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Stan Ulam once said:

“I have sunk so low that my last paper
contained numbers with decimal points.”

Figure: Feynman, Ulam, and von Neumann
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Armitage and Doll (1954)

Noticed that log-log plots of cancer incidence data are linear for a large
number of cancer types; for example, colorectal cancer incidence has a
slope of 5.18 in men and 4.97 in women. Concluded based on calculating
the distribution of the sum of expoonentials that the number of stages =
slope + 1.
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Incidence of Retinoblastoma

Knudson’s two hit hypothesis → tumor-suppressor genes
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Multi-stage theory of carcinogenesis

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to
incidence of colon cancer by age.
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What are the stages ?

In sporadic cases of colon cancer the first two stages are inactivation
of the tumor suppressor gene APC adenomatous polyposis coli.

KRAS is an oncogene (one mutation turns it on). Once it is turned
on it recruits and activates proteins necessary for the propagation of
growth factor

The final stage is thought to involve the inactivation of TP53 the
gene which makes p53.

The real situation is much less clear cut: in some cases APC is not
knocked out but the oncogene β-catenin is upregulated.
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Motivating Problem: Field Cancerization

This term originated in the 1950s from observations of Slaughter et al on
HNSCC: cells in the tissue around a malignancy show premalignant
transformations. This effect resulting a higher than expected prevalence of
multiple local second primary tumors and the presence of synchronous
distant tumors has been observed in a number of other cancers.

Our goal is to use a simple spatial cancer model to make quantitative
predictions about how the geometry of the field depends on underlying
parameters such as selective advantage and mutation rate, and ultimately
provide guidance on surgical excision margins.
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Modeling Philosophy

We will study a very simple model that can be analyzed mathematically
instead of using a more complex model that can only be analyzed by
simulation, e.g.,“hybrid discrete models” where the evolution of the cells is
coupled to PDE for one of more nutrients. See e.g., the book by Cristintini
and Lowengrub (2010) or publications by Sandy Anderson et al.

Although some people have strong preferences for one style over the other,
the two approaches afford complimentary insights.
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Spatial Moran model

Williams and Bjerknes (1972)

Takes place on (Z mod L)d . N = Ld

Type i individuals mutate to type (i + 1) at rate ui+1.

Cells of type i have relative fitness
∏i

j=1(1 + sj).

Cells give birth at rate equal to their fitness and replace one of their
nearest neighbors chosen at random.

In homogeneously mixing case of Moran model, we replace one of the N
individuals chosen at random.
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Almost Neutral case

Suppose s = 0 and consider the homogeneously mixing case Let τ2 be the
time of birth of the first type 2 individual, and write aN � bN if
aN/bN → 0.

The next result comes from work done by Komarova, Iwasa, Michor, and
Nowak in various combinations during 2002–2005.

Stochastic Tunneling. If 1/
√

u2 � N � 1/u1 then

P(τ2 > t/Nu1u
1/2
2 ) → exp(−t)

The same conclusion holds if |s| � u
1/2
2 .

Type 2 mutation occurs in a type 1 family that reaches size 1/u
1/2
2 , which

is � N.
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Spatial result

d = 1 d = 2 d ≥ 3

hd(u) u1/3 u1/2 log1/2(1/u) u1/2

gd(u) u1/3 log−1/2(1/u) 1

Theorem. If 1/hd(u2) � N � gd(u2)/u1 then

P(τ2 > t/Nu1hd(u2)) → exp(−αd t)

The same conclusion holds if |s| � hd(u2).

Type 2 mutation occurs in a type 1 family that reaches size 1/hd(u2).

d = 1 Komarova (2007). d ≥ 2. Durrett and Moseley (2011) AoAP 2014.

d ≥ 3 is like homogeneously mixing, logarithmic corrections in d = 2.
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Concrete Example

Cells have diameter ≈ 10 microns or 10−5m.

N = 108, (10cm)2

u1 = 10−8 fairly specific nonsynonymous mutation

s1 = 10−2

u2 = 10−6 gene knockout

s2 = 0.04

In most real applications there will be more stages.
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Head and Neck Squamous Cell Carcinoma

Type fitness
Normal 1
Atypia 1

Dysplasia 1 + s1
Carcinoma in situ (1 + s1)(1 + s2)

Invasive

Work in progress. Rather than base model on poorly understood genetic
events, we look at phenotypic changes. To derive waiting times combine
results for stochastic tunneling with results with selection.
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Spatial Moran is time change of random walk

Suppose only two types (0 and 1) and no mutation. s1 = s.

On each boundary edge connecting a 1 with a 0, there is a competition
with the interactions along this edge 0 changing to 1 at rate 1 + s and the
1 changing to 0 at rate 1.

Let ξt = {x : ηt(x) = 1}. While ξt 6= ∅, the size of the set, |ξt |, is a time
change of an asymmetric simple random walk which makes jumps +1 with
p = (1 + s)/(2 + s) and and −1 with probability 1− p = 1/(2 + s).

P1(T0 = ∞) = 1− 1− p

p
=

s

1 + s
∼ s as s → 0.
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Bramson and Griffeath (1980,1981)

Let ξ0
t be the set of sites occupied by individuals of type 1 at time t when

initially there is a single 1 at the origin at time 0. Bramson and Griffeath
(1980, 1981) showed that when ξ0

t does not die out, it grows linearly and
has an asymptotic shape D. That is, for any ε > 0, there is a tε (which
depends on the outcome ω) so that on {T0 = ∞} we have

(1− ε)tD ∩ Zd ⊂ ξt ⊂ (1 + ε)tD for t ≥ tε(ω). (1)

D is convex and has the same symmetries as those of Zd
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Speed

Let e1 be the first unit vector and define cd(s) so that the intersection of
D with the x axis is [−cd(s)e1, cd(s)e1].

The proof of Bramson and Griffeath implies that cd(s) ≥ bds where bd is
a positive constant. Using ideas of Durrett and Zähle (2007):

Theorem. As s → 0 we have

cd(s) ∼


s d = 1√

4πs/ log(1/s) = 0.1651 d = 2
√

4βds d ≥ 3,

where βd is the probability that two d dimensional simple random walks
started at 0 and e1 = (1, 0, . . . 0) never hit.
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σ1 time of the first successful type 1

Consider the process on the torus (Z mod L)d and let N = Ld .

“Obvious” Fact. If s1, u1 → 0 then

P(σ1 > t/Nu1s1) → e−t

In concrete example Nu1s1 = 100 cell divisions

“Proof” While the fraction of the torus covered by 1’s is small, mutations
to type 1 occur at rate Nu1 and are successful with probability ∼ s1.

Problem successive attempts are not independent.
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σ1 continued

A long lasting unsuccessful type 1 mutations will survive a time of order

`(s) =


s−2 d = 1,

s−1 log(1/s) = 460.5 d = 2,

s−1 d ≥ 3.

(2)

and cover a volume in space with diameter O(`(s)1/2)

Theorem 2. Suppose (A0) (1/u1) � `(s1)
(d+2)/2. As s1, u1 → 0

P(σ1 > t/Nu1s1) → e−t

u1`(s1)
(d+2)/2 � 1 means we can ignore two type 1 mutations in one

space time box of volume `(s1)
d/2 · `(s1).

In concrete example (A0) is 108 � 2.11× 105

Rick Durrett (Duke) ASU 18 / 27



An uninteresting regime

By Theorem 2, the time until the first successful type 1 mutation will be

tmut = Θ(1/Ldu1s1).

Since successful mutations spread at rate cd(s1), the time for a successful
mutation to spread to cover the torus will be

tfix = Θ(L/cd(s1))

When we have

(SF ) L � Lc =

(
cd(s1)

s1u1

)1/(d+1)

= 1181 versus L = 104

then we will have sequential fixation: successful mutations will fix faster
than they arise. When (SF) holds, the times between successive mutations
will be exponential with mean 1/tmut .
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Takeover by type 1’s

A site x will be type 1 at time t if there is a successful type 1 mutation in
the space-time cone {(y , r) : 0 ≤ r ≤ t, |y − x | < cd(t − r)}. Such
mutations are approximately a Poisson process with rate u1s so

P(x ∈ ξt) ≈ 1−exp

(
−u1s1

∫ t

0
γd(cd r)d dr

)
≈ 1−exp

(
−u1s1

γdcd
d td+1

d + 1

)
where γd is volume of the unit ball in d dimensions. P(x ∈ ξt) goes from
density ε to 1− ε at times of order

(1/s1u1c
d
d )1/(d+1) = Lc/cd = 7153.

This observation is useful to show that with high probability the first
successful type 2 mutation will occur while the density of 1’s is small.
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Mea culpa

In order to study σ2, we consider a simplified model in which:

(i) successful type 1 mutations give rise to a deterministic linearly growing
ball;

(ii) we ignore the effect of unsuccessful type 1 and type 2 mutations on
the growth in (i)

(iii) we flip coins to see if an unsuccessful type 1 will give rise to a
successful type 2.

Even with these simplifications it takes 20 pages to write the proofs.
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Three scenarios for σ2.

1. The successful type 2 mutation arises in the first successful type 1
family, and before the time of the second successful type 1 mutation.

2. There are several successful type 1 mutations before the first successful
type 2 mutation.

3. The number of successful type 1 mutations before the first successful
type 2 mutation tends to ∞. Not relevant for cancer.

In both cases 1 and 2 the malignancy is surrounded by premalignant cells
but in scenario 2 there is also a “distant field.”
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A mysterious but important constant

A cone with slant cd(s1) and height 1/Nu1s1 has volume

V =

∫ 1/Nu1s

0
γd(cd r)d dr =

γd

d + 1
cd
d

(
1

Nu1s1

)
ΓV = 1/u2s2 when

Γ = (Nu1s1)
d+1(cd

d (s1)u2s2)
−1 = 9.1716

Γ is the number of cones of this height needed to generate a successful
type 2 mutation.

If Γ → 0 then the successful type 2 mutation will occur in the first
successful type 1 family.
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Condition (A1)

If we let t2 = (cd
d u2s2)

−1/(d+2) then∫ t2

0
(d + 1)(cd r)d dr = 1/u2s2

At time t2 the radius of the clone is

cd t2 = (cd/u2s)
1/(d+1) = 66.7 versus L = 1000

To fit in the torus we need

(A1) (cd/u2s)
d/(d+1) � Ld = N
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Condition (A2)

If ξ̄t is the biased voter model conditioned to die out

E1

(∫ ∞

0
|ξ̄t | dt

)
∼ Cd`(s1)

Expected number of unsuccessful type 1’s before the first successful type 1
is 1/s so the probability that an unsuccessful type 1 family gives rise to a
successful type 2 mutation, before there are J successful type 1 mutations
is

J

s1
· `(s1) · u2s2

To rule this out we want

(A2) u2s2
`(s1)

s1
� 1

In concrete example LHS is 1.84× 10−3
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Scenarios 1 and 2

Assume (A0), (A1), (A2).

Theorem 3. If Γ → 0 then P(σ2 > t/Nu1s1) → exp(−t).

Theorem 4. If Γ → I ∈ (0,∞) then

P(σ2 > t/Nu1s1) → exp

(
−

∫ t

0
1− exp

[
−γd

I
· yd+1

d + 1

]
dy

)

If I = 0 the second result reduces to the first. Since 1− e−x ≤ x the
integral is ≤ Cdyd+2/I and so the number of successful type 1 mutations
needed to generate a successful type 2 is of order K = Γ1/d+2

Note that for large t, RHS ≈ e−t .
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Foo, Leder, and Ryser

Use these results to compute the distribution of:

the area of the local field (the ball in which the mutation occurs) at time
σ2;

the number of patches of type 1’s and the area of the distant field;

the time until a second primary tumor in the distant field.
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