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Stan Ulam once said:

“I have sunk so low that my last paper
contained numbers with decimal points.”

Figure: Feynman, Ulam, von Neumann
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Armitage and Doll (1954)

Noticed that log-log plots of cancer incidence data are linear for a large
number of cancer types; for example, colorectal cancer incidence has a
slope of 5.18 in men and 4.97 in women.
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Multi-stage theory of carcinogenesis

Armitage and Doll (1954) use the observation that the slopes were 5.18 in
men and 4.97 in women to argue that colon cancer is a six stage process.
The math was very simple

Suppose Xi are independent and have an exponential distribution with
rates ui . The sum X1 + · · · + Xk has a density function that is
asymptotically

u1 · · · uk
tk−1

(k − 1)!
as t → 0
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Incidence of Retinoblastoma

Knudson’s two hit hypothesis → tumor-suppressor genes
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Progression to Colon Cancer

Luebeck and Moolgavakar (2002) PNAS fit a four stage model to
incidence of colon cancer by age.
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What are the stages ?

In sporadic cases of colon cancer the first two stages are inactivation
of the tumor suppressor gene APC adenomatous polyposis coli.

KRAS is an oncogene (one mutation turns it on). Once it is turned
on it recruits and activates proteins necessary for the propagation of
growth factor

The final stage is thought to involve the inactivation of TP53 the
gene which makes p53. Mutant p53 can no longer bind DNA in an
effective way, and as a consequence the p21 protein whose production
it stimulates is not made available to act as the ’stop signal’ for cell
division.
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Multitype Markovian binary branching process

Zi (t) ≡ is the number of type i cells

Type i cell give birth at rate ai and die at rate bi .

Yes we have deaths at rate b.

Type i cells produce offspring of type i + 1 at rate ui+1.
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Type 0’s are a branching process

Birth at rate a0, death at rate b0, λ0 = a0 − b0.

P(Z0(t) = 0 for some t ≥ 0) = b0/a0

As t → ∞, e−λ0tZ0(t) → W0 a.s.

W0 =d
b0

a0
δ0 +

λ0

a0
exponential(λ0/a0)

exponential(r) has density re−rt , mean 1/r .

If we condition on nonextinction the limit is exponential(λ0/a0).
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Type 1’s: Durrett and Moseley (2009)

For simplicity suppose V0 is a constant

EZ1(t) =

∫ t

0
V0e

λ0su1e
λ1(t−s) ds

Theorem. As t → ∞, e−λ1tZ ∗
1 (t) → W1 a.s. with

EW1 =
V0u1

λ1 − λ0

This overestimates Z1(t) because the dominant contribution to the integral
comes from s near 0, where mutations are rare but have a huge effect.
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A better approach

Let Z ∗
1 (t) be the number of 1’s when Z ∗

0 (t) = V0e
λ0t , t ∈ (−∞,∞). The

expected number of mutations at times ≤ 0 is V0u1/λ0 which is small for
typical values u1 = 10−5, s = 0.02.

Theorem. As t → ∞, e−λ1tZ ∗
1 (t) → V1 a.s. with

E (exp(−θV1)|V0) = exp(−ch,1u1V0θ
α1)

and α1 = λ0/λ1. (V1|V0) is one sided stable law with index α1 ∈ (0, 1).

P(V1 > x) ∼ cx−α1 so EV1 = ∞.
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Growth rate of type k’s

Suppose Z ∗
0 (t) = V0e

λ0t for t ∈ (−∞,∞) where V0 is exponential(λ0/a0).

e−λk tZ ∗
k (t) → Vk a.s.

Let Fk−1∞ be the σ-field generated by Z ∗
j (t), j ≤ k − 1, t ≥ 0.

E (e−θVk |Fk−1
∞ ) = exp(−ch,kukVk−1θ

αk )

where αk = λk−1/λk and hence Ee−θVk =
(
1 + cθ,kμkθλ0/λk

)−1
.

ch,k =
1

ak

(
ak

λk

)αk

Γ(αk)Γ(1 − αk)

cθ,k = cθ,k−1c
λ0/λk−1

h,k , cθ,0 = a0/λ0 and μk =
∏k

j=1 u
λ0/λj−1

j .
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Transitions between waves
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zk(t) =
1

L
log+ Zk(t) ≈ λk(t − βk)+ L = log(1/u) βk =

k−1∑
j=0

1/λj
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τk = min{t : Zk(t) > 0}

P(τk > tk
1/2 + x/λ0) → 1

1 + ex
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Within Tumor Heterogeneity

Problems in cancer treatment caused by intra-tumor diversity:

Different subpopulations within a tumor may have varying types of
response to any given treatment, making total tumor reduction and
prevention of resistance difficult.

Heterogeneity levels are associated with aggressiveness of disease
(e.g., in Barrett’s esophagus and prostate cancer).

Studies have also shown mutational heterogeneity between primary
tumors and metastases in breast cancer, explaining lack of response
to EFGR antibody therapy in patients that appeared to have no
mutation in KRAS.
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Intra-tumor diversity generated by model
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In this simulation, bi = 0.1, a0 = 0.2, ai − ai−1 ∼ U([0, 0.05]), u = 0.001.
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Point process representation of V1

Z0(t) = V0e
λ0t , V0 nonrandom.

Define a two dimensional point process Xt with a point at (s, w) if there
was a mutation to type 1 at time s and the resulting type 1 branching
process Z̃1(t) has e−λ1(t−s)Z̃1(t) → w .

A point at (s, w) contributes e−λ1sw to V1 = limt→∞ e−λ1tZ1(t).

V1 =
∑

(s,w)∈Xt
e−λ1sw , the sum of points in a Poisson point process with

mean measure μ(z ,∞) = A1u1V0z
−α where α = λ0/λ1.

True for (Vk |Fk−1∞ ) with α = λk−1/λk .
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Flash back to stable laws

Let Y1, Y2, . . . be independent and identically distributed nonnegative
random variables with P(Yi > x) ∼ cx−α with 0 < α < 1. Let
Sn = Y1 + · · · + Yn. Then

Sn/n1/α → V

where V is the sum of points in a Poisson process with mean measure
μ(z ,∞) = cx−α
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Simpson’s index

We define Simpson’s index to be the probability two randomly chosen
individuals in wave k are descended from the same mutation.

R2 =
∞∑
i=1

X 2
i

V 2
k

where X1 > X2 > . . . are points in the Poisson process and Vk is the sum.
In genetics this is the homozygosity.

Theorem. ER2 = 1 − α where α = λk−1/λk for wave k.

Proof. Apply results of Fuchs, Joffe and Teugels (2001) about
convergence to stable laws. ER does not depend on Vk−1.
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Figure: Empirical distribution of Simpson’s Index for wave 1 at times
t = 70, 90, 110, 130,∞. Parameters: bi = 0.1, a0 = 0.2, ai − ai−1 ∼ U([0, 0.01]),
mean is 1 − α = 1/11.
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Poisson-Dirichlet Distribution(α,0)

The points Yi = Xi/Vk have this famous distribution introduced by
Kingman (1975) J. Roy. Stat. Soc. B. 37, 1-22 and which has been
extensively studied, see 75 references in Pitman and Yor Ann. Prob. 25
(1997), 855–900 and Pitman’s 2006 book Combinatorial Stochastic
Processes.

E
∞∑
i=1

f (Yi ) =
1

Γ(α)Γ(1 − α)

∫ 1

0
f (u)u−α−1(1 − u)α−1 du

we find that Rp =
∑

i X
p
i /V p

k has

ERp = E
∑

i

Y p
i =

Γ(p − α)

Γ(1 − α)Γ(p)

which is 1 − α when p = 2.
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Logan, Mallows, Rice and Shepp (1973)

Consider the “self-normalized sums”

Sn(p) =

∑n
i=1 Xi

(
∑n

j=1 X p
j )1/p

Sn(2) = R
−1/2
n

They proved convergence in distribution and identified the Fourier
transform of the limit.
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Ovarian Cancer

Ovarian cancer is the fifth leading cause of cancer death among women in
the United States.

21,800 new cases and 13,850 deaths in 2010.
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Can screening reduce mortality?

In the June 8, 2011 issue of the JAMA, results were published of a study
of 78,216 women aged 55–74. Screening used tests for the bio-marker
CA125 (cancer antigen) and transvaginal ultrasound.

n diagnosed death
annual screening 39,105 212 118
routine care 39,111 176 100
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Can screening reduce mortality?

In the June 8, 2011 issue of the JAMA, results were published of a study
of 78,216 women aged 55–74. Screening used tests for the bio-marker
CA125 (cancer antigen) and transvaginal ultrasound.

n diagnosed death
annual screening 39,105 212 118
routine care 39,111 176 100

3,285 women in the screening group had false positive results, 1080 had
surgery and 163 had serious complications from surgery.
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Multitype model

Lengyel (2010) Am. J. Pathology 177, 1053–1064

An epidermal to mesenchymal transition in the tumor allows its cells to
detach. Cells float in the peritoneal fluid as single cells or small groups.
Some cells adhere to the omentum, followed by invasion of the extracellular
matrix, angiogenesis etc. There are no significant genetic differences
between the main tumor and metastases indicating that no additional
mutations are needed beyond those that created the initial tumor.

type 0 = primary tumor, type 1 = cells in peritoneal fluid, type 2 =
metastasis. ui = rate at which cells change from type i − 1 to type i .

Brown and Palmer (2009) PLoS Medecine Vol. 6, Issue 7, e1000114

λ0 = (ln 2)/4, λ2 = (ln 2)/2.5 per month, λ1 < λ0 ui =?
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Brown and Palmers’ parameter estimation

Figure: A. Growth in stages I and II, B. Stages III and IV, versus 625 parameter
combinations
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Type 0

Type 0’s are a branching process. Z0(t) ∼ W0e
λ0t

W0 =d
b0

a0
δ0 +

λ0

a0
exponential(λ0/a0)

exponential(r) has density re−rt , mean 1/r .

Condition on not dying out and Z0(t) ∼ V0e
λ0t , V0 = exponential(λ0/a0).

Time t since original mutation is not observable so we simplify.

Assume Z0(t) = eλ0t .
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Type 1

Type 1’s leave from the surface of the primary tumor at rate u1 times the
surface area.

EZ1(t) =

∫ t

0
u1e

2λ0s/3eλ1(t−s) ds

=
u1

(2λ0/3) − λ1

(
e2λ0t/3 − eλ1t

)

Let γ1 = 2λ0/3. To remove the unknown rate λ1, we set λ1 = 0.
Dominant contribution comes from times near t. Many mutations so
result is deterministic.

Theorem. Z1(t)/EZ1(t) → 1 in probability as t → ∞.
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Type 2 Asymptotics

At time s mutations occur to type 2 at rate u2(u1/γ1)e
γ1s so we let

s2 =
1

γ1
log

(
γ1

u1u2

)

be the time at which the mutation rate is 1.

Theorem e−λ2(t−s2)Z2(t) → V2 where V2 is the sum of points in a
Poisson process with mean measure μ(x ,∞) = C2x

−α2 where α2 = γ1/λ2,

C2 =
1

a2

(
a2

λ2

)α2

Γ(α2)

and Γ(r) =
∫ ∞
0 tr−1e−t dt is the usual gamma function.
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What is the detection window?

A commonly quoted fact is that 1cm3 = 109 cells.
We define the window of opportunity for detection to be [T0, T2] where

T0 = inf{t : Z0(t) = 6.5 × 107}, diameter 0.5 cm

T2 = inf{t : m2(t) > 109}. one gram

Recall λ0 = (log 2)/4 = 0.1733 and λ2 = (log 2)/2.5 = 0.2772. Setting

e0.1733T0 = 6.5 × 107 gives T0 =
1

0.1733
log(6.5 × 107) = 103.8

months or 8.65 years.
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T0 = 103.8. To make a crude calculation note that the first mutation to
type 2 occurs at time

s2 =
1

γ1
log

(
γ1

u1u2

)

From this point for the 2’s to grow to size 109.it will take time roughly

1

λ2
log(109) = 74.76 months

If we let u1u2 = 10−4 and note γ1 = 0.1155 then

s2 =
1

.1155
log(1115) = 61.05

so T2 = 7476 + 61.05 = 138.51 months, and T2 − T0 = 32 months or
2.66 years.

Need to do screening every one or two years.
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Size of the Primary at T1 = inf{t : Z1(t) > 109}

In the previous calculations we ignored the fact that Z1(t) ∼ V1e
−λ1t .

T1 =
1

λ1
ln(109/V1)

At this time

Z0(T1) = exp(λ0T1) = (109V1)
α α = λ0/λ1

Brockwell and Brown (1978) ZfW (aka PTRF), V−α
1 has density

∞∑
k=0

(−x)k

Γ(k + 1)Γ(1 − α − αk)
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Probability of Progression vs. Size
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Summary

Growth, progression, and metastasis of cancer can be modeled with
multi-type branching processes, and these models can be used to evaluate
screening strategies and treatment regimens.

Results about stable laws can be used to obtain quantitative results about
tumor heterogeneity and other quantities of interest, which in contrast to
simulation, reveal the dependence on underlying parameters.
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