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Main objective: how to count graphs with a given property

» Only consider finite undirected graphs without self-loops in
this talk.

» 27(n=1)/2 sych graphs on n vertices.

» Question: Given a property P and an integer n, roughly how
many of these graphs have property P?

» For example, P may be: #triangles > tn®, where t is a given
constant.

» To make any progress, need to assume some regularity on P.
For example, we may demand that P be continuous with
respect to some metric.

» What metric? What space?
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Another motivation

» Let G(n, p) be the ErdSs-Rényi random graph on n vertices
where each edge is added independently with probability p.

» Number of triangles in G(n, p) roughly (g)p3 ~ n3p3/6.

» What if, just by chance, #triangles turns out to be ~ tn®
where t > p3/6? What would the graph look like, conditional
on this rare event?
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An abstract topological space of graphs

» Beautiful unifying theory developed by Lovasz and coauthors
(listed in order of frequency: V. T. Sés, B. Szegedy, C. Borgs,
J. Chayes, K. Vesztergombi, A. Schrijver and M. Freedman).
Related to earlier works of Aldous, Hoover, Kallenberg.

» Let G, be a sequence of simple graphs whose number of
nodes tends to infinity.

» For every fixed simple graph H, let |hom(H, G)| denote the
number of homomorphisms of H into G (i.e. edge-preserving
maps V(H) — V(G), where V(H) and V(G) are the vertex

sets).
» This number is normalized to get the homomorphism density
__|hom(H, G)|
O g

This gives the probability that a random mapping
V(H) — V(G) is a homomorphism.

Sourav Chatterjee Large deviations for random graphs



Abstract space of graphs contd.

» Suppose that t(H, G,) tends to a limit t(H) for every H.

» Then Lovdsz & Szegedy proved that there is a natural “limit
object” in the form of a function f € W, where WV is the
space of all measurable functions from [0,1]? into [0, 1] that
satisfy f(x,y) = f(y, x) for all x,y.

» Conversely, every such function arises as the limit of an
appropriate graph sequence.

» This limit object determines all the limits of subgraph
densities: if H is a simple graph with k vertices, then

t(H, f)—/ H f(xi,xj) dxy-- - dxg.
O (i jyeE(H)

> A sequence of graphs {G,}n>1 is said to converge to f if for
every finite simple graph H,

lim t(H, G,) = t(H,f).
n—oo



» For any fixed graph H,
t(H, G(n,p)) — p/EM! almost surely as n — oo.

» On the other hand, if f is the function that is identically equal
to p, then t(H, f) = plE(HI,

» Thus, the sequence of random graphs G(n, p) converges
almost surely to the non-random limit function f(x,y) = p as
n— oo.
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Abstract space of graphs contd.

» The elements of VW are sometimes called ‘graphons’.

» A finite simple graph G on n vertices can also be represented
as a graphon £ is a natural way:

0 otherwise.

fG(x,y) _ {1 if ([nx], [ny]) is an edge in G,

» Note that this allows all simple graphs, irrespective of the
number of vertices, to be represented as elements of the single
abstract space W.

» So, what is the topology on this space?
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The cut metric

» For any f, g € W, Frieze and Kannan defined the cut distance:

d(f.g) = sup /5 ()~ glx. )by

S, TClo,1]

» Introduce an equivalence relation on W: say that f ~ g if
f(x,y) = g-(x,y) :== g(ox,0y) for some measure preserving
bijection ¢ of [0, 1].

» Denote by g the closure in (W, d) of the orbit {g,}.

» The quotient space is denoted by W and 7 denotes the
natural map g — g.

» Since d is invariant under o one can define on W the natural
distance d by

00(f. &) = inf do(f. g5) = inf do(fy. g) = inf da(fr. &,)

making (W, dm) into a metric space.
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Cut metric and graph limits

To any finite graph G, we associate the natural graphon fC and its
orbit G = 7 = £ € W. One of the key results of the is the
following:

Theorem (Borgs, Chayes, Lovész, Sés & Vesztergombi)

A sequence of graphs {Gp}n,>1 converges to a limit f € W if and
only if 6g(Gp, f) — 0 as n — oc.
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Our result

» For any Borel set AC W let
A, :={he A:h=G for some G on n vertices}.
> Let I(u) := 2u|ogu+ (l—u)Iog(l—u)
» For any h €W, let I(h = [[ I(h(x,y))dxdy, where his any
element of h.

Theorem (Chatterjee & Varadhan, 2010)

The function | is well- def/ned and lower-semicontinuous on W If
F is a closed subset of W then

limsup n~2log |F,| < — inf I(h)
n—o0 heF

and if U is an open subset ofW, then
liminf n=2log |U,| > — inf I(h).
n—oo heu
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Erdés-Rényi graphs

» Counting graphs can be related to finding large deviation
probabilities for Erdés-Rényi random graphs.

» For example,

#graphs on n vertices satisfying P
= 2n(n=1)/2p(G(n,1/2) satisfies P).

» Indeed, the main result in our paper is stated as a large
deviation principle for the Erdés-Rényi graph, which can be
easily proved to be equivalent to the graph counting principle
stated before.
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Large deviation principle for ER graphs

» The random graph G(n, p) induces probability distribution
P, , on the space W through the map G — G.

> Let I,(u) == ;ulog 4 i(1- u)Iog }*;

> For he W, let I,(h) := [[ Io(h(x, y))dxdy, where h is any
element of h.

Theorem (Chatterjee & Varadhan, 2010)
For any closed set F - W

1
limsup — p log P, p(F) < —inf I,(h).
n—oo heF

and for any open set ucw,

lim |nf IogIP’,7 p(U) > — inf IP(F).

n—oo heU
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Method of proof

» The LDP can be proved by standard techniques for the weak
topology on W. (Fenchel-Legendre transforms, Gartner-Ellis
theorem, etc.)

» However, the weak topology is not very interesting. For
example, subgraph counts are not continuous with respect to
the weak topology.

» The LDP for the topology of the cut metric does not follow
via standard methods.

Sourav Chatterjee Large deviations for random graphs



Szemerédi's lemma

» Let G = (V, E) be a simple graph of order n.

» Forany X, Y C V, let eg(X, Y) be the number of X-Y edges
of G and let (X.Y)

€G )

» Call a pair (A, B) of disjoint sets A, B C V e-regular if all
X C Aand Y C B with | X]| > €|A| and | Y| > €| B]| satisfy
p6(X, Y) — pe(A.B) < e

» A partition {Vp,..., Vk} of V is called an e-regular partition
of G if it satisfies the following conditions: (i) |Vo| < en; (ii)
V1| = |Va| = - = | Vk|; (iii) all but at most eK? of the pairs

(Vi, Vi) with 1 < i < j < K are e-regular.

Theorem (Szemerédi's lemma)

Given ¢ > 0, m > 1 there exists M = M(e, m) such that every
graph of order > M admits an e-regular partition {Vy, ..., Vk} for
some K € [m, M].
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Finishing the proof using Szemerédi's lemma

» Suppose G is a graph of order n with e-regular partition
{V(),...7 VK}

» Let G’ be the random graph with independent edges where a
vertex u € V; is connected to a vertex v € V; with probability
pc(Vi, V).

» Using Szemerédi's regularity lemma, one can prove that
d0(G, G’) ~ 0 with high probability if K and n are
appropriately large and € is small.

» The chance that G(n, p) ~ G’ is computed by approximating
the probability density of G’ with respect to G(n, p) as in the
proof of Cramér’s theorem.

» Combining the two steps gives the probability that
G(n,p) = G, leading to the LDP for G(n, p), and finally
leading to the graph counting theorem.
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Conditional distributions

Theorem _ s
Take any p € (0,1). Let F be a closed subset of W satisfying

inf Ip(h) = inf I,(h) > 0.
heFe heF

Let F* be the subset of F where lp is minimized. Then F* is
non-empty and compact, and for each n, and each € > 0,

P(55(G(n, p), F*) > ¢ | G(n, p) € F) < e~ C(=F)*

where C (e, F) is a positive constant depending only on e and F.

Proof: Follows from the compactness of w (a deep result of
Lovasz and Szegedy, involving recursive applications of Szemerédi's
lemma and martingales).
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Large deviations for triangle counts

> Let T, , be the number of triangles in G(n, p).
» Objective: to evaluate the limit

. 1
Jlim — log P(Thp > (14 €)E(Thp))

as a function of p and e.

» In the sparse case (p — 0), a long-standing conjecture about
matching the upper and lower bounds was recently resolved
by Chatterjee and also shortly afterward by DeMarco & Kahn.

» For fixed p, exact evaluation of limit due to Chatterjee & Dey:
for a certain explicit set of (p, t),

1

5 log P(Thp > tn’) = _/p((6t)1/3)a

lim
n—oo N
when I,(u) := %ulog% + 3(1— u)log }:7;-

» Unfortunately, the result does not cover all values of (p, t).
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Large deviations for triangle counts contd.

» Recall: W is the space of symmetric measurable functions
from [0, 1] into [0, 1].
» For each f ¢ W, let

1,1 p1
T(f)::é/o/o/of(x,y)f(y,z)f(z,x)dxdydz

and let Ip(f) = [[ I,(f(x,y))dxdy.
» For each p € (0,1) and t > 0, let
o(p, t) = inf{l,(f): f e W, T(f) >t} (1)
Theorem (Chatterjee & Varadhan, 2010)
For each p € (0,1) and each t > 0,

1
lim = logP(T,, > tn®) = —¢(p, t).

n—0o0 n2

Moreover, the infimum is attained in the variational problem (1).
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The ‘replica symmetric’ phase

Theorem (Chatterjee & Varadhan, 2010)

Let hy(t) :== I,((6t)'/3). Let h, be the convex minorant of hy. If t
is a point where hy(t) = hy(t), then ¢(p,t) = hy(t). Moreover,
for such (p, t), the conditional distribution of G(n, p) given

Tap > tnd is indistinguishable from the law of G(n, (6t)'/3) in the
large n limit.

Remarks: This result recovers the result of Chatterjee & Dey and
gives more. However, the theorem of Chatterjee & Dey gives an
error bound of order n=1/2, which is impossible to obtain via
Szemerédi's lemma.
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‘Replica symmetry breaking'

The following theorem shows that given any t, for all p small
enough, the conditional distribution of G(n, p) given T, , > tn®
does not resemble that of an Erdds-Rényi graph.

Theorem (Chatterjee & Varadhan, 2010)

Let C denote the set of constant functions in W (representing all
Erd&s-Rényi graphs). For each t, there exists p' > 0 and € > 0
such that for all p < p/,

lim P(65(G(n, p), C) > €| Tpp > tn’) = 1.

n—oo
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The double phase transition

Theorem (Chatterjee & Varadhan, 2010)

There exists pg > 0 such that if p < pg, then there exists
p3/6 < t' < t"" < 1/6 such that the replica symmetric picture
holds when t € (p3/6,t') U (t",1/6), but there is a non-empty
subset of (t',t") where replica symmetry breaks down.
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The small p limit

The following theorem says that when t is fixed and p is very
small, then conditionally on the event {T, , > tn3} the graph
G(n, p) must look like a clique.

Theorem (Chatterjee & Varadhan, 2010)

For each t,

$(p.t) _ (68)*°

m
p0log(1/p) | 2

Moreover, if

Xe(% ¥) = Limax(xy)<(60)1/3)
is the graphon representing a clique with triangle density t, then
for each ¢ > 0,

lim lim P(3(G(n, p). %e) = ¢| Tap > tn®) = 0.

p—0 n—oo
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Lower tails

» Given a fixed simple graph H,

. logP(t(H, G(n,p)) <u) 1 1
Jim im 2 T 2(x(H) - 1) log 7,

)

where x(H) is the chromatic number of H.

» Closely related to the Erdés-Stone theorem from extremal
graph theory.

» In fact, the precise result implies the following: given that
t(H, G(n, p)) is very small (or zero), the graph G(n, p) looks
like a complete (x(H) — 1)-partite graph with (1 — p)-fraction
of edges randomly deleted.

» However, if t(H, G(n, p)) is just a little bit below its expected
value, the graph continues to look like an Erdos-Rényi graph
as in the upper tail case.
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Open questions

>

>

There are many questions that remain unresolved, even in the
simple example of upper tails for triangle counts. For example:
What is the set of optimal solutions of the variational problem
defining the rate function in the broken replica symmetry
phase (i.e. where the optimizer is not a constant)?

Is the solution unique in the quotient space 17\7 or can there
exist multiple solutions?

Is it possible to explicitly compute a nontrivial solution for at
least some values of (p, t) in the broken replica symmetry
region?

Is it possible to even numerically evaluate or approximate a
solution using a computer?

What is the full characterization of the replica symmetric
phase? What is the phase boundary?

What happens in the sparse case where p and t are both
allowed to tend to zero?
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