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Introduction Introduction

Directed polymer in a random environment

Key quantities again:
time N simple random walk path (x(t),t), t € Z, n

space-time environment {w(x,t) : x € Z9, t € N} ® Quenched measure Qn{x(+)} = Z, exp{ﬁtz_;w(x(t), t)}

inverse temperature 5 > 0

@ Partition function Z, = Zexp{ﬁzn:w(x(t), t)}

quenched probability measure on paths x() t=1
1 n
O space’ Qn{x()} = VA exp{ﬁZw(X(t), t)} Questions:
n t=1
n @ Behavior of walk x(-) under Q, on large scales: fluctuation
partition function Z, = Zexp{ﬁZw(X(t), t)} exponents, central limit theorems, large deviations
x(+) t=1

(summed over all n-paths) @ Behavior of log Z, (now also random as a function of w)

P probability distribution on w, often {w(x, t)} i.i.d. © Dependence on {3 and d
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Large deviations Large deviations

n—1
. .. I |
Define empirical measure R, = n E 5TXk

Large deviations

Question: describe quenched limit lim_ ntlogZ, (P-as.) pard Dbkttt

Large deviation perspective. It is a probability measure on £2,.

Generalize: Eg = expectation under background RW X, on Z". Then n~tlog Z, = n"1log Eg [ean(g)]

ntlogZ, =n"tlog K [eﬁZZ;é “Xi] Task: understand large deviations of Po{R, € -} under P-a.e. fixed w
(quenched).

= nllog Ey [eZZZS g(ka)}

. Process: Markov chain (Tx,w, Zp+1,n+¢) on 82, under a fixed w.
—np1 log Eo [ezkzo g(Tx,w, Zk+1,k+€):|

Evolution: pick random step z from R, then execute move
Introduced shift (T w), = wx4y, steps Zx = X — Xk—1 € R,

Ziy= (4, 2o, ..., 24).

S; i (w,z10) = (Thw, 2202).

: ) , Defines kernel p on Q,: p(n,S.n) = |R|™L.
g(w, z1¢) is a function on 2y = Q x R*.
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Large deviations Large deviations

Assumptions.

For 1 € M1(S), g Markov kernel on €, usual relative entropy on Q2: o Environment {wy} IID under P.
@ g local function on Q,, E|g|P < oo for some p > v.

H(ux qlpxp) = /Q > a(n, Szn) jog 27321) 1.

,S.
¢ zeR p(1, 521) Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit
The effect of P in the background? Ag) = lim n"tlog Eo[e"®(&)]  exists P-as.
Let o = Q-marginal of € M1(Sy). Define and  A(g) = Hlf(g) = sup sup {E*[g Ac] — Hp(p)}.
uw o c>0
inf 4+ H D pg = if P
Ho(yr) {m {H(ux qlpxp):pg=p} if uo < Remarks.
otherwise. ) , o
e With higher moments of g admit mixing P.
Infimum taken over Markov kernels g that fix u. o N(g) > —.

_ o o |ID directed + above moment = A(g) finite.
Hp is convex but not lower semicontinuous.
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Large deviations Fluctuation exponents

Quenched weak LDP (large deviation principle) under Q.

1

Qn(A) = Eo [ean(g)}

E() [enR,,(g) lA(w, Zl,oo)}

Rate function I(u) = Cn;%{ Hp(p) — E*(g A c)+NA(g) }

Theorem. (RSY) Assumptions as above and A(g) finite. Then
P-a.s. for compact F C M;(S2,) and open G C M1(Sy):

lim ntlog Qu{R, € F} < — inf I(p)
n—oo neF

lim n"tlog @{R, € G} > — inf I(u)

n—o00 HeG

[ID environment, directed walk: full LDP holds.
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Fluctuation exponents

Definition of fluctuation exponents  and

Return to d + 1 dim directed polymer in i.i.d. environment.

Question: Is the path x(-) diffusive or not, that is, does it scale like
standard RW?

Early results: diffusive behavior for d > 3 and small 3 > 0:
1988 Imbrie and Spencer: n*E®(|x(n)|?) — ¢ P-as.
1989 Bolthausen: quenched CLT for n=1/2x(n).

In the opposite direction: if d = 1,2, or d > 3 and (3 large enough, then
Jdc>0s.t. o
lim max Qp{x(n) =2z} >c P-as.

n—oo z

(Carmona and Hu 2002, Comets, Shiga, and Yoshida 2003)
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Fluctuation exponents

Earlier results for d = 1 exponents

e Fluctuations of the path {x(t):0 <t < n} are of order n°.
@ Fluctuations of log Z, are of order nX.

¢(=2/3 and

o Conjecture for d = 1: x =1/3.

Results: these exact exponents for three particular 1+1 dimensional
models.

Past rigorous bounds give 3/5 < ( < 3/4 and x > 1/8:

@ Brownian motion in Poissonian potential: Wiithrich 1998, Comets
and Yoshida 2005.

@ Gaussian RW in Gaussian potential: Petermann 2000 ¢ > 3/5,
Mejane 2004 ¢ < 3/4

o Licea, Newman, Piza 1995-96: corresponding results for first passage
percolation
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Fluctuation exponents

Fluctuation exponents
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Rigorous ¢ = 2/3 and x = 1/3 results

exist for three “exactly solvable” models:

(1) Log-gamma polymer: 3 =1 and e “(*t) ~ Gamma, plus
appropriate boundary conditions.

(2) Polymer in a Brownian environment (joint with B. Valkd).
Model introduced by O'Connell and Yor 2001.

(3) Continuum directed polymer, or Hopf-Cole solution of the
Kardar-Parisi-Zhang (KPZ) equation:

(i) Initial height function given by two-sided Brownian motion
(joint with M. Baldzs and J. Quastel).

(ii) Narrow wedge initial condition (Amir, Corwin, Quastel).

Next details on (3.i), then details on (1).
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Fluctuation exponents
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Hopf-Cole solution to KPZ equation

KPZ eqn for height function h(t, x) of a 1+1 dim interface:

hy = hyx — %(hx)2 + W

N

where W = Gaussian space-time white noise.

Initial height h(0,x) = two-sided Brownian motion for x € R.

Z = exp(—h) satisfies Z; = %Zxx — ZW that can be solved.

Define h = —logZ, the Hopf-Cole solution of KPZ.

Bertini-Giacomin (1997): h can be obtained as a weak limit via a
smoothing and renormalization of KPZ.
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Fluctuation exponents
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WASEP connection

(<(t, x) height process of weakly asymmetric simple exclusion s.t.

C(x+1)—((x)==+1

rate up 3+ /¢

>
o
R -

~ WASEP connection

Jumps:

C(x) +2
C(x) —2

with rate  + /= if (-(x) is a local min
Ce(x) —

if ((x) is a local max

N

with rate

Initially:  ¢.(0,x + 1) — (-(0,x) = £1 with probab 3.

he(t,x) = Y2 (¢(e72t, [e7 X)) — wet)

Theorem (Bertini-Giacomin 1997) Ase \, 0, h. = h
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Fluctuation exponents Fluctuation exponents
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Fluctuation bounds Rescaled correlations again:
S.(t,x) =4e71 Cov[n(e™ 2t, e 1x), 7(0, 0)]

From coupling arguments for WASEP

Git?% < Var(he(t,0)) < Gt E[ (¢, ha(£)) (¢, ho(0)) ]
+ x — X
Theorem (Baldzs-Quastel-S) For the Hopf-Cole solution of KPZ, = %/ [/@(y 5 )¢<y 5 ) d)/] Se(t, x) dx
G1t*3 < Var(h(t,0)) < Gt?/3
Let € \, 0. On the left increments of h. so total control !

Lower bound comes from control of rescaled correlations
On the right S.(t,x)dx = S(t,dx) with control of moments:

S:(t,x) =471 Cov[n(e~%t, e 'x), 1(0,0)]
Ik

dx ~ O(t?™3),  1<m<3.

where 7n(t, x) € {0,1} is the occupation variable of WASEP
(Second class particle estimate.)
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Fluctuation exponents Fluctuation exponents
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141 dimensional lattice polymer with log-gamma weights

After € N\, 0 limit . .
Fix both endpoints.

E[{¢', n(t)) (¢ // (y +X> (y ; X) dy S(t, dx) R M., = set of admissible paths

independent weights Y; ; = (i)

From mean zero, stationary h increments

- . - - 2
L0 Var(h(t,x)) = S(t,dx) as distributions. environment (Y; ; : (7,J) € Z3)

> m-+n

0 m Zm,n = Z H Yxk
x. k=1

With some control over tails we arrive at the result:

2/3 m+n
Var(h(t, O)) = |X| S(t, dX) ~ O(t ) quenched measure Qm n H YXk
averaged measure Pp p(x.) = EQm n(x.)
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Fluctuation exponents
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Weight distributions * Variance bounds for log Z

e Parameters 0 < 0 < p. With 0 < 0 < u fixed and N /' oo assume

o Bulk weights Y ; fori,j € N 2/3 2/3
— NV (u—0)| < CN — NV < CN 1
o Boundary weights Uio = Yio and Vo — Yo | m 1p—0)] < C and |n 10)[ < C (1)

f UL ~ Gamma(6)
0 Theorem
Vo,j|  Yij

—1 .
Vo,j ~ Gamma(y —6) For (m,n) asin (1), CiN?*?3 < Var(log Zm,,) < GN?/3

0| 1| U Y} ~ Gamma(u)
0

Theorem

Suppose n = W1 (0)N and m = Wy(u — )N + yN* with v > 0, a > 2/3.
Then

o Gamma(6) density: [(8) 1x?~le=> on R,

© V(s) = (d"/ds" ") log () N~/2{10g Zp s~ E(10g Zna) } = N(0.792(6))
o E(logU) = —W¥y(A) and Var(log U) = W1(0)
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Fluctuation exponents
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Fluctuation bounds for path Results for log-gamma polymer summarized

vo(j) = leftmost, v1(j) = rightmost point of x, on horizontal line: With reciprocals of gammas for weights, both endpoints of the polymer

. .. . fixed and the right boundary conditions on the axes, we have identified the
vo(j) = min{i € {0,..., m} : 3k : x = (i.J)} one-dimensional exponents

vi(j) =max{i €{0,...,m} 3k :xx = (i,J

1) et ) k=00 (=2/3 and x =1/3.

Theorem

Next step is to

Assume (m, n) as previously and 0 <7 < 1. Then @ eliminate the boundary conditions and

C @ consider polymers with fixed length and free endpoint
(2) P{w(Lrnl) < Tm — BN? or w(|7n]) > rm+ N3} < — PoY s P
In both scenarios we have the upper bounds for both log Z and the path.
(b) Ve >0 34> 0 such that But currently do not have the lower bounds.

lim — < SNZ3 ) <
Nlinoo P{ =L suen Biei s = (i, i) < o } =& Next some key points of the proof.
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Burke property for log-gamma polymer with boundary

4 Given initial weights (i, € N):
, Vi
Yo ’ Ui ~ Gamma(f), Vo i ~ Gamma(p — 6)
of 1 Uo ijl ~ Gamma(p)

Compute Zp,, , for all (m, n) € Z3 and then define

Um7n _ Zm,n me _ Zm,n Xmm _ ( Zm,n Zm,n ) 1
Zm—l,n Zm,n—l Zm—|—1,n Zm,n—l—l
Uc f={x—e,x}

For an undirected edge f: T =
VX f= {X - 627X}

Polymer large deviations and fluctuations SEPC May 16, 2011

Fluctuation exponents
0000000e00]

Proof of Burke property

Induction on Z by flipping a growth corner:

U=Y1+U/V) V' =Y1+V/U)

UY
Vv o’ X ®
U

\A 1

X=(Utl+v1

Lemma. Given that (U, V,Y) are independent positive r.v.’s,
(U, V', X)L (U, V,Y) iff (U, V,Y) have the gamma distr's.

Proof.
of gamma due to Lukacs (1955).

“if" part by computation, “only if" part from a characterization
O

This gives all (zx) with finite Z. General case follows.

L__I === down-right path (zx) with
I edges fx, = {Zk—l,zk}r keZ
I___I

e oo e interior points Z of path (z)
[ I N ) '———

Theorem
Variables {T¢,, X, : k € Z, z € T} are independent with marginals

U™! ~ Gamma(f), V!~ Gamma(yu —6), and X!~ Gamma(u).

“Burke property” because the analogous property for last-passage is a
generalization of Burke's Theorem for M/M/1 queues, via the last-passage
representation of M/M/1 queues in series.
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Proof of off-characteristic CLT

n= \Ul(G)N
m=Wi(u— )N+ N

Recall that >0, a>2/3.

Set m = L\Ul(,u — Q)NJ Since Zm7,7 =Lm,n" Hﬂmﬁ-l U,',,,
m
N=/2Tog Zpn = N~ *?log Zmn + N2 > Tog U,
i=mp+1

First term on the right is O(N/3-%/2) — 0. Second term is a sum of
order N® i.i.d. terms. [J
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Variance identity * Variance identity, sketch of proof

N =log Zm n — log Zo,n

Exit point of path from x-axis
— & =max{k >0:x; = (i,0) for 0 < i< k}
£x S =logZmpo

W = log 2y, E =logZmn—logZmo

For 8, x > 0 define positive function

x Var |log Znm, Var(W + N)
L(,x) = /O (Wo(0) — log y)x Py LexY dy log Zma] =

= Var(W) + Var(N) + 2 Cov(W, N)
= N) + 2 E—N,N
Theorem. For the model with boundary, = Var(W) + Var(N) + 2Cov(S + )
. = Var(W) — Var(N) + 2Cov(S, N) (E,N ind.)
Var[log Zm.n| = nVi(p — 0) — mW1(0) + 2 Ep { Z L(6, Y,_Ol)} =nVi(u—0) — m¥1(0) + 2Cov(S, N).

i=1
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To differentiate w.r.t. parameter 6 of S while keeping W fixed, introduce a
separate parameter p (= pu — ) for W.

0 0
—Cov(S,N) = %E(N) = E[@H log Zpm ,,(9)] Together:
c Var[log Zm,n| = nV1(p — 0) — mW1(0) + 2 Cov(S, N)
% m-+n
— . &x
when  Z, ,(0) = Ho(n; 1. Y,  with _
(0) X;:m ];[1 () k:];[+1 . — Wy ( — ) — mYy(0) + 2 Emn [ Z; L6, yl_’ol)} .
_ B X Qflefy . .
ni ~ 1D Unif(0,1), Hy(n) = F; L), Fy(x) = /0 Y 10 dy This was the claimed formula. [
0 Q & 1
Differentiate: 20 log Zm.n(0) = — E¥™" [ ; L(6, Yo )] :
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Sketch of upper bound proof

The argument develops an inequality that controls both log Z and &
simultaneously. Introduce an auxiliary parameter A = 6 — bu/N. The
weight of a path x, such that &, > 0 satisfies

&x B m+n & Hi (1)
w(o) =T Ho) " TT Y = w)- I
i=1 k=&x+1 i1 9(77 )

Since Hy(n) < Hp(n),

Lu]

) I Z(\) Hx(ni)
Q" {& > u} = Z(6) Xz-l{fx > upW(o) < Z(0) 11:[1 HZ(U/).
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Forl1<u<dNand 0 < s <6,

LUJ
w —su /N (77/
[Q {é.x Z U} > € S { H@(nl }

(2D g,

Choose « right. Bound these probabilities with Chebychev which brings
Var(log Z) into play. In the characteristic rectangle Var(log Z) can be
bounded by E(&x). The end result is this inequality:

2
PlO*(6 > 0) 2 ] < T + Ty

Handle u > 0N with large deviation estimates. In the end, integration
gives the moment bounds. END.
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Polymer in a Brownian environment

Environment: independent Brownian motions By, Bs, ..., B,

Partition function (without boundary conditions):

Zo1(8) = / exp[B(Bi(s1) + Ba(s2) — Ba(s1) +

0<s1 < <51 <t

+ 33(53) — B3(52) + -+ Bn(t) — Bn(sn_l) )} d517,7_1
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