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Epidemics with fixed infection times

The action takes place on a graoh G in continuous time t ∈ [0,∞).

SIR epidemic. Susceptibles become infected at rate λ times the number
of infected neighbors. An infection lasts for time 1, after which the
individual is “Removed,” no longer can be infected.

Since the infection time is fixed the events x infects yi are independent for
all the neighbors yi of x .

Let T be exponential with rate λ, i.e. P(T > t) = e−λt . Let

τf = P(T ≤ 1) = 1− e−λ
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Epidemic = Percolation

Each edge will be S − I (or I − S) only once. Flip a coin with probability
τf of heads, and keep the edge if the coin shows heads, otherwise delete it.
The individuals infected in an epidemic started by x = the connected
component of the graph containing x .

Erdös-Renyi graph. There are n vertices. Each pair of vertices is
indpendently connected by an edge with probability µ/n. The thinned
graph is ER(n, µτ f /n).

A large epidemic occurs with positive probability if µτ f > 1. If z0 is the
fixed point smaller than 1 of the generating function

G (z) = exp(−µτ f (1− z)),

then 1− z0 gives both the limiting probability an infected individual will
start a large epidemic, and the fraction of individuals infected when a large
epidemic occurs.
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Configuration model

Let d1, . . . dn be independent and have P(di = k) = pk . Since we want di
to be the degree of vertex i , we condition on En = {d1 + · · ·+ dn is even}.
To build the graph we think of di half-edges attached to i and then pair
the half-edges at random.
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Branching process viewpoint

Pick a vertex x to start from. Let Zm be the number of vertices at distance
m from x . In the Erdös-Renyi case, when m is small, Zm is a branching
process in which each individual has a Poisson(µ) number of children.
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Branching process view of configuration model

First vertex chosen has j neighbors with probability pj = P(Di = j).

Since we connect half-edges at random, a first generation vertex with
degree k is k times as likely to be chosen as one with degree 1, so the
distribution of the number of children of a first generation vertex is

qk−1 =
kpk
µ

for k ≥ 1 where µ =
∑
k

kpk

The k − 1 on the left-hand side comes from the fact that we used up one
edge connecting to the vertex. If p has finite second moment, q has finite
mean ν =

∑
k k(k − 1)pk/µ.

If ν > 1 then there is a component of order n with positive probability.
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General infection times

Suppose now that infections have duration S with density function fS(s).
A common choice is exponential(γ) so that the set of infected sites is a
Markov process.

Let τc = P(T < S). Infections from x to its neighbors yi are no longer
independent, but that does not matter, since our branching process will be
supercritical if the mean number of children ντc > 1.

Ĝ1(z) =

∫ ∞
0

ds fS(s)
∞∑
j=0

z j
∞∑
k=j

qk

(
k

j

)
(1− e−λs)j(e−λs)k−j

If qk → pk call this Ĝ0. When ν > 1 the probability of a large epidemic is
1− Ĝ0(ζ) where Ĝ1(ζ) = ζ is the fixed point < 1.
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Probability of large epidemic 6= final size.

For general infection times, the relevant graph for percolation has oriented
edges x to neighbors y .

Probability of a giant component when we start at a randomly chosen
vertex is percolation probability when we follow edges in the direction of
their orientation. (Edges from x are dependent.)

Final size is probability of a giant component when we start at a randomly
chosen vertex and follow edges in the direction OPPOSITE to their
orientation. (Edges to x are independent.)

Homework: Compute the probability of a large epidemic and the final size
on the complete graph when S = exponential(γ). Out degree is shifted
geometric, in degree is Poisson.
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Power law random graphs

pk ∼ Ck−α, qk ∼ C ′k1−α. If 2 < α < 3 then
∑

k kpk <∞ but∑
k kqk =∞, i.e., the branching process has infinite mean.

Internet (physical network of machines) α = 2.16 Faloutos3 (1999)

Movie actor network (connected by movies) α = 2.3

Liljeros et al (2001) Sexual network of 4,781 Swedes.
αmale = 3.3, αfemale = 3.5.

“Internet is robust yet fragile.” Percolation probability for random attacks
pc = 0 but is easily disconnected by targeting high degree nodes.

For proofs, Bollobás and Riordan (2004) Internet Math 1, 1–35
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SIS model

Nodes become infected at rate λ. At rate 1, infected nodes become
healthy (and again susceptible to disease)

If infected → occupied, and susceptible → vacant this is the contact
process invented by Ted Harris in 1974 (on Zd).

λc is threshold for survival, θ(λ) = survival probability, θ(λ) ∼ C (λ− λc)β

According to degree-based mean field calculations

If α ≤ 3, λc = 0, β = 1/(3− α)
If 3 < α < 4, λc > 0 but β = 1/(α− 3) > 1
If α ≥ 4, λc > 0. β = 1

Epidemics in Complex Networks Rev. Modern Phys. 87, 925–979
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Berger, Borgs, Chayes and Saberi (2005)

Considered the contact process on Barabási-Albert preferential attachment
graph, has a power law degree distribution with α = 3.

Theorem. (a) The probability that the process will survive from a
randomly chosen vertex is λΘ(1) and hence λc = 0.
(b) With probability 1− O(λ2) the survival probability is

λΘ[log(1/λ)/ log log(1/λ)]

Idea: If the infection can reach a vertex with degree Cλ−2 there is survival

Lemma. On the star graph with k leaves, if kλ2 →∞

P
(
ξ0

exp(kλ2/10) 6= ∅
)
→ 1
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(Shirshendu) Chatterjee and Durrett (2009)

Suppose α > 3, P(di ≤ 2) = 0, and Gn has no self-loops or parallel edges.

Theorem. Let ξ1
t , t ≥ 0 denote the contact process on the random graph

Gn starting from all sites occupied. Then for any λ > 0, there is a positive
constant p(λ) so that for any δ > 0

inf
t≤exp(n1−δ)

P

(
|ξ1
t |
n
≥ p(λ)

)
→ 1 as n→∞.

Main idea: Look at all the vertices with di ≥ nε. The infection survives
for a long time on their stars. The graph has diameter O(log n) so if a star
becomes healthy it is easy to push infection from another star to it.

Bounds were also proved on the critical exponent β.
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Mountford and friends (2013, 2016)

Mountford, T., Valesin, D., and Yao, Q. (2013) extended the result to
cover 2 < α ≤ 3 and proved upper and lower bounds on survival
probability, that are the same up to a constant.

θ(λ) =


λ1/(3−α) 2 < a ≤ 5/2

λ2α−3 log2−α(1/λ) 5/2 < α ≤ 3

λ2α−3 log4−2α(1/λ) 3 < α

Mountford, T., Mourrat, J-C, Valesin, D., and Yao, Q. (2016) showed that
survival holds for times t ≤ ecn.
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Physics versus Rigorous Critical Exponents
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Contact process on Galton-Watson trees.

It is easier to work on the infinite object because there is survival for all
time rather than just metastability. On trees there are two critical values:
if λ > λ1 the process does not die out. If λ > λ2 the root is occupied
infinitely often.

Theorem. Pemantle (1992) If the offspring distribution in the
Galton-Watson tree is a stretched exponential pk = cγ exp(−kγ) with
γ < 1 and has mean µ > 1 then λ2 = 0.

Theorem Zoe Huang and Durrett (arXiv:1810.06040) If the offspring
distribution pk for a Galton-Watson tree is subexponential

lim sup
k→∞

(1/k) log pk = 0.

and has mean µ > 1 then λ2 = 0.
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Bhamidi, Nam, Nguyen, and Sly arXiv:1902.03263

Theorem. Consider the contact process on the Galton-Watson tree with
offspring distribution ζ with E (exp(cζ)) <∞ for some c > 0, then λ1 > 0.

Proof is based on a very simple recursive equation. They also get bounds
on the critical value and on survival times. To lower bound survival times
they use subtrees with good expansion properties.

Problem. Is λ1 < λ2?
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Two Topics

Duke is unusual because students are required to live on campus 3 out of 4
years, so 80% of students live on campus. How much would spread in the
dormitories be reduced if all students had single rooms?

Gressman and Peck (arXiv:2006.03175) have used a stochastic
agent-based model of a university to argue that to reduce spread all
classes larger than 30 should be online only. We will use a much simpler
models to show that the answer depends on how contagious the disease is.
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Household model

This well-studied model is one step more realistic than homogeneously
mixing. See e.g., Ball, Mollison, and Scalia-Tomba (1997) Ann. Prob.

pH = P(infect a given person within the house)

pG = (G is for glabal) P(infect a given person outside the house)

GH(z) = g.f. of the size of the epidemic within the house started by
one person

Gν(z) = exp(NpG (z − 1) g.f. of number of long distance infections
caused by one person, distribution Poisson(NpG )

Probability of a large epidemic is the positive solution of

1− ζ = GH(Gν(ζ))
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Dorm with all single rooms

G 1
D(z) = g.f. of the size of the epidemic within the dorm started by

one person

Gν(z) = exp(NpG (z − 1)) g.f. of number of long distance infections
caused by one person, distribution Poisson(NpG )

Spread of the epidemic in the dorm is an branching process with progeny
Poisson(λ1), λ1 = npD . Let G 1

b be the g.f. of total progeny

Mean number infected in dorm: (1− λ1)−1

G 1
D solves G 1

D(z) = zG 1
b (G 1

D(z))

Solve by iteration. Probability of a large epidemic solves

1− ζ = G 1
D(Gν(ζ)) where Gν(z) = exp(NpG (z − 1)
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Dorm with all double rooms

pL = probability you infect your roommate

Epidemic in the dorm is an branching process with progeny

pLPoisson(2 · 2n1pD) + (1− pL)Poisson(2n1pD)

Let G 2
b be the generating function of total progeny

Let λ2 = (1 + pL)2n1pD . Mean number infected: (1− λ2)−1

g.f. of size of epidemic within the dorm solves G 2
D(z) = zG 2

b (G 2
D(z))

Probability of a large epidemic solves

1− ζ = G 2
D(Gν(ζ)) where Gν(z) = exp(NpG (z − 1)
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Comparison of epidemic probabilities

pL = 0.7, n = 2n1 so same number of students per dorm.

Figure: When 2n1pD = 0.7 or 0.9 there is an epidemic even when pG = 0. When
2n1pD = 0.3 or 0.5 there is a positive threshold for pG but it is 50% larger in the
single room situation.
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Class model

We consider some simplifieid models for a university where each student
takes three classes. The situation can be described by a graph in which
there are n students and m classes with sizes ci 1 ≤ i ≤ m, and there is an
edge from each student to the three classes they are enrolled in. Each
classroom is assumed to be homogeneously mixing.

An individual that is infected in class i at time t, adds his two alter egos
(his presence in other classes) to the infected population at time t + 1/2
and then infections at time t + 1 are produced. None of the time t + 1/2
infecteds are present at time t + 1. Two time steps = one week.

Scenario 1. 100 classes of size 30. Each student takes 3 classes so this
means 1000 students total. An individual infected in class 1 at time 0 will
produce a Poisson(87p) infecteds in class 1 at time 1.
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Scenario 2

25 classes of size 60 (1 ≤ i ≤ 25) and 75 of size 20 (26 ≤ i ≤ 100), so
again 1000 students. m(i , j) expected number of infections in class j
caused by one infected in in class i .

mi ,j =

{
(ci − 1)p j = i

2 · cj
3000−ci · (cj − 1)p j 6= i

Since maximum eigenvalue has xi = a for 1 ≤ i ≤ 25 and xi = b for
26 ≤ i ≤ 100, the eigenvalue problem for the 100× 100 matrix can be
reduced to one for a 2× 2 matrix and we have

R0 = 129.38p

which is 48% larger than all classes of size 30.
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Scenario 3

Consider a university with 111 classes, one each of sizes ranging from 10,
11... 120. Total enrollment in classes is 10 + 11 + ...+ 120 = 7215, or
2405 students. m(i , j) is the expected number of infections in class j
caused by one infected student in i .

mi ,j =

{
(j + 8)p i = j

2(j+9)
7215−(i+9) · (j + 8)p i 6= j

The maximum eigenvalue R0 = 251.5p

If all classes of size > k are moved online, m(i , j) = 0 for j > k .
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