b have relative fitnesses 1 and 1-s, neutral locus with alleles A and a, recombination between the two has probability r.
Let $p_{0}=$ frequency of B before the sweep $(1 / 2 N)$.
$Q_{t}=P(A \mid B) . R_{t}=P(A \mid b)$.
Theorem. Suppose $Q_{0}=0$. Under the logistic sweep model, which ignores the branching process phases 1 and 3,

$$
Q_{\infty}=R_{0}\left(1-p_{0}\right) \int_{0}^{2 \tau} \frac{r e^{-r t}}{\left(1-p_{0}\right)+p_{0} e^{s t}} d s
$$

Proof. $R_{0}\left(1-p_{0}\right)$ is the frequency of A before the sweep. In order for a sampled individual to have the A allele, its lineage must escape the sweep due to recombination.

Hitchhiking $=$ Population subdivision

Durrett and Schweinsberg (2004) Th. Pop. Biol.

From the previous theorem, the probability a lineage escapes from the sweep by recombination is

$$
\text { pinb }=\int_{0}^{2 \tau} \frac{r e^{-r t}}{\left(1-p_{0}\right)+p_{0} e^{s t}} d s
$$

Theorem. Under the logisitic sweep model, if $N \rightarrow \infty$ and $r \log (2 N) / s \rightarrow a$, pinb $\rightarrow 1-e^{-a}$.

Biologists rule of thumb:
"hitchhiking is efficient if $r<s$ and negligible if $r \approx s$."
(should be efficient if $r \approx s /(\log (2 N)$)

Effect on genealogies

Approximation 1 Let $p_{k, i}=$ probability k lineages reduced to i by the sweep. Under the logistic sweep model, if $N \rightarrow \infty$ with

$$
r \ln (2 N) / s \rightarrow a \text { and } s(\ln N)^{2} \rightarrow \infty
$$

then for $j \geq 2$

$$
p_{k, k-j+1} \rightarrow\binom{k}{j} p^{j}(1-p)^{k-j} \quad \text { where } p=e^{-a}
$$

and $p_{k, k} \rightarrow(1-p)^{k}+k p(1-p)^{k-1}$.
p-merger. Flip coins with probability p of heads for each lineage and coalesce all of those with heads. Need at least two heads to get a coalescence.

Simulation results

$N=10,000, s=0.1$. Set $r=0.00516$ so pinb ≈ 0.4.
$p 2$ inb $=P$ (both lineages escapes the sweep and do not coalesce).
p2cinb $=P$ (both lineages escape the sweep but coalesce).
$p 1 B 1 b=P$ (one lineage escapes but the other does not).
$p_{22}=P($ no coalescence $)=p 2 i n b+p 1 B 1 b$

	pinb	p2inb	p2cinb	p1B1b	p_{22}
Approx. 1	0.4	0.16	0	0.48	0.64
logistic ODE	0.39936	0.13814	0.09599	0.32646	0.46460
Moran sim	0.33656	0.10567	0.05488	0.35201	0.45769
Approx. 2	0.34065	0.10911	0.05100	0.36112	0.47203

Approximation 2

A stick breaking construction that leads to a coalescent with simultaneous multiple collisions.

Pieces of stick are coalesced lineages that escape due to recombination. Sampled individuals $=$ points random on $(0,1)$. Two in the same piece coalesce. I_{1} may be marked (\times) or not (escapes sweep).

$M=[2 N s]$ number of lineages with an infinite line of descent
$\xi_{\ell}, 2 \leq \ell \leq M$ iid Bernoulli, 1 (recombination) with prob r / s.
$W_{\ell}, 2 \leq \ell \leq M$ are beta($1, \ell-1$) (fraction of lineages)
$V_{\ell}=\xi_{\ell} W_{\ell}, T_{\ell}=V_{\ell} \prod_{i=\ell+1}^{M}\left(1-V_{i}\right)$
$a_{\ell}=a_{\ell+1}-T_{\ell}, I_{\ell}=\left[a_{\ell}, a_{\ell+1}\right]$
Proofs. Schweinsberg and Durrett (2005) Ann. Appl. Prob. Error is $O\left(1 / \log ^{2} N\right)$ versus $O(1 / \log N)$ for approx 1

Reduction of $\pi=0.01$ due to a sweep

Kim and Stephan (2002) > D \& S (dashed) \approx answer

A Drosophila Puzzle

Begun and Aquadro (1992) observed that in Drosophila melanogaster there is a positive correlation between nucleotide diversity and recombination rates. Two explanations:

- Repeated episodes of hitchhiking caused by the fixation of newly arising advantageous mutations, which has a greater effect in regions of low recombination, because the average size of the region affected depends on the ratio s / r.
- Background selection (removal of deleterious alleles) which leads to a reduction of the "effective population size" has a greater impact in regions of low recombination, but does not change the site frequency spectrum.

Λ-coalescents. Pitman, Möhle and Sagitov

State is a partition. Sets in partition are lineages that have coalesced. $\xi \rightarrow \eta$ is a k-merger if k sets in ξ collapse to one in η, and the rest of η does not change.

$$
q_{\xi, \eta}=\int_{0}^{1} p^{k-2}(1-p)^{|\xi|-k} \Lambda(d p)
$$

$\Lambda(\{0\})=1$. Kingman's coalescent.
If $\lambda=\int_{0}^{1} p^{-2} \Lambda(d p)<\infty, p$-mergers with a random $\lambda^{-1} p^{-2} \Lambda(d p)$ distributed p occur at rate λ.

Durrett and Schweinsberg (2005) SPA

Suppose that the recombination rate between 0 and x is $\beta|x|$. Mutations with a fixed selective advantage s occur in the population at rate γ per unit length.
Theorem. The genealogies converge to a Λ coalescent with $\Lambda=\delta_{0}+c y d y$ where $c=2 \gamma s^{2} / \beta$.

Comparison with data on π. Stephan (1995)

Schweinsberg (2003) Stoch. Proc. Appl.

Each individual has X_{i} offspring (independent) then N are chosen to make the next generation. Part (c) of Theorem 4 shows

Theorem. Suppose $E X_{i}=\mu>1$ and $P\left(X_{i} \geq k\right) \sim C k^{-\alpha}$ with $1<\alpha<2$. Then, when time is run at rate $2 N / \operatorname{var}\left(\nu_{i}\right) \approx C^{\prime} N^{\alpha-1}$, the genealogical process converges to a Λ-coalescent where Λ is the beta $(2-\alpha, \alpha)$ distribution, i.e.,

$$
\Lambda(d x)=\frac{x^{1-\alpha}(1-x)^{\alpha-1}}{B(2-\alpha, \alpha)}
$$

where $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$, and $\Gamma(a)=\int_{0}^{\infty} x^{a-1} e^{-x} d x$ is the usual gamma function.

In words, if and only if no triple mergers.

Genealogy when $\alpha=1.2$

Genealogy when $\alpha=1.9 \approx$ Kingman

Arnason (2004) cytochrome b data, 1278 cod

39 mutations define 59 haplotypes (mutation patterns):
This indicates some sites were hit more than once, for if not, the number of haplotypes $=1+$ the number of mutations
Haplotype frequencies:
$696,193,124,112,29,15,9,7,6,5(3), 4(2), 3(6), 2(7), 1(32)$

Data set 2

Boom, Boulding, and Beckenbach (1994) did a restriction enzyme digest of mtDNA on a sample of 141 Pacific Oysters from British Columbia. They found 51 segregating sites and 30 singleton mutations, resulting in an estimate of

$$
\alpha=2-\frac{30}{51}=1.41
$$

However, this estimate is biased. If the underlying data was generated by Kingman's coalescent, we would expect a fraction $1 / \ln (141)=0.202$ of singletons, resulting in an estimate of $\alpha=1.8$.

BBB $\alpha=1.19$ (uncorr: 1.41), Arnason $\alpha=1.54$

Segregating sites

J. Berestycki, N. Berestycki, and Schweinsberg (2006a,b).

Theorem Suppose we introduce infinite sites mutations into the beta coalescent at rate θ, and let S_{n} be the number of segregating sites observed in a sample of size n. If $1<\alpha<2$ then as $n \rightarrow \infty$

$$
\frac{S_{n}}{n^{2-\alpha}} \rightarrow \frac{\theta \alpha(\alpha-1) \Gamma(\alpha)}{2-\alpha}
$$

In Kingman's coalescent

$$
\frac{S_{n}}{\log n} \rightarrow \theta
$$

Estimation results: Emilia Huerta-Sanchez

Now VIGRE postdoc, U.C. Berkeley Statisitcs.

