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Model

State of the process at time t is ηt : Zd → {0, 1, 2, . . .}

0 = wild type, 1 = premailgnant, 2 = malignant

Type i cells have fitness (1 + s)i

Birth-death dynamics: Cells reproduce with a rate equal to their fitness
and then replace one of its 2d nearest neighbors cells at random with its
progeny, which inherits the parental fitness.

Type i cells also mutate to type i + 1 cells at rate ui+1.
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Biased Voter Model

Only 1’s and 0’s, no mutation.

ξ0
t process when initially there is a single 1 at the origin at time 0.

Let T0 be the extinction time. P1(T0 = ∞) = s/(1 + s).

Bramson and Griffeath Shape Theorem. For any ε > 0, there is a
tε(ω) so that on {T0 = ∞} we have

(1− ε)tD ∩ Zd ⊂ ξt ⊂ (1 + ε)tD for t ≥ tε(ω).
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Simulation of biased voter model
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Speeds

Let e1 be the first unit vector, [−cd(s)e1, cd(s)e1] intersection of D with
the x axis. Using ideas of Durrett and Zähle (2007):.

Theorem. As s → 0 we have

cd(s) ∼


s/2 d = 1√

(π/4)s/ log(1/s) d = 2
√

βds/d d ≥ 3,

where βd is the probability that two d dimensional simple random walks
started at 0 and e1 = (1, 0, . . . 0) never hit.

d = 3. C
√

s speed for ∂u/∂t = ∂2u/∂x2 + su(1− u) and for branching
Brownian motion.

d = 2. s = 0.025. Formula 0.0729, simulation 0.0715± 0.0043.
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An important quantity

On Zd we say a mutation is successful if the family it starts does not die
out. To define this notation on a torus with N = Ld sites:

`(s) =


s−2 d = 1,

s−1 log(1/s) d = 2,

s−1 d ≥ 3

Lemma. For δ > 0 there exists M such that the probability an
unsuccessful type 1 family on Zd will last for time ≥ M`(s) or will escape
from a cube of radius M`(s)1/2 is ≤ δs.
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σ1 Time to first successful type 1 mutation

P(σ1 > t/Nu1s) → e−t

“Proof” Mutations occur at rate Nu1, are successful with probability → s.

Technicality: How do we know that successive attempts don’t interfere
with each other?
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A clumsy proof

Divide space-time into boxes with side [M`(s)]1/2 in space, M`(s) in time

(A0) u1`(s)
(d+2)/2 → 0 (at most one mutation per box)

(A0’) N/(`(s))d/2 →∞. (boxes fit in torus)

Theorem. Assume (A0) and (A0’).

P(σ1 > t/Nu1s) → e−t

Open Problem. Get rid of (A0) which is not satisfied in some
applications.
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Values of constants

N = 106 cells in 1 cm2, 109 in 1 cm3.

Mutation rate 5× 10−10 per nucleotide per cell division but there can be
hundreds of mutations that will knock out a gene, and a large number of
genes that can be mutated to knock out a metabolic pathway.
ui = 10−9 to 10−5

Suppose s = 0.01, d = 2 (colon, bladder, epithelial tissues)

(A0) u1`(s)
(d+2)/2 = 0.1 when u1 = 10−6.362

(A0’) N/(`(s))d/2 = 10 when N = 103.663
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Proof by simulation
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Figure: N = 105.5, u1 = 8× 10−8, s = 0.01
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Simplified model on the torus [0, L)d

Assumption I. Successful type 1’s grow deterministically

region covered by 1’s χt =
k⋃

i=1

Bxi ,(t−ti )cd (s).

Assumption II. We ignore the effect of unsuccessful type 1 and
unsuccessful type 2 mutations on the growth of the successful type 1’s.

Assumption III. Successful type 2 mutations occur at rate:

λ2(x , t) = 1{x∈χt}u2s + 1{x∈χc
t }u1I (s)u2s

where I (s) = E (
∫ T0

0 |ξ0
t | dt|T0 < ∞).
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σ2, First case

The successful type 2 comes from the first successful type 1 family.

At t2 = (cd
d u2s)

−1/(d+1) the family has space-time volume∫ t2

0
(cd r)d dr = Θ(1/u2s).

the radius is cd t2 = (cd/u2s)
−1/(d+1). For this ball to fit inside our torus,

we need to have

(A1) (cd/u2s)
d/(d+1) � Ld = N.

(A1), (A2), (A3) are ugly but have simple explanations.
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Theorem 3. If we assume,

(A1)

(
cd

u2s

)d/(d+1)

� N �
(cd

d u2s)
1/d+1

u1s
(A2)

and (A3) u2 � 1/`(s) then as s → 0

P(σ2 > t/Nu1s) → exp(−t)

(A1) growing ball fits in torus (previous slide)

(A2) t2 = σ2 − σ1 � σ1

(A3) Successful type 2 does not come from a type 1 family that dies out.
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Simulation of spatial Moran model (not simplified)
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Figure: N = 105.5, u1 = 8× 10−8, u2 = 4.4× 10−4, s = 0.01 Deviation at small
times due to contribution of σ2 − σ1.
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σ2, Second case

Γ = (Nu1s)
d+1(cd

d u2s)
−1.

Intuitively, Γ1/(d+1) is the number of successful type 1 mutations needed
(after the first one) to produce the first successful type 2.

Theorem 4. If we assume (A1), (A3), and Γ → I ∈ (0,∞) then as s → 0

P(σ2 > t/Nu1s) → exp

(
−

∫ t

0
1− exp

[
−γd

I
· yd+1

d + 1

]
dy

)

(A1) Balls fit in torus. [(A2) in Th 3 is Γ → 0.]

(A3) Successful type 2 does not come from unsuccessful type 1.

Proof: Show whp cones don’t overlap, compute volume, use Poisson.
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Simulation (0.116) vs. Theorem I = 0.4
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Figure: N = 105.5, u1 = 8× 10−8, u2 = 8× 10−6, s = 0.01
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The source of the problem
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Figure: Simulated volume versus formula s = 0.01. Only 50,000 cells at end of
simulation. Even a small d = 2 tumor will have 106 cells.
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Connections with Cancer

Slaughter (1951) coined the term cancer field effect to reflect the fact
that in Head and Neck Squamous Cell Carcinoma (HNSCC) and other
epithelial cancers, a malignancy is surrounded by a region that has
undergone premalignant transformation, which is what our model predicts.

He also noticed that often there was a distant recurrence which might be
as far as 7cm from the original malignancy. The original hypothesis was
that these were metastases but sequencing studies show that they have a
different genotype. In Case 2 of of result for σ2 there are multiple cancer
fields.
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The first two papers and the slides for this talk are available on my web
page.
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