Large deviations

#### Timo Seppäläinen

Department of Mathematics University of Wisconsin-Madison

2011

Introduction

- 2 Large deviations
- Fluctuation exponents
  - KPZ equation
  - Log-gamma polymer

Polymer large deviations and fluctuations SEPC May 16, 2011

Introduction

Large deviations

Outline

Polymer large deviations and fluctuations SEPC May 16, 2011 Introduction

Fluctuation exponents

Directed polymer in a random environment

# time $\mathbb N$

Outline

simple random walk path  $(x(t), t), t \in \mathbb{Z}_+$ 

space-time environment  $\{\omega(x,t): x \in \mathbb{Z}^d, t \in \mathbb{N}\}$ 

inverse temperature  $\beta > 0$ 

quenched probability measure on paths

$$Q_n\{x(\cdot)\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{t=1}^n \omega(x(t), t)\right\}$$

partition function 
$$Z_n = \sum_{x(\cdot)} \exp \left\{ \beta \sum_{t=1}^n \omega(x(t), t) \right\}$$

(summed over all *n*-paths)

 $\mathbb{P}$  probability distribution on  $\omega$ , often  $\{\omega(x,t)\}$  i.i.d.

#### Key quantities again:

- Quenched measure  $Q_n\{x(\cdot)\} = Z_n^{-1} \exp\left\{\beta \sum_{t=1}^n \omega(x(t), t)\right\}$
- Partition function  $Z_n = \sum_{x(t)} \exp \left\{ \beta \sum_{t=1}^n \omega(x(t), t) \right\}$

#### **Questions:**

- Behavior of walk  $x(\cdot)$  under  $Q_n$  on large scales: fluctuation exponents, central limit theorems, large deviations
- Behavior of  $\log Z_n$  (now also random as a function of  $\omega$ )
- Dependence on  $\beta$  and d

It is a probability measure on  $\Omega_{\ell}$ .

Then  $n^{-1} \log Z_n = n^{-1} \log E_0 [e^{nR_n(g)}]$ 

Define empirical measure  $R_n = n^{-1} \sum_{k=0}^{\infty} \delta_{T_{X_k}\omega, Z_{k+1, k+\ell}}$ .

**Task:** understand large deviations of  $P_0\{R_n \in \cdot\}$  under  $\mathbb{P}$ -a.e. fixed  $\omega$ 

**Process:** Markov chain  $(T_{X_n}\omega, Z_{n+1,n+\ell})$  on  $\Omega_\ell$  under a fixed  $\omega$ .

**Evolution:** pick random step z from  $\mathcal{R}$ , then execute move

#### Large deviations

**Question:** describe quenched limit  $\lim_{n\to\infty} n^{-1} \log Z_n$  (P-a.s.)

Large deviation perspective.

Generalize:  $E_0$  = expectation under background RW  $X_n$  on  $\mathbb{Z}^{\nu}$ .

$$n^{-1} \log Z_n = n^{-1} \log E_0 \left[ e^{\beta \sum_{k=0}^{n-1} \omega_{X_k}} \right]$$

$$= n^{-1} \log E_0 \left[ e^{\sum_{k=0}^{n-1} g(\omega_{X_k})} \right]$$

$$= n^{-1} \log E_0 \left[ e^{\sum_{k=0}^{n-1} g(T_{X_k}\omega, Z_{k+1, k+\ell})} \right]$$

Introduced shift  $(T_x\omega)_y=\omega_{x+y}$ , steps  $Z_k=X_k-X_{k-1}\in\mathcal{R}$ ,

$$Z_{1,\ell} = (Z_1, Z_2, \ldots, Z_{\ell}).$$

 $g(\omega,z_{1,\ell})$  is a function on  $\mathbf{\Omega}_{\ell}=\Omega imes\mathcal{R}^{\ell}$ .

Polymer large deviations and fluctuations SEPC May 16, 2011

5/35

Polymer large deviations and fluctuations SEPC May 16, 2011

 $S_z: (\omega, z_{1,\ell}) \mapsto (T_{z_1}\omega, z_{2,\ell}z)$ 

6/35

- .

Outline

Large deviations

Fluctuation exponent

Outline

(quenched).

Large deviations

Fluctuation exponent

#### Entropy

For  $\mu \in \mathcal{M}_1(\Omega_\ell)$ , q Markov kernel on  $\Omega_\ell$ , usual relative entropy on  $\Omega_\ell^2$ :

$$H(\mu \times q \mid \mu \times p) = \int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \mu(d\eta).$$

The effect of  $\mathbb{P}$  in the background?

Let  $\mu_0 = \Omega$ -marginal of  $\mu \in \mathcal{M}_1(\Omega_\ell)$ . Define

$$H_{\mathbb{P}}(\mu) = egin{cases} \inf ig\{ H(\mu imes q \,|\, \mu imes p) : \mu q = \mu ig\} & ext{if } \mu_0 \ll \mathbb{P} \ \infty & ext{otherwise}. \end{cases}$$

Infimum taken over Markov kernels q that fix  $\mu$ .

 $H_{\mathbb{P}}$  is convex but not lower semicontinuous.

# Assumptions.

• Environment  $\{\omega_x\}$  IID under  $\mathbb{P}$ .

Defines kernel p on  $\Omega_{\ell}$ :  $p(\eta, S_z \eta) = |\mathcal{R}|^{-1}$ .

• g local function on  $\Omega_{\ell}$ ,  $\mathbb{E}|g|^p < \infty$  for some  $p > \nu$ .

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}]$$
 exists  $\mathbb{P}$ -a.s.

and 
$$\Lambda(g) = H^\#_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \big\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \big\}.$$

#### Remarks.

- ullet With higher moments of g admit mixing  $\mathbb{P}$ .
- $\Lambda(g) > -\infty$ .
- IID directed + above moment  $\Rightarrow \Lambda(g)$  finite.

Polymer large deviations and fluctuations SEPC May 16, 2011

7/3

Polymer large deviations and fluctuations SEPC May 16, 2011

Quenched weak LDP (large deviation principle) under  $Q_n$ .

$$Q_n(A) = \frac{1}{E_0\left[e^{nR_n(g)}\right]} E_0\left[e^{nR_n(g)}\mathbf{1}_A(\omega, Z_{1,\infty})\right]$$

Rate function 
$$I(\mu) = \inf_{c>0} \{ H_{\mathbb{P}}(\mu) - E^{\mu}(g \wedge c) + \Lambda(g) \}.$$

**Theorem.** (RSY) Assumptions as above and  $\Lambda(g)$  finite. Then  $\mathbb{P}$ -a.s. for compact  $F \subseteq \mathcal{M}_1(\Omega_\ell)$  and open  $G \subseteq \mathcal{M}_1(\Omega_\ell)$ :

$$\overline{\lim}_{n\to\infty} n^{-1} \log Q_n \{ R_n \in F \} \le -\inf_{\mu \in F} I(\mu)$$

$$\underline{\lim}_{n\to\infty} n^{-1}\log Q_n\{R_n\in G\} \geq -\inf_{\mu\in G}I(\mu)$$

IID environment, directed walk: full LDP holds.

Return to d+1 dim directed polymer in i.i.d. environment.

**Question:** Is the path  $x(\cdot)$  diffusive or not, that is, does it scale like standard RW?

**Early results:** diffusive behavior for  $d \ge 3$  and small  $\beta > 0$ :

1988 Imbrie and Spencer: 
$$n^{-1}E^Q(|x(n)|^2) \rightarrow c$$
 P-a.s.

1989 Bolthausen: quenched CLT for 
$$n^{-1/2}x(n)$$
.

In the opposite direction: if d=1,2, or  $d\geq 3$  and  $\beta$  large enough, then  $\exists \ c>0$  s.t.

$$\overline{\lim_{n \to \infty}} \max_{z} \ Q_n\{x(n) = z\} \geq c \quad \mathbb{P}$$
-a.s.

(Carmona and Hu 2002, Comets, Shiga, and Yoshida 2003)

Polymer large deviations and fluctuations SEPC May 16, 2011

9/35

Polymer large deviations and fluctuations SEPC May 16, 2011

10/35

Outline

Large deviations

Fluctuation exponents

Outline

Introductio

Large deviati

Fluctuation exponents

## Definition of fluctuation exponents $\zeta$ and $\chi$

- Fluctuations of the path  $\{x(t): 0 \le t \le n\}$  are of order  $n^{\zeta}$ .
- Fluctuations of log  $Z_n$  are of order  $n^{\chi}$ .
- Conjecture for d=1:  $\zeta=2/3$  and  $\chi=1/3$ .

**Results:** these exact exponents for three particular 1+1 dimensional models.

Earlier results for d = 1 exponents

Past rigorous bounds give  $3/5 \le \zeta \le 3/4$  and  $\chi \ge 1/8$ :

- Brownian motion in Poissonian potential: Wüthrich 1998, Comets and Yoshida 2005.
- • Gaussian RW in Gaussian potential: Petermann 2000  $\zeta \geq 3/5,$  Mejane 2004  $\zeta \leq 3/4$
- Licea, Newman, Piza 1995-96: corresponding results for first passage percolation

# Rigorous $\zeta = 2/3$ and $\chi = 1/3$ results

exist for three "exactly solvable" models:

- (1) Log-gamma polymer:  $\beta=1$  and  $e^{-\omega(x,t)}\sim$  Gamma, plus appropriate boundary conditions.
- (2) Polymer in a Brownian environment (joint with B. Valkó). Model introduced by O'Connell and Yor 2001.
- (3) Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation:
  - (i) Initial height function given by two-sided Brownian motion (joint with M. Balázs and J. Quastel).
  - (ii) Narrow wedge initial condition (Amir, Corwin, Quastel).

Next details on (3.i), then details on (1).

Polymer large deviations and fluctuations SEPC May 16, 2011

Large deviations

ns Fluctuation exponents

○●○○○○○○○○○○○

/35

Polymer large deviations and fluctuations SEPC May 16, 2011

Large deviation

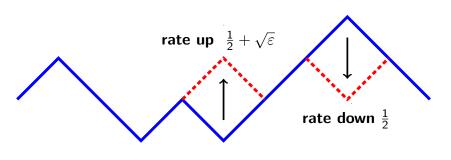
Fluctuation exponents

#### WASEP connection

Outline

 $\zeta_{\varepsilon}(t,x)$  height process of weakly asymmetric simple exclusion s.t.

$$\zeta_{\varepsilon}(x+1) - \zeta_{\varepsilon}(x) = \pm 1$$



#### Hopf-Cole solution to KPZ equation

KPZ eqn for height function h(t,x) of a 1+1 dim interface:

$$h_t = \frac{1}{2} h_{xx} - \frac{1}{2} (h_x)^2 + \dot{W}$$

where  $\dot{W} = \text{Gaussian space-time white noise}$ .

Initial height  $h(0,x) = \text{two-sided Brownian motion for } x \in \mathbb{R}.$ 

 $Z = \exp(-h)$  satisfies  $Z_t = \frac{1}{2} Z_{xx} - Z \dot{W}$  that can be solved.

**Define**  $h = -\log Z$ , the **Hopf-Cole solution** of KPZ.

Bertini-Giacomin (1997): h can be obtained as a weak limit via a smoothing and renormalization of KPZ.

# WASEP connection

Jumps:

Outline

$$\zeta_{\varepsilon}(x) \longrightarrow \begin{cases} \zeta_{\varepsilon}(x) + 2 & \text{with rate } \frac{1}{2} + \sqrt{\varepsilon} & \text{if } \zeta_{\varepsilon}(x) \text{ is a local min} \\ \zeta_{\varepsilon}(x) - 2 & \text{with rate } \frac{1}{2} & \text{if } \zeta_{\varepsilon}(x) \text{ is a local max} \end{cases}$$

Initially:  $\zeta_{\varepsilon}(0,x+1) - \zeta_{\varepsilon}(0,x) = \pm 1$  with probab  $\frac{1}{2}$ .

$$h_{\varepsilon}(t,x) = \varepsilon^{1/2} \left( \zeta_{\varepsilon}(\varepsilon^{-2}t, [\varepsilon^{-1}x]) - v_{\varepsilon}t \right)$$

**Theorem** (Bertini-Giacomin 1997) As  $\varepsilon \setminus 0$ ,  $h_{\varepsilon} \Rightarrow h$ 

#### Fluctuation bounds

From coupling arguments for WASEP

$$C_1 t^{2/3} \leq \operatorname{Var}(h_{\varepsilon}(t,0)) \leq C_2 t^{2/3}$$

**Theorem** (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

$$C_1 t^{2/3} \le Var(h(t,0)) \le C_2 t^{2/3}$$

Lower bound comes from control of rescaled correlations

$$S_{\varepsilon}(t,x) = 4\varepsilon^{-1} \, \operatorname{Cov} ig[ \eta(arepsilon^{-2} t, \, arepsilon^{-1} x ) \, , \, \eta(0,0) ig]$$

where  $\eta(t,x) \in \{0,1\}$  is the occupation variable of WASEP

Polymer large deviations and fluctuations SEPC May 16, 2011

Fluctuation exponents

Outline

After  $\varepsilon \setminus 0$  limit

Outline

$$E\left[\left\langle \varphi',h(t)\right\rangle \left\langle \psi',h(0)\right\rangle \right] = \frac{1}{2}\iint \varphi\left(\frac{y+x}{2}\right)\psi\left(\frac{y-x}{2}\right)dy\,S(t,dx)$$

Large deviations

From mean zero, stationary h increments

$$\frac{1}{2}\partial_{xx}\operatorname{Var}(h(t,x)) = S(t,dx)$$
 as distributions.

With some control over tails we arrive at the result:

$$Var(h(t,0)) = \int |x| S(t,dx) \sim O(t^{2/3}).$$

Rescaled correlations again:

$$S_{\varepsilon}(t,x) = 4\varepsilon^{-1} \operatorname{Cov} \left[ \eta(\varepsilon^{-2}t, \, \varepsilon^{-1}x) \,, \, \eta(0,0) \right]$$

$$E\big[\left\langle \varphi',h_{\varepsilon}(t)\right\rangle \left\langle \psi',h_{\varepsilon}(0)\right\rangle \big]$$

$$= \frac{1}{2} \int \left[ \int \varphi \left( \frac{y+x}{2} \right) \psi \left( \frac{y-x}{2} \right) dy \right] S_{\varepsilon}(t,x) dx$$

Let  $\varepsilon \setminus 0$ . On the left increments of  $h_{\varepsilon}$  so total control!

On the right  $S_{\varepsilon}(t,x)dx \Rightarrow S(t,dx)$  with control of moments:

$$\int |x|^m S_{\varepsilon}(t,x) dx \sim O(t^{2m/3}), \qquad 1 \leq m < 3.$$

1+1 dimensional lattice polymer with log-gamma weights

(Second class particle estimate.)

Polymer large deviations and fluctuations SEPC May 16, 2011

Fix both endpoints.

 $\Pi_{m,n} = \text{set of admissible paths}$ independent weights  $Y_{i,j} = e^{\omega(i,j)}$ 

environment  $(Y_{i,j}:(i,j)\in\mathbb{Z}^2_{\perp})$ 

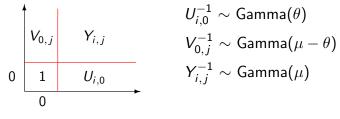
$$Z_{m,n} = \sum_{x} \prod_{k=1}^{m+n} Y_{x_k}$$

quenched measure  $Q_{m,n}(x_{\centerdot})=Z_{m,n}^{-1}\prod Y_{x_k}$ 

averaged measure  $P_{m,n}(x_{\bullet}) = \mathbb{E}Q_{m,n}(x_{\bullet})$ 

## Weight distributions

- Parameters  $0 < \theta < \mu$ .
- Bulk weights  $Y_{i,j}$  for  $i,j \in \mathbb{N}$
- Boundary weights  $U_{i,0} = Y_{i,0}$  and  $V_{0,j} = Y_{0,j}$ .



$$U_{i,0}^{-1} \sim \mathsf{Gamma}(\theta)$$

$$Y_{i,j}^{-1} \sim \mathsf{Gamma}(\mu)$$

- Gamma( $\theta$ ) density:  $\Gamma(\theta)^{-1}x^{\theta-1}e^{-x}$  on  $\mathbb{R}_+$
- $\Psi_n(s) = (d^{n+1}/ds^{n+1}) \log \Gamma(s)$
- $\mathbb{E}(\log U) = -\Psi_0(\theta)$  and  $\mathbb{V}ar(\log U) = \Psi_1(\theta)$

Polymer large deviations and fluctuations SEPC May 16, 2011

Polymer large deviations and fluctuations SEPC May 16, 2011

Large deviations

Outline

Fluctuation bounds for path

 $v_0(j) = \text{leftmost}, \ v_1(j) = \text{rightmost point of } x$ , on horizontal line:

$$v_0(j) = \min\{i \in \{0, \dots, m\} : \exists k : x_k = (i, j)\}\$$

$$v_1(j) = \max\{i \in \{0, \dots, m\} : \exists k : x_k = (i, j)\}$$

#### $\mathsf{Theorem}$

Assume (m, n) as previously and  $0 < \tau < 1$ . Then

(a) 
$$P\Big\{v_0(\lfloor au n 
floor) < au m - bN^{2/3} \text{ or } v_1(\lfloor au n 
floor) > au m + bN^{2/3}\Big\} \leq rac{C}{b^3}$$

(b)  $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{such that}$ 

$$\varlimsup_{N\to\infty} P\big\{ \ \exists k \ \text{such that} \ |x_k-(\tau m,\tau n)| \leq \delta N^{2/3} \ \big\} \leq \varepsilon.$$

# Variance bounds for log Z

With  $0 < \theta < \mu$  fixed and  $N \nearrow \infty$  assume

$$|m - N\Psi_1(\mu - \theta)| \le CN^{2/3}$$
 and  $|n - N\Psi_1(\theta)| \le CN^{2/3}$  (1)

#### Theorem

For (m, n) as in (1),  $C_1 N^{2/3} < Var(\log Z_{m,n}) < C_2 N^{2/3}$ .

#### Theorem

Suppose  $n = \Psi_1(\theta)N$  and  $m = \Psi_1(\mu - \theta)N + \frac{\gamma N^{\alpha}}{2}$  with  $\gamma > 0$ ,  $\alpha > 2/3$ .

$$N^{-\alpha/2}\Big\{\log Z_{m,n} - \mathbb{E}\big(\log Z_{m,n}\big)\Big\} \Rightarrow \mathcal{N}\big(0,\gamma\Psi_1(\theta)\big)$$

# Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

$$\zeta = 2/3$$
 and  $\chi = 1/3$ .

Next step is to

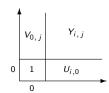
- eliminate the boundary conditions
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both  $\log Z$  and the path.

But currently do not have the lower bounds.

Next some key points of the proof.

#### Burke property for log-gamma polymer with boundary



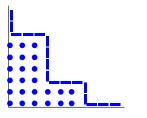
Given initial weights  $(i, j \in \mathbb{N})$ :

$$V_{0,j}$$
  $V_{i,j}$   $V_{i,j}$   $V_{i,j}$   $V_{0,j}^{-1} \sim \mathsf{Gamma}(\mu - \theta)$   $Y_{i,j}^{-1} \sim \mathsf{Gamma}(\mu)$ 

Compute  $Z_{m,n}$  for all  $(m,n) \in \mathbb{Z}_+^2$  and then define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}}$$
  $V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}}$   $X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$ 

For an undirected edge f:  $T_f = \begin{cases} U_x & f = \{x - e_1, x\} \\ V_x & f = \{x - e_2, x\} \end{cases}$ 



--- down-right path  $(z_k)$  with edges  $f_k = \{z_{k-1}, z_k\}, k \in \mathbb{Z}$ 

interior points  $\mathcal{I}$  of path  $(z_k)$ 

#### **Theorem**

Outline

Variables  $\{T_{f_k}, X_z : k \in \mathbb{Z}, z \in \mathcal{I}\}$  are independent with marginals  $U^{-1} \sim \mathsf{Gamma}(\theta), \quad V^{-1} \sim \mathsf{Gamma}(\mu - \theta), \quad \mathsf{and} \quad X^{-1} \sim \mathsf{Gamma}(\mu).$ 

"Burke property" because the analogous property for last-passage is a generalization of Burke's Theorem for M/M/1 queues, via the last-passage representation of M/M/1 queues in series.

Polymer large deviations and fluctuations SEPC May 16, 2011

Large deviations

Polymer large deviations and fluctuations SEPC May 16, 2011

Outline

#### Proof of Burke property

Induction on  $\mathcal{I}$  by flipping a growth corner:



$$V = Y \times V' \qquad X = (U^{-1} + V^{-1})^{-1}$$

$$V' = Y(1 + V/U) \times X = (U^{-1} + V^{-1})^{-1}$$

**Lemma.** Given that (U, V, Y) are independent positive r.v.'s,  $(U', V', X) \stackrel{d}{=} (U, V, Y)$  iff (U, V, Y) have the gamma distr's.

**Proof.** "if" part by computation, "only if" part from a characterization of gamma due to Lukacs (1955).

This gives all  $(z_k)$  with finite  $\mathcal{I}$ . General case follows.

#### Proof of off-characteristic CLT

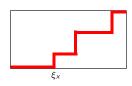
Recall that  $\begin{cases} n = \Psi_1(\theta)N \\ m = \Psi_1(\mu - \theta)N + \gamma N^{\alpha} \end{cases} \qquad \gamma > 0, \ \alpha > 2/3.$ 

Set  $m_1 = |\Psi_1(\mu - \theta)N|$ . Since  $Z_{m,n} = Z_{m_1,n} \cdot \prod_{i=m_1+1}^m U_{i,n}$ 

$$N^{-\alpha/2} \overline{\log Z_{m,n}} = N^{-\alpha/2} \overline{\log Z_{m_1,n}} + N^{-\alpha/2} \sum_{i=m_1+1}^{m} \overline{\log U_{i,n}}$$

First term on the right is  $O(N^{1/3-\alpha/2}) \to 0$ . Second term is a sum of order  $N^{\alpha}$  i.i.d. terms.  $\square$ 

#### Variance identity



Exit point of path from x-axis

$$\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$$

For  $\theta$ , x > 0 define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta - 1} e^{x - y} dy$$

**Theorem.** For the model with boundary,

$$\mathbb{V}\mathrm{ar}\big[\log Z_{m,n}\big] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 \, E_{m,n} \bigg[ \sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \bigg]$$

Polymer large deviations and fluctuations SEPC May 16, 2011

29/35

Polymer large deviations and fluctuations SEPC May 16, 2011

Outline

Introduction

Large deviations

Outline

Introducti

Large deviati

Fluctuation exponents

To differentiate w.r.t. parameter  $\theta$  of S while keeping W fixed, introduce a separate parameter  $\rho$  (=  $\mu$  –  $\theta$ ) for W.

$$-\mathbb{C}\mathrm{ov}(S,N) = \frac{\partial}{\partial \theta}\mathbb{E}(N) = \widetilde{\mathbb{E}}\Big[\frac{\partial}{\partial \theta}\log Z_{m,n}(\theta)\Big]$$

when 
$$Z_{m,n}( heta) = \sum_{\substack{\mathsf{x} \in \Pi_{m,n} \\ \mathsf{x} \in \Pi_{m,n}}} \prod_{i=1}^{\xi_{\mathsf{x}}} H_{ heta}(\eta_i)^{-1} \cdot \prod_{\substack{k=\ell, +1 \\ k=\ell, +1}}^{m+n} Y_{\mathsf{x}_k}$$
 with

$$\eta_i \sim \mathsf{IID} \; \mathsf{Unif}(0,1), \quad H_{ heta}(\eta) = F_{ heta}^{-1}(\eta), \quad F_{ heta}(x) = \int_0^x rac{y^{ heta-1} e^{-y}}{\Gamma( heta)} \, dy.$$

Differentiate: 
$$\frac{\partial}{\partial \theta} \log Z_{m,n}(\theta) = -E^{Q_{m,n}} \left[ \sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1}) \right].$$

## Variance identity, sketch of proof

$$N = \log Z_{m,n} - \log Z_{0,n}$$

$$W = \log Z_{0,n}$$

$$E = \log Z_{m,n} - \log Z_{m,0}$$

$$S = \log Z_{m,0}$$

$$\begin{aligned} & \mathbb{V}\mathrm{ar}\big[\log Z_{m,n}\big] = \mathbb{V}\mathrm{ar}(W+N) \\ & = \mathbb{V}\mathrm{ar}(W) + \mathbb{V}\mathrm{ar}(N) + 2\mathbb{C}\mathrm{ov}(W,N) \\ & = \mathbb{V}\mathrm{ar}(W) + \mathbb{V}\mathrm{ar}(N) + 2\mathbb{C}\mathrm{ov}(S+E-N,N) \\ & = \mathbb{V}\mathrm{ar}(W) - \mathbb{V}\mathrm{ar}(N) + 2\mathbb{C}\mathrm{ov}(S,N) \qquad (E,N \text{ ind.}) \\ & = n\Psi_1(\mu-\theta) - m\Psi_1(\theta) + 2\mathbb{C}\mathrm{ov}(S,N). \end{aligned}$$

Together:

$$\operatorname{Var}[\log Z_{m,n}] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2\operatorname{Cov}(S, N)$$
$$= n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2E_{m,n}\left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1})\right].$$

This was the claimed formula.  $\Box$ 

# Sketch of upper bound proof

The argument develops an inequality that controls both log Z and  $\xi_x$ simultaneously. Introduce an auxiliary parameter  $\lambda = \theta - bu/N$ . The weight of a path x such that  $\xi_x > 0$  satisfies

$$W(\theta) = \prod_{i=1}^{\xi_x} H_{\theta}(\eta_i)^{-1} \cdot \prod_{k=\xi_x+1}^{m+n} Y_{x_k} = W(\lambda) \cdot \prod_{i=1}^{\xi_x} \frac{H_{\lambda}(\eta_i)}{H_{\theta}(\eta_i)}.$$

Since  $H_{\lambda}(\eta) \leq H_{\theta}(\eta)$ ,

Outline

$$Q^{\theta,\omega}\{\xi_{\mathsf{x}}\geq u\}=\frac{1}{Z(\theta)}\sum_{\mathsf{x}}\mathbf{1}\{\xi_{\mathsf{x}}\geq u\}W(\theta)\leq \frac{Z(\lambda)}{Z(\theta)}\cdot\prod_{i=1}^{\lfloor u\rfloor}\frac{H_{\lambda}(\eta_{i})}{H_{\theta}(\eta_{i})}.$$

Polymer large deviations and fluctuations SEPC May 16, 2011

Polymer large deviations and fluctuations SEPC May 16, 2011

Large deviations

#### Polymer in a Brownian environment

**Environment:** independent Brownian motions  $B_1, B_2, \dots, B_n$ 

Partition function (without boundary conditions):

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \dots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + B_2(s_2) - B_2(s_2)\right)\right] ds$$

$$+ B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) ds_{1,n-1}$$

For  $1 \le u \le \delta N$  and  $0 \le s \le \delta$ .

$$\mathbb{P}[Q^{\omega}\{\xi_{x} \geq u\} \geq e^{-su^{2}/N}] \leq \mathbb{P}\left\{\prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}(\eta_{i})}{H_{\theta}(\eta_{i})} \geq \alpha\right\} + \mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1}e^{-su^{2}/N}\right).$$

Choose  $\alpha$  right. Bound these probabilities with Chebychev which brings  $Var(\log Z)$  into play. In the characteristic rectangle  $Var(\log Z)$  can be bounded by  $E(\xi_x)$ . The end result is this inequality:

$$\mathbb{P}\big[Q^{\omega}\{\xi_{\mathsf{x}}\geq u\}\geq e^{-su^2/N}\,\big]\leq \frac{CN^2}{u^4}E(\xi_{\mathsf{x}})+\frac{CN^2}{u^3}$$

Handle  $u > \delta N$  with large deviation estimates. In the end, integration gives the moment bounds. END.