(Duke)

Spatial Evolutionary Games

Rick Durrett

=] 5
MBI 4/28/2015



Prisoner’s Dilemma / Alturism

C D
C b—c —c
D b 0

A cooperator pays a cost ¢ to give the other player a benefit b. The
matrix gives the payoffs to player 1. If, for example, player 1 plays C and
player 2 plays D then player 1 gets —c and player 2 gets b.

Space is important. Strategy 1 dominates strategy 2. In a
homogeneously mixing world, C's die out. Under “Death-Birth” updating
on a graph in which each individual has k neighbors, C's take over if
b/c > k.
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Snowdrift game

C D
C b—c/2 b—c
D b 0

Two individuals are trapped on either side of a snowdrift. C is shovel your
way out, D is do nothing. If both play C they split the work. If you play C
versus an opponent who plays D you do all of the work but at least you
don't have to spend the night in your car. If b > c then there is a mixed
strategy equilibrium.
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Snowdrift game

C D
C b—c/2 b—c
D b 0

Two individuals are trapped on either side of a snowdrift. C is shovel your
way out, D is do nothing. If both play C they split the work. If you play C
versus an opponent who plays D you do all of the work but at least you
don't have to spend the night in your car. If b > c then there is a mixed
strategy equilibrium.

Facultative cheating in Yeast. Nature 459 (2009), 253-256. To grow
on sucrose, a disaccharide, the sugar has to be hydrolyzed, but when a
yeast cell does this, most of the resulting monosaccharide diffuses away.
None the less, cooperators can invade a population of cheaters.
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Two strategy games

Payoffs to player 1. C = cooperate, D = defect

C D C D
1. Altruism C b-—c —c 2. Snowdrift C b—c¢/2 b—c
D b 0 D b 0
c D Cc D
3. Battle of thesexes C 0 1 4. StagHunt C 3 0
D 2 -1 D 2 1

Only three cases in Replicator equation (next slide).
1. D> C; 2, 3. attracting fixed point; 4. bistable.
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Homogeneously mixing environment

Frequencies of strategies follow the replicator equation

dx; -
L =xj(F—F
] )

F; = ZJ- Gj jx;j is the fitness of strategy /, F = > xiFi, average fitness

If we add a constant to a column of G then F; — F is not changed.
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Glycolytic phenotype

Cancer cells are initially characterized as having autonomous growth (AG),
but could switch to glycolysis for energy production (GLY'), or become
increasing motile and invasive (INV).

2 3
1 %—n

NI =

1=AG
2=INV  1-c 1-
3=GLY +n—-k 1—-k 3-

LSJ[o)
—_
|
(9}

Here c is the cost of motility, k is the cost to switch to glycolysis, n is the
detriment for nonglycolytic cell in glycolytic environment, which is equal to
the bonus for a glycolytic cell.
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Tumor-Stroma Interactions

Prostate cancer. S = stromal cells, | = cancer cells that have become
independent of the microenvironment, and D = cancer cells that remain

dependent on the microenvironment.

S D |
S 0 o) 0
D 1+a—-p 1-28 1-0F+p
I 1—»x 1—»x 1—»x

Here v is the cost of being environmentally independent,

[ cost of extracting resources from the micro-environment,
« is the benefit derived from cooperation between S and D,
p benefit to D from paracrine growth factors produced by /.
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Three species chemical competition

First example Tomlinson (1997) and also Durrett and Levin (1997) three
species colicin

1 2 3
1= Producer 1—f+(g—€e) 1—e 1+(g—e)
2 = Resistant 1—h 1—-~h 1—h
3 = Sensitive 1—fF 1 1

Here f is the cost of sensitivity to toxin, g is the advantage to producer, e
is cost to produce, h is cost of resistance.

S>R;ifg>ethenP>S;ifh<eand h<e+f—gthen R> P,
Backwards rock-paper-scissors: R > P >S5 > R
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Rock-Paper Scissors for Lizards

Figure: Orange = several mates > Blues = monagamous > Yellow = sneaky
maters > Orange
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Non-spatial Generalized Rock-Paper-Scissors

R P S
R 0 a3 f , ,
P 3 0 a a; <0< G
S aw B/ O

Fixed point for replicator dynamics (all components > 0):

uy = (P12 + araz — a161)/D
up = (233 + azaz — az2)/D
uz = (B3f1 + apar — a3f3)/D

Let A = (516203 + ajasaz. A > 0 orbits spiral in. A < 0 spiral out.

A = 0 one parameter family of periodic orbits.
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Spatial three species colicin
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Spatial Model

Suppose space is the d-dimensional integer lattice. Interaction kernel p(x)
is a probability distribution with p(x) = p(—x), finite range, covariance
matrix 02/. E.g., p(x) = 1/2d for the nearest neighbors x + e;, ¢; is the
ith unit vector.

§(x) is strategy used by x. Fitness is ®(x) = = p(y — x)G(£(x), &(y))-

Birth-Death dynamics: Each individual gives birth at rate ®(x) and
replaces the individual at y with probability p(y — x).

Death-Birth dynamics: Each particle dies at rate 1. Is replaced by a copy
of y with probability proportional to p(y — x)®(y). When p(z) = 1/k for a
set of k neighbors ', we pick with a probability proportional to its fitness.
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Small selection

We are going to consider games with C,-,j =1+ wG;j where 1 is a matrix
of all 1's, and w is small. Population size = oo, so not weak selection.

Does not change the behavior of the replicator equation.

Ohtsuki, Hauert, Lieberman, Nowak (2006) A simple rule for the evolution
of cooperation on graphs and social networks. Nature. 441, 502-505

If the game matrix is 1, B-D or D-B dynamics give the voter model.
Remove an individual and replace it with a copy of a neighbor chosen at
random (according to p). With small selection this is a voter model
perturbation in the sense of Cox, Durrett, Perkins (2013) Astérisque
volume 349, 120 pages.
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Holley and Liggett (1975)

Consider the voter model on the d-dimensional integer lattice Z9 in which
each vertex decides to change its opinion at rate 1, and when it does, it
adopts the opinion of one of its 2d nearest neighbors chosen at random.

In d <2, the system approaches complete consensus. That is if

x # y then P(&(x) # &(y)) — O.

In d > 3 if we start from ég product measure with density p, i.e., ég(x)
are independent and equal to 1 with probability then £ converges in
distribution to a limit v,, which is a stationary distribution for the
voter model.
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PDE limit

Theorem. Flip rates are those of the voter model +¢2h; j(0,&). If we
rescale space to €Z9 and speed up time by €2 then in d > 3

ui(t, x) = P(&2(x) =)
converges to the solution of the system of PDE:

8u,- 0'2
E = ?AU, + ¢I(U)

where
$i() = (L) mii(0,€) = Lig(o)=nhij(0,€))u
J#
and the brackets are expected value with respect to the voter model
stationary distribution v, in which the densities are given by the vector
Durrett and Levin (1994) expected value w.r.t. product measure.
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More about v,

Voter model is dual to coalescing random walk = genealogies that give the
origin of the opinion at x at time t.

Random walks jump at rate 1, and go from x to x + y with probability
p(y) = p(—y). Random walks from different sites are independent until
they hit and then coalesce to 1.

(&(0) =1,&(x) = 0), = p(0|x)u(1 — u), where p(0|x) is the probability
the random walks never hit.

(€(0) = 1,&(x) = 0,&(y) = 0)u = p(O|x|y)u(1 — u)® + p(0lx, y)u(1 — u).
Sites separated by a bar do not coalesce. Those within the same group do.

Coalescence probabilities describe voter equilibrium.
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Two big ideas

On the next two slides we will give some ugly formulas for the limiting
PDE in our two cases.

Idea 1. Ohtsuki and Nowak. The reaction term is the replicator
equation for a modification of the game.

Idea 2. Tarnita et al. The effect of the dispersal kernel can be

encapsulated in two numbers. One number in the two strategy case.

Caveat. Let v; and v, be independent and have distribution p(x). We will

also need
k=1/P(vi + v» =0)

is the “effective number of neighbors.” If p is unform on a set of size k,

Kk = k.
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Birth-Death dynamics

dul—ﬁbR Zleuk_Zuj ik Uk

Let v1, v» be independent with distribution p
p1 = pOlvi|vi +v2)  p2 = p(0|vi,v1 + v2)

PDE is 9u;/0; = (1/2d)Au + ¢i5(u) where

d(u) = pror(u) + p2 Y uiti(Gri — Gji + Gij — Gj )
J#i

This is p; times the RHS of the replicator equation for G + A:

Aij = %(G/pf +Gij = Gji = Gjj)
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Death-Birth dynamics

p1 = p(vi|va|vo + v3) P2 = p(vi|va, va + v3)
Limiting PDE is Ou; /0t = (1/2d)Au + ¢’ (u) where

(le(u) = bl¢R + p2 Z uluj I i Gy + GiJ - GJ,J)
J#i
— (1/R)p(valva) > wiuj(Gij — Gjj)
J#i

is p; times the RHS of the replicator equation for G + A
v p2 p(vi|v2)
Aij==—(Gii+ Gij— Gji— Gjj) — ————(Gij — Gj,;
47 5 ( J— 4 jJ) e ( j,i)
k =1/P(v1 + vo = 0) is the “effective number of neighbors.”
Only 2 constants: 2p; + p2 = (1 + 1/k)p(0|v1)
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Birth-Death updating (o > ¢ fixed)

o, A+l
T ="

(6—19)

coexistence shrinks

2>1
7=
2_’s
win 1>2
1's
win

bistability disappears 3 =9
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1 2
1 o O
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Death-Birth updating (o > ¢ fixed)

ot = AMlp s+ o
VR = S0 b
Space changes PD L, — pulv)
Kp1
2>1 coexist A=p—v>0
* A *
(5* a*) / 7o _)\_-1-1(5_6)
v =o _v(a=d)
- 0% =0 = 15500
v(a—96)
win 12
1's 1 2
_ win 1 a p
bistable P 2 4 &
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Hauert’s one dimensional simulations
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Spatial Generalized Rock-Paper-Scissors

R P S
R 0 a3 0O . .
P A 0 a a; <0< G
S aw /1 O
In this game the diagonal entries G;; = 0 the reaction terms for both

updates have the form p(¢h(u) + 0> uiuj(Gij — Gj i)
The reaction term is the RHS of the replicator equation for

0 a3+ 0(az —B3) B2+ 0(f2 — az)
H=|Bs+0(3 — a3) 0 o1+ 0(oq — B1)
az +0(a2 — B2) P14+ 0(81— 1) 0

also a rock-paper-scissors game since 3; > «;.
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PDE result

Lemma. Consider PDE with reaction term = RHS of the replicator
equation for H. Suppose that the game H has (i) zeros on the diagonal,
(i) an interior equilibrium p, and that H is almost constant sum:

Hjj + Hji = ¢ + n;j where max; j |n; j| < ¢/2. In this case, if we start the
from a continuous initial configuration in which {u; > 0 for all i} is a
nonempty open set, then PDE converges to p on a linearly growing set.

Proof. ¢(u) =", ui — pilogu; is a convex Lyapunov function. If
h(t, x) = ¢(u(t, x)), and ® is the Hessian of ¢

oh o2 .
Fri ?Ah + ¢*(u(t,x)) — Vu-d(u(t,x))Vu

Lemma and CDP implies existence of stationary distribution with
densities ~ p;
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Two attracting boundary fixed points in H

AG

/

/ N

e— O

GLY

INV p— u—

Using results from R. Durrett (2002) Mutual Invadability Implies
Coexistence. Memoirs of the AMS. Volume 156, Number 740, we can
construct a convex Lyapunov function that is nontrivial near the boundary,
and conclude that there is coexistence in the spatial model.
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Bistability in H

Prove existence of traveling wave w with w(—o00) = x, w(oo) = y.
Prove convergence theorem for PDE.
Sign of speed dictates the true equilibrium of spatial model.
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Spatial Evolutionary Games with Small Selection Coefficients
Electronic J. Probability or my web page

Contains an extensive analysis of 3 x 3 games
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