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The Model

Individuals have one of two opinions (called 0 and 1). In the discrete time
formulation, oriented edges (x , y) are picked at random. If x and y have
the same opinion no change occurs.

If x and y have different opinions then: with probability 1− α, the
individual at x imitates the opinion of the one at y ; otherwise, i.e., with
probability α, the link between them is broken and x makes a new
connection to an individual z chosen at random (i) from those with the
same opinion (“rewire-to-same”), or (ii) from the network as a whole
(“rewire-to-random”).

The evolution of the system stops at time τ when there are no
“discordant” edges that connect individuals with different opinions.
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Holme and Newman (2006)

were the first to consider a model of this type. They chose option (i),
rewire-to-same, and initialized the graph with large number K of opinions
so that N/K remained bounded as the number of vertices N →∞. They
argued that there was a critical value αc so that

for α > αc , the graph rapidly disconnects, in time O(N log N), into a
large number of small components,

if α < αc , the system runs for time O(N2) and at the end there is a
“giant community of like-minded individuals” of size O(N).
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PNAS 109 (2012) 3682–3687

There are two opinions. We start with product measure with density p.
Let π be the minority fraction at time τ . Through a combination of
simulation and heuristics, Durrett, Gleeson, Lloyd, Mucha, Shi, Sivakoff,
Soclolar, and Varghese argued that

In case (i), rewire-to-same, there is a critical value αc which does not
depend on p, with π ≈ p for α > αc and π ≈ 0 for α < αc .

In case (ii), rewire-to-random, the transition point αc(p) which
depends on the initial density p. For α > αc(p), π ≈ p, but for
α < αc(ρ) we have π(α, p) = π(α, 1/2).
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Rewire-to-same
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Rewire-to-random
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Basu and Sly, Ann. Appl. Probab., to appear

Proved the existence of a phase transition for the dynamics on the dense
Erdős-Rényi graph G (N, 1/2) with voter events occurring with probability
1− α = ν/N. Let τ be the first time there are no discordant edges. Let
N∗(t) be the number of vertices holding the minority opinion at time t and
for 0 < ε < 1/2

Theorem 1. Consider the efficient version of the model in which only
discordant edges are chosen at random for updating, started from product
measure with density. There is a ν0 so that for all ν < ν0 and any η > 0

P

(
τ < 10N2, N∗(τ) ≥ 1

2
− η

)
→ 1 as N →∞.
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Prolonged persistence

The next theorem is the main result of their paper and has a very long and
difficult proof. Let τ∗(ε) = min{t : N∗(t) ≤ εn}.

Theorem 2. Let ε′ ∈ (0, 1/2) be given. There is a ν∗(ε
′) so that for

ν > ν∗(ε
′) we have τ∗(ε

′) ≤ τ with high probability and

lim
c↓0

lim inf
N→∞

P(τ > cN3) = 1.

In continuous time where each oriented edge updates at times of a rate 1
Poisson process, N3 here and Holme and Newman’s N2 are both N.
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Rewire to random

Theorem 3. Let ν > 0 be fixed. For the rewire-to-random model, there is
an ε∗(ν) so that τ < τ∗(ε∗) with high probability.

This implies that at time τ the minority fraction is ≥ ε∗. is consistent with
the simulation for sparse graphs shown earlier, but is believed to be false
for rewire to same.
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Thick graphs

The process on G (N, 1/2) is ugly because it quickly develops a large
number of parallel edges. We consider Erdös-Renyi graphs with average
degree L = Na with 0 < a < 1 and forbid the creation of parallel edges. As
in Basu and Sly voting rate 1− α = ν/L. We define ”finite dimensional
distributions”

Ni =
∑
x

1{ξ(x)=i},

Nij =
∑

x ,y∼x

1{ξ(x)=i ,ξ(y)=j},

Nijk =
∑

x ,y∼x ,z∼y ,z 6=x

1{ξ(x)=i ,ξ(y)=j ,ξ(z)=k},
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N10 versus N1 when N = 2500, L = 50, ν = 2.5.

Figure: The arch has endpoints (α(ν), 1− α(ν)). Here (0.0737, 0.09263)
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N100 versus N1 when N = 2500, L = 50, ν = 2.5.

Figure: Same end points as in previous fit. Now the function is cubic.
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What the simulations tell us

The fraction of 1’s, θt = N1(t)/N, determines the values of all the other
statistics, i.e., there is a one-parmeter family of quasi-stationary
distributions. Cox and Greven proved this for the voter model on the torus
in d ≥ 3 and that θt follows the Wright-Fisher diffusion

dθt =
√

βd · 2θt(1− θt)

In the first part of the simulation the density goes straight down (i.e., θt

does not change) so

νc(p) = inf{ν : p ∈ (a(ν), 1− a(ν))}

If the curve hits the arch it diffuses along it until one endpoint is reached,
and hence the ending density does not depend on the starting density.
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N10 versus N1 when N = 2500, L = 50, ν = 1.
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Evolution equations

dN10

dt
= −N10 +

ν

L
[N100 − N010 + N110 − N101] (1)

1

2

dN11

dt
= pN10 +

ν

L
[N101 − N011] (2)

1

2

dN00

dt
= (1− p)N10 +

ν

L
[N010 − N100] (3)

Note that Nij = O(NL) while Nijk = O(NL2) so the terms on the
right-hand side of (1)-(3) are of the same order of magnitude. In writing
these equations we have omitted terms such as (ν/L)Nij since they are
O(N). Since

∑
ij Nij = NL the three equations add up to 0.
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Pair approximation

let Ji and Ki be the average number of 1 neighbors and 0 neighbors of a
vertex in state i . The pair approximation is

N101 =
∑

x :ξ(x)=1

∑
y :ξ(y)=0

j0(y) ≈ N10J0.

Applying similar reasoning for the other Nijk ’s we have

1

2

dN11

dt
≈ pN10 +

ν

L
[N10J0 − N01J1],

1

2

dN00

dt
≈ (1− p)N10 +

ν

L
[N01K1 − N10K0].

This predicts that J∗0 = Lp(1− [p2 + (1− p2]/ν) and hence
νc(p) = p2 + (1− p)2, but simulations show νc(1/2) > 0.8.
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Approximate Master Equation

We visualize our system as N particles, one for each vertex, moving in two
planes. A point at (i , j , k) means that the state of the vertex is i , there are
j neighbors in state 1, and k in state 0.

Voting events at the focal vertex x cause jumping from (1, j , k) → (0, j , k)
at rate νk/L and from (0, j , k) → (1, j , k) at rate νj/L.
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Here the rates on horizontal and vertical edges which come from rewiring
are exact. On the diagonal arrows kN1/N and jN0/N are exact but the
others come from e.g., using Nijk/Nij to compute the expected number of
neighbors of z in state k when x is in state i and y is in state j .
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To study this system, we will introduce q = 1− p,

α =
N101

N10
, β =

N110

N11
, η =

N10

N
δ =

N010

N01
, ε =

N001

N00
.

and analyze the system in general. The infinitesmial mean saisfies

plane 1
dj1
dt

= η + pk1 +
ν

L
αk1 −

ν

L
βj1

dk1

dt
= η − k1 − pk1 −

ν

L
αk1 +

ν

L
βj1

plane 0
dj0
dt

= η − j0 − qj0 −
ν

L
δj0 +

ν

L
εk0,

dk0

dt
= η + qj0 +

ν

L
δj0 −

ν

L
εk0.
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If we let N →∞ scale space by L, and suppose

α

L
→ ᾱ,

β

L
→ β̄,

η

L
→ η̄,

δ

L
→ δ̄,

ε

L
→ ε̄.

then in the limit we get a system in which single particles that moves
according to the following differential equations

plane 1
dx1

dt
= η̄ + py1 + νᾱy1 − νβ̄x1,

dy1

dt
= η̄ − y1 − py1 − νᾱy1 + νβ̄x1.

plane 0
dx0

dt
= η̄ − x0 − qx0 − νδ̄x0 + νε̄y0,

dy0

dt
= η̄ + qx0 + βδ̄x0 − βε̄y0.

and jump between the planes.
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Using techniques of Lawley, Mattingly, and Reed we can show.

Theorem. Fix ν > 0, p ∈ (0, 1) and let q = 1− p. For any
ᾱ, β̄, γ̄, ε̄, η̄ > 0 The two plane system has a unique stationary distribution
that is the limit starting from any initial configuration.

Proof. Start at time −n and run to time 0. As n →∞ the state at time 0
converges to a limit almost surely.
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Following Silk et al, one can write partial differential equations for the
moment generating functions for the limit measures on the two planes

0 = νβ̄(b − a)Ua + νVa + ([p + ᾱν](a− b)− b − ν)Ub + η̄aU + η̄bU,

0 = νε̄(a− b)Vb + νUb + ([p + δ̄ν](b − a)− a− ν)Va + η̄aV + η̄bV .

Since derivatives are moments, we can extract some information from this
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ν Ub sim Uab sim calc Ubb sim calc Uaa sim calc

2 0.1666 0.1025 0.1041 0.0604 0.0625 0.2336 0.2208
1.6 0.1371 0.0907 0.0900 0.0466 0.0471 0.2859 0.2574
1.44 0.1216 0.0827 0.0819 0.0394 0.0397 0.3115 0.2810
1.32 0.1094 0.0757 0.0754 0.0343 0.0340 0.3310 0.3047
1.2 0.0896 0.0641 0.0635 0.0264 0.0261 0.3735 0.3351
1 0.0454 0.0339 0.0341 0.0132 0.0113 0.4690 0.4129

Table: Simulation of evolving voter model compared with computations for the
approximate mater equation. The caclulated values of Uab and Ubb differ by 1%
from simulation but Uaa is off by 10%.
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