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Molecular Motors

Biological engines which catabolize ATP (fuel) to do useful work in
a biological cell.

» Molecular pumps.
» Walking motors: Kinesin, Dynein.
» Rowing motors: Myosin

» Polymer Growth.
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Molecular Motors

Scales ~ 102 nm:
» friction-dominated
» thermal fluctuations important

In fact the functioning of the molecular motor relies on effectively
random thermal fluctuations

» diffusive transport of ATP (fuel) to activate chemically-driven
steps

» physical search for binding sites

We will focus on porter molecules kinesin and dynein which
transport cargo (vesicles in cells) along microtubules.



Nanoscale Stepping Model for Kinesin
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Nanoscale Stepping Model for Kinesin

More detailed models (Peskin and Oster 1995, Kutys, Fricks,
Hancock 2010; Bates and Jia 2011) represent some transitions via
stopping times related to a (flashing ratchet) stochastic differential
equation for a head coordinate X (t) :

AX (1) = 7 (=F = bl (X))t + 4 %fT aw, (1)

where F' is an applied load force, ¢ is potential energy (depending
on chemical state S(t)), kp is Boltzmann's constant, 7" is
temperature, v is friction constant, W (¢) is Wiener process.




Coarse-Grained Random Walk Model

For overall transport properties, one may only wish to resolve the
times at which the motor cycle restarts at a new spatial location:
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Coarse-Grained Random Walk Model

For example:
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T,= inf {X(t)ea+Z,X(t)# Xn_1+a},
t>Th_1

X, =X(T,) — «,
N(t)=X, forT,, <t <Tp+1,n=0,1,2,...

» Analysis of diffusive transport in tilted periodic potential
(Lindner, Kostur, Schimansky-Geier 2001)

» Analysis of conditions under which Markovian properties of
imperfect ratchet models survive this coarse-graining (K,
Khan, Latorre 2010)

» Analysis of kinesin stepping model via intermediate

(reward)-renewal process framework (Hughes, Hancock, Fricks
2011)



Effective Transport Properties

A further useful coarse-graining exploits the periodicity and central
limit theorem arguments (Elston 2000) to characterize the
long-time properties of the motor through:

» drift X(t
V = lim 7< ; )>,

t—o0

» diffusion




Force-Velocity and Force-Diffusivity Relations

For a given motor, these are usefully expressed in terms of load
force F' through:

» Force-velocity relation U = g(F)
» Force-diffusivity relation D = h(F)

These are one way in which experimental measurements are

presented:
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Methods to Derive Effective Transport Properties

» Homogenization theory (Pavliotis 2005, Blanchet, Dolbeault,
Kowalcyk 2008)

» Method of Wang, Peskin, Elston (2003) (WPE) based on
spatial discretization preserving detailed balance
Equations distinct but derivable from common framework

» choices of discretization and use of infinitesmal generator or
its adjoint.

Both methods provide deterministic linear equations (after
numerical discretization) for drift and diffusion coefficients

» generalizable to multiple dimensions (Elston and Wang 2007)

» more accurate and efficient than Monte Carlo simulations
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Collective Dynamics of Molecular Motors

Nothing prevents multiple molecular motors (from possibly different
microtubules) binding to a common cargo, in vivo or in vitro.

(from Jamison, et al, Biophys. J., 2010)
We'll focus on N cooperative, noninterfering motors (primarily
N =2).



Collective Dynamics of Molecular Motors: Who Cares?

» Theoretical study (Miller, Klumpp & Lipowsky 2008) with
functional implications: Tug-of-war configurations exhibit rich
dynamics which might enable coordination of transport
without special regulator (Welte and Gross 2008)

» Experimental inference regarding number of motors actively

working against cargo: 1-10?7 (Jamison et al 2010, Gross et al
2007)



Collective Dynamics of Molecular Motors: Approach

Our main purpose is to develop a mathematical modeling
framework rich enough to incorporate

» stochastic fluctuations in spatial distribution of motors and
cargo; some aspect of which is often neglected in existing
models

yet amenable to analysis through stochastic asymptotic procedures.
Relative to existing models,

» we don't assume load force shared equally among bound
motors (Miiller, Klumpp & Lipowsky 2008, Wang and Li
2009, Newby and Bressloff 2010)

» we use more detailed coupled stochastic differential equation
models rather than Markov chains or random walks (Wang
and Li 2009, Miiller, Klumpp & Lipowsky 2008)

» we pursue analytical procedures to describe collective behavior
rather than just numerical simulations (Korn et al 2009,
Kunwar et al 2008).



Coarse-Grained Description

» Each motor is coarse-grained to point particle with effective
velocity and diffusivity as function of applied force,
parameterized in principle by either:

» Experiment
» Coarse-graining of nanoscale model
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Preview of Conclusions

We will find qualitative differences from force-balance theory, with
implications for inferences from experiment (Jamison et al,
Biophys. J., 2010).

Center of Mass Force-Velocity Relationship

N=2 Motors
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Mesoscale Model Equations

dXi(t) = vg (k(Xi — Z(t))/Fs) dt + o AW, (1)

N
VdZ(t) = = k(Z(t) = X;(t)) dt — Fpdt + /2kpT dW.(t)

t: time

X;(t): position of ith motor; Z(t): position of cargo
N: number of motors

v: unencumbered motor speed

%02: motor diffusivity

g: nondimensional force-velocity relation

F: stall force; Fr: force applied by laser trap
kpT: Boltzmann's constant x temperature

~: friction coefficient of cargo

k: spring constant (linear regime)

W, (t), W.(t): independent Gaussian white noise
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Sample Trajectories

Trajectories for Applied Force: 0 pN
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Sample Trajectories

Trajectories for Applied Force: 10 pN
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Sample Trajectories

Trajectories for Applied Force: —10 pN
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Force magnitudes

» Typical spring tension due to thermal fluctuations
Fy = \/kkgT ~ 1 pN

» Maximum friction force Ffic = yv ~ 5 X 10~* pN

» Stall force Fig ~ 5 — 10 pN

» Laser trap force Fr ~ 1 —10 pN

Suggests length scale of spring set by thermal fluctuations
VEkBT /K ~ 3 nm

» nonlinearity of spring possibly important at extensions
~ 5 nm,



Nondimensionalization

Nondimensionalize system with respect to:

» length scale \/kpT /K of thermal spring fluctuations
» time scale /k of cargo-spring response

dX,() = eg (s {XZ-(E) - Z(f)D AF + O jed Wi (F)
dZ(i) = [i (Xi(f) - Z(f)) _F

=1

dt + dW, (1)

Nondimensional parameters:
_ —4
> = 7,2]2;W = Ffric/Fsp ~/ 10
> 5= YEBIE — [ /Fg ~ 01— 1

> F= 200 = Fr/Fyp~1-10

152
> Om/c = \/UQ\IQT =4/ k;;/v = /Dp/D. ~ 1072, square root
of ratio of diffusivities




Nondimensionalization

Set 0, /c = \/€p to prepare asymptotic analysis with ¢ < 1 and
s, F,p~0(1).

AX,(0) = eg (s [Xi(f) - Z(t)D df + epd Wi(?)

dZ(i) = [i (Xi(f) - Z(f)) _F

=1

dt + dW, (%)

With this nondimensionalization, cargo variable Z evolves on fast
ord (1) time scale and motors on slow ord (¢~!) time scale.
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Stochastic Averaging

Helpful to rescale variables to slower time scale

Xi(t) = Xi(t/e),  Z°(t) = Z(i/e)

and drop tilde on time variable:

dX;(t) = g (s [X;(t) — Z°(t)]) dt + /pd W;(2),
N

dze(t) = 1 | Y (Xf(t) — 2(t) — F| dt + e /2dW.(t)
=1

This is in two-time-scale form in which we can approximately
replace fast cargo variable by its statistical distribution,
conditioned on motor positions, in motor equation.
» Averaging theorems for € | 0 (Khas'minskii 1966, Freidlin &
Wentzell 1979,...)

> See also Elston & Peskin 2000 for single motor context.



Averaged Motor Equations

XE(t) ~ X;(t) for e < 1:

AX;(t) = G(X () dt + pdWi(t), i=1,---,n

3i(7) ZAQ(S(wi—z))mf,ﬁ(Z) dz

where

S )]
1/N

is stationary distribution of cargo Z(t) given motor positions Z.



Sense of Averaging Approximation

More precisely, under regularity conditions (to be stated later) on
force-velocity relation g, for any fixed time interval [0, 7],

> the stochastic processes {X¢(t)}, converge weakly in

Clo,rj(RY) to {X;()}Y,
ase | 0.



Two-Motor Case

For N = 2 motors:

gl(a?):@(xg—a:l—F), §2(f)zé(l‘1—$2—F),

where



Two-Motor Case

Under change of variables:
B() = S(Ka) + Ka(t)), R() = Kalt) — o).

obtain equations for center of mass and difference of motor
positions:

dM (t) = % (G(R(t) — F)+ G(=R(t)) — F) dt + \/g AW, (t)

dR(t) = — [G(R(t) ~F)— G(—R(t) - F)] dt + \/2p AW, (t)

where W,,,(t) and W,.(t) are independent standard Brownian
motions.



Two-Motor Case

Force—Velocity Relation for Each of N=2 Motors
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Two-Motor Case

Iterative solution:

NI(t) = NI(0) + & / t (GRE) ~ F) + G(-R(t) ~ F)) ar

iy

and note R(t) satisfies a (one-dimensional) stochastically forced
gradient flow equation, therefore formally ergodic.



Two-Motor Case

Can define effective drift of the system:

VO (F) = lim M{2) - M(0)
~ lim 2% /0 (G(RW) - F) + G-R(t) ~ F)) af
-3 [ mpplr) (Gl = ) + G )) dr

where stationary distribution for R(t) is given by:

~Jy (G0 = By~ G = F)) ar’
P

mp p(r) = Crexp

where CR is normalizing constant. Effective diffusivity of center of
mass also similarly computable as explicit integral.



Two-Motor Case

Center of Mass Force-Velocity Relationship

N=2 Motors
60 : :

a0+

201

—— Simulations
— Force Balance Theory
— Stochastic Averaging Theory

Velocity (nm/s)

-10 i i i | | |

]i15 -10 -5 0 5 10 15 20
Laser trap force (pN




Equal-Load-Force Sharing Hypothesis

Would result from equilibrium (noiseless) approximation:
Xi(t)—2(t)=F/Nfori=1,...,N.
Average speed of progress = g(sF'/N).



Two Motors vs. One Motor

For low applied force Fr < Fg, the effective velocity of
two-motor-cargo system is slower than for single-motor-cargo
system.

The stall force of two-motor-cargo system is more than twice
that of a single-motor-cargo system.

These conclusions result from concavity properties of single-motor
force-velocity curve g and would not follow from a force-balance
theory.



Force-Velocity Relationship Model
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Comparison with Experiment

These deviations from force-balance theory are in qualitative
agreement with the experimental findings of Jamison et al,
Biophys. J., 2010:
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Comparison with Experiment

These deviations from force-balance theory are in qualitative
agreement with the experimental findings of Jamison et al,
Biophys. J., 2010:

Center of Mass Force—Velocity Relationship
N=2 Motors
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Range of Validity of Mathematical Theory

We can state our conclusions precisely under the assumption that
the force-velocity relation obeys the following conditions (overkill):

g(f) is normalized so that ¢g(0) =1 and ¢(1) =0,

g(f) is nonincreasing, bounded, and C?,
Concavity conditions:

> 9"(0) < 0

> g"(1) >

> % (9(0) + (— )) is a decreasing function on 6 > 0,

» 5(9(1+0)+g(1—0))is an increasing function on 6 > 0.



Formalized Results

Under the previously stated assumptions on the force-velocity
curve g(f), there exist constants f. > 0 and s. > 0 so that,
provided 0 < s < s,

» VO(F )<V<1( ) for |F| < f.
» VO 2F) > VI(F) for |F — 571 < f.



Key Objects for Analysis

VO =5z [ ot e
Ve =5 [ [0t =+ Gr - Pmg )],

—00

where

G(r) \/_/ —sy exp< (5)]2> dy,
I ( F)—G(~ r'—ﬁ)) dr’].

p

mp p(r) = Crexp |:



Proof in a Picture
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Extensions

» Low ATP regime: concavity of force-velocity g(f) relation
reversed; so are conclusions

» Multiplicative noise case:

dXi(t) = vg (k(Xs — Z(1))/Fy) dt
+oh(k(Xi — Z(t))/Fs) dWa(t)

» Nonlinear spring force law between motor and cargo



Extension to Nonlinear Spring Models

Fop(z — 2) = kLY ((x — 2)/L¢)

where L. is a length scale of spring extension characterizing onset
of nonlinear behavior. (®(£) ~ 32 + 0(£2))
Changes (nondimensional) equation for cargo:

dz(t) = [Zc 1<I>’< (t) — Z(t))>—

where

dt + e Y2dW,(t)

V2kpT/kK -

c=———=<1.
C

This in turn only changes the stationary distribution for Z(t):

e [F )

c/n

my p(2) = Czexp

with normalization constant Cy.



» Three-dimensional cargo
» Tug-of-war configurations

» Binding/unbinding dynamics



