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Molecular Motors

Biological engines which catabolize ATP (fuel) to do useful work in
a biological cell.

◮ Molecular pumps.

◮ Walking motors: Kinesin, Dynein.

◮ Rowing motors: Myosin

◮ Polymer Growth.

http://multimedia.mcb.harvard.edu

http://multimedia.mcb.harvard.edu


Molecular Motors

Scales ∼ 102 nm:

◮ friction-dominated

◮ thermal fluctuations important

In fact the functioning of the molecular motor relies on effectively
random thermal fluctuations

◮ diffusive transport of ATP (fuel) to activate chemically-driven
steps

◮ physical search for binding sites

We will focus on porter molecules kinesin and dynein which
transport cargo (vesicles in cells) along microtubules.



Nanoscale Stepping Model for Kinesin

The dynamics is often
characterized by a
continuous-time Markov chain
S(t) with prescribed rates
between allowed transitions
(Kolomeisky and Fisher 2007,
Wang, Peskin, Elston 2003)

(Kutys, Fricks, Hancock, PLOS Comp. Bio., 2010)



Nanoscale Stepping Model for Kinesin

More detailed models (Peskin and Oster 1995, Kutys, Fricks,
Hancock 2010; Bates and Jia 2011) represent some transitions via
stopping times related to a (flashing ratchet) stochastic differential
equation for a head coordinate X(t) :

dX(t) = γ−1(−F − φ′
S(t)(X(t)))dt +

√

2kBT

γ
dW (t), (1)

where F is an applied load force, φ is potential energy (depending
on chemical state S(t)), kB is Boltzmann’s constant, T is
temperature, γ is friction constant, W (t) is Wiener process.



Coarse-Grained Random Walk Model

For overall transport properties, one may only wish to resolve the
times at which the motor cycle restarts at a new spatial location:
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Coarse-Grained Random Walk Model

For example:

T0= 0,

X0= 0,

Tn = inf
t>Tn−1

{X(t) ∈ α + Z,X(t) 6= Xn−1 + α},

Xn = X(Tn) − α,

N(t) = Xn for Tn ≤ t < Tn+1, n = 0, 1, 2, . . .

◮ Analysis of diffusive transport in tilted periodic potential
(Lindner, Kostur, Schimansky-Geier 2001)

◮ Analysis of conditions under which Markovian properties of
imperfect ratchet models survive this coarse-graining (K,
Khan, Latorre 2010)

◮ Analysis of kinesin stepping model via intermediate
(reward)-renewal process framework (Hughes, Hancock, Fricks
2011)



Effective Transport Properties

A further useful coarse-graining exploits the periodicity and central
limit theorem arguments (Elston 2000) to characterize the
long-time properties of the motor through:

◮ drift

V = lim
t→∞

〈X(t)〉
t

,

◮ diffusion

D = lim
t→∞

〈

(X(t) − 〈X(t)〉)2
〉

2t
.



Force-Velocity and Force-Diffusivity Relations

For a given motor, these are usefully expressed in terms of load
force F through:

◮ Force-velocity relation U = g(F )

◮ Force-diffusivity relation D = h(F )

These are one way in which experimental measurements are
presented:

(Schnitzer et al, Nature Cell Biology, 2000) (Visscher et al, Nature, 1999)



Methods to Derive Effective Transport Properties

◮ Homogenization theory (Pavliotis 2005, Blanchet, Dolbeault,
Kowalcyk 2008)

◮ Method of Wang, Peskin, Elston (2003) (WPE) based on
spatial discretization preserving detailed balance

Equations distinct but derivable from common framework

◮ choices of discretization and use of infinitesmal generator or
its adjoint.

Both methods provide deterministic linear equations (after
numerical discretization) for drift and diffusion coefficients

◮ generalizable to multiple dimensions (Elston and Wang 2007)

◮ more accurate and efficient than Monte Carlo simulations
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Collective Dynamics of Molecular Motors

Nothing prevents multiple molecular motors (from possibly different
microtubules) binding to a common cargo, in vivo or in vitro.

(from Jamison, et al, Biophys. J., 2010)

We’ll focus on N cooperative, noninterfering motors (primarily
N = 2).



Collective Dynamics of Molecular Motors: Who Cares?

◮ Theoretical study (Müller, Klumpp & Lipowsky 2008) with
functional implications: Tug-of-war configurations exhibit rich
dynamics which might enable coordination of transport
without special regulator (Welte and Gross 2008)

◮ Experimental inference regarding number of motors actively
working against cargo: 1–10? (Jamison et al 2010, Gross et al

2007)



Collective Dynamics of Molecular Motors: Approach

Our main purpose is to develop a mathematical modeling
framework rich enough to incorporate

◮ stochastic fluctuations in spatial distribution of motors and
cargo; some aspect of which is often neglected in existing
models

yet amenable to analysis through stochastic asymptotic procedures.
Relative to existing models,

◮ we don’t assume load force shared equally among bound
motors (Müller, Klumpp & Lipowsky 2008, Wang and Li
2009, Newby and Bressloff 2010)

◮ we use more detailed coupled stochastic differential equation
models rather than Markov chains or random walks (Wang
and Li 2009, Müller, Klumpp & Lipowsky 2008)

◮ we pursue analytical procedures to describe collective behavior
rather than just numerical simulations (Korn et al 2009,
Kunwar et al 2008).



Coarse-Grained Description

◮ Each motor is coarse-grained to point particle with effective
velocity and diffusivity as function of applied force,
parameterized in principle by either:

◮ Experiment
◮ Coarse-graining of nanoscale model

2

FT

Z(t) X (t)X (t)1



Preview of Conclusions

We will find qualitative differences from force-balance theory, with
implications for inferences from experiment (Jamison et al,
Biophys. J., 2010).
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Mesoscale Model Equations

dXi(t) = vg (κ(Xi − Z(t))/Fs) dt + σ dWx(t)

γdZ(t) = −
N

∑

j=1

κ(Z(t) − Xj(t)) dt − FT dt +
√

2kBTγ dWz(t)

◮ t: time
◮ Xi(t): position of ith motor; Z(t): position of cargo
◮ N : number of motors
◮ v: unencumbered motor speed
◮

1
2σ2: motor diffusivity

◮ g: nondimensional force-velocity relation
◮ Fs: stall force; FT : force applied by laser trap
◮ kBT : Boltzmann’s constant × temperature
◮ γ: friction coefficient of cargo
◮ κ: spring constant (linear regime)
◮ Wx(t), Wz(t): independent Gaussian white noise



Sample Trajectories
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Sample Trajectories
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Sample Trajectories
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Force magnitudes

◮ Typical spring tension due to thermal fluctuations
Fsp =

√
κkBT ∼ 1 pN

◮ Maximum friction force Ffric = γv ∼ 5 × 10−4 pN

◮ Stall force FS ∼ 5 − 10 pN

◮ Laser trap force FT ∼ 1 − 10 pN

Suggests length scale of spring set by thermal fluctuations
√

kBT/κ ∼ 3 nm

◮ nonlinearity of spring possibly important at extensions
∼ 5 nm,



Nondimensionalization

Nondimensionalize system with respect to:
◮ length scale

√

kBT/κ of thermal spring fluctuations
◮ time scale γ/κ of cargo-spring response

dX̃i(t̃) = ǫg
(

s
[

X̃i(t̃) − Z̃(t̃)
])

dt̃ + σm/cd Wi(t̃)

dZ̃(t̃) =

[

N
∑

i=1

(

X̃i(t̃) − Z̃(t̃)
)

− F̃

]

dt̃ + dWz(t̃)

Nondimensional parameters:
◮ ǫ ≡ vγ√

2kBTκ
= Ffric/Fsp ∼ 10−4

◮ s ≡
√

2kBTκ
Fs

= Fsp/FS ∼ 0.1 − 1

◮ F̃ ≡ FT

√
κ√

2kBT
= FT /Fsp ∼ 1 − 10

◮ σm/c ≡
σ
√

γ
√

2kBT
=

√

1

2
σ2

kBT/γ =
√

Dm/Dc ∼ 10−2, square root

of ratio of diffusivities



Nondimensionalization

Set σm/c =
√

ǫρ to prepare asymptotic analysis with ǫ ≪ 1 and

s, F̃ , ρ ∼ O(1).

dX̃i(t̃) = ǫg
(

s
[

X̃i(t̃) − Z̃(t̃)
])

dt̃ +
√

ǫρd Wi(t̃)

dZ̃(t̃) =

[

N
∑

i=1

(

X̃i(t̃) − Z̃(t̃)
)

− F̃

]

dt̃ + dWz(t̃)

With this nondimensionalization, cargo variable Z̃ evolves on fast
ord (1) time scale and motors on slow ord (ǫ−1) time scale.
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Stochastic Averaging

Helpful to rescale variables to slower time scale

Xǫ
i (t̃) = X̃i(t̃/ǫ), Zǫ(t̃) = Z̃(t̃/ǫ)

and drop tilde on time variable:

dXǫ
i (t) = g (s [Xǫ

i (t) − Zǫ(t)]) dt +
√

ρd Wi(t),

dZǫ(t) = ǫ−1

[

N
∑

i=1

(Xǫ
i (t) − Zǫ(t)) − F̃

]

dt + ǫ−1/2dWz(t)

This is in two-time-scale form in which we can approximately
replace fast cargo variable by its statistical distribution,
conditioned on motor positions, in motor equation.

◮ Averaging theorems for ǫ ↓ 0 (Khas’minskii 1966, Freidlin &
Wentzell 1979,. . . )

◮ See also Elston & Peskin 2000 for single motor context.



Averaged Motor Equations

Xǫ
i (t) ∼ X̄i(t) for ǫ ≪ 1:

dX̄i(t) = ḡi(
~̄X(t)) dt + ρdWi(t), i = 1, · · · , n

ḡi(~x) =

∫

R

g (s(xi − z)) m~x,F̃ (z) dz

where

m~x,F̃ (z) =

√
n√
π

exp






−

(

z −
[

P

N

i=1
xi

N − F̃
N

])2

1/N







is stationary distribution of cargo Z(t) given motor positions ~x.



Sense of Averaging Approximation

More precisely, under regularity conditions (to be stated later) on
force-velocity relation g, for any fixed time interval [0, T ],

◮ the stochastic processes {Xǫ
i (t)}N

i=1 converge weakly in
C[0,T ](R

N ) to {X̄i(t)}N
i=1

as ǫ ↓ 0.



Two-Motor Case

For N = 2 motors:

ḡ1(~x) = Ḡ(x2 − x1 − F̃ ), ḡ2(~x) = Ḡ(x1 − x2 − F̃ ),

where

Ḡ(r) =

√
2√
π

∫ ∞

−∞
g (−sy) exp

(

−2
[

y +
(r

2

)]2
)

dy.



Two-Motor Case

Under change of variables:

M̄(t) =
1

2
(X̄1(t) + X̄2(t)), R̄(t) = X̄1(t) − X̄2(t).

obtain equations for center of mass and difference of motor
positions:

dM̄(t) =
1

2

(

Ḡ(R̄(t) − F̃ ) + Ḡ(−R̄(t)) − F̃
)

dt +

√

ρ

2
dWm(t)

dR̄(t) = −
[

Ḡ(R̄(t) − F̃ ) − Ḡ(−R̄(t) − F̃ )
]

dt +
√

2ρ dWr(t)

where Wm(t) and Wr(t) are independent standard Brownian
motions.



Two-Motor Case
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Two-Motor Case

Iterative solution:

M̄(t) = M̄(0) +
1

2

∫ t

0

(

Ḡ(R̄(t′) − F̃ ) + Ḡ(−R̄(t′) − F̃ )
)

dt′

+

√

ρ

2
Wm(t)

and note R̄(t) satisfies a (one-dimensional) stochastically forced
gradient flow equation, therefore formally ergodic.



Two-Motor Case

Can define effective drift of the system:

V (2)(F̃ ) ≡ lim
t→∞

M̄(t) − M̄(0)

t

= lim
t→∞

1

2t

∫ t

0

(

Ḡ(R̄(t′) − F̃ ) + Ḡ(−R̄(t′) − F̃ )
)

dt′

=
1

2

∫

R

mR̄,F̃ (r)
(

Ḡ(r − F̃ ) + Ḡ(−r − F̃ )
)

dr

where stationary distribution for R̄(t) is given by:

mR̄,F̃ (r) = CR exp





−
∫ r
0

(

Ḡ(r′ − F̃ ) − Ḡ(−r′ − F̃ )
)

dr′

ρ





where CR is normalizing constant. Effective diffusivity of center of
mass also similarly computable as explicit integral.



Two-Motor Case
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Equal-Load-Force Sharing Hypothesis

Would result from equilibrium (noiseless) approximation:
Xǫ

i (t) − Zǫ(t) = F̃ /N for i = 1, . . . , N .
Average speed of progress = g(sF̃ /N).



Two Motors vs. One Motor

1 For low applied force FT ≪ FS , the effective velocity of
two-motor-cargo system is slower than for single-motor-cargo
system.

2 The stall force of two-motor-cargo system is more than twice
that of a single-motor-cargo system.

These conclusions result from concavity properties of single-motor
force-velocity curve g and would not follow from a force-balance
theory.



Force-Velocity Relationship Model
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(Schnitzer et al, Nature Cell Biology, 2000)



Comparison with Experiment

These deviations from force-balance theory are in qualitative
agreement with the experimental findings of Jamison et al,
Biophys. J., 2010:



Comparison with Experiment

These deviations from force-balance theory are in qualitative
agreement with the experimental findings of Jamison et al,
Biophys. J., 2010:
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Range of Validity of Mathematical Theory

We can state our conclusions precisely under the assumption that
the force-velocity relation obeys the following conditions (overkill):

1 g(f) is normalized so that g(0) = 1 and g(1) = 0,

2 g(f) is nonincreasing, bounded, and C2,

3 Concavity conditions:
◮ g′′(0) < 0
◮ g′′(1) > 0
◮

1

2
(g(θ) + g(−θ)) is a decreasing function on θ ≥ 0,

◮
1

2
(g(1 + θ) + g(1 − θ)) is an increasing function on θ ≥ 0.



Formalized Results

Under the previously stated assumptions on the force-velocity
curve g(f), there exist constants fc > 0 and sc > 0 so that,
provided 0 < s < sc,

◮ V (2)(F̃ ) < V (1)(F̃ ) for |F̃ | < fc

◮ V (2)(2F̃ ) > V (1)(F̃ ) for |F̃ − s−1| < fc



Key Objects for Analysis

V (1)(f) =
1

2
√

π

∫ ∞

−∞
g(s(f + r))e−r2

dr,

V (2)(f) =
1

2

∫ ∞

−∞

[

Ḡ(r − f) + Ḡ(−r − f)mR̄,F̃ (r)
]

,

where

Ḡ(r) =

√
2√
π

∫ ∞

−∞
g(−sy) exp

(

−2
[

y +
(r

2

)]2
)

dy,

mR̄,F̃ (r) = CR exp





−
∫ r
0

(

Ḡ(r′ − F̃ ) − Ḡ(−r′ − F̃ )
)

dr′

ρ



.



Proof in a Picture



Extensions

◮ Low ATP regime: concavity of force-velocity g(f) relation
reversed; so are conclusions

◮ Multiplicative noise case:

dXi(t) = vg (κ(Xi − Z(t))/Fs) dt

+ σh (κ(Xi − Z(t))/Fs) dWx(t)

◮ Nonlinear spring force law between motor and cargo



Extension to Nonlinear Spring Models

Fsp(x − z) = κLcΦ
′ ((x − z)/Lc)

where Lc is a length scale of spring extension characterizing onset
of nonlinear behavior. (Φ(ξ) ∼ 1

2ξ2 + o(ξ2))
Changes (nondimensional) equation for cargo:

dZǫ(t) = ǫ−1

[

n
∑

1

c−1Φ′
(

c(Xǫ
i (t) − Z̃(t))

)

− F̃

]

dt + ǫ−1/2dWz(t)

where

c ≡
√

2kBT/κ

Lc
. 1.

This in turn only changes the stationary distribution for Z(t):

m~x,F̃ (z) = CZ exp



−
2Φ

(

c
(

z −
[

P

n

1
xi

n − F̃
n

]))

c/n





with normalization constant CZ .



Future Work

◮ Three-dimensional cargo

◮ Tug-of-war configurations

◮ Binding/unbinding dynamics


