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Preface

“Mathematics seems to endow one with something like a new sense.”
Charles Darwin

The goal of population genetics is to understand how genetic variability is
shaped by natural selection, demographic factors, and random genetic drift.
The stochastic evolution of a DNA segment that experiences recombination is
a complex process, so many analyses are based on simulations or use heuristic
methods. However, when formulas are available, they are preferable because,
when simple, they show the dependence of observed quantities on the under-
lying parameters and, even when complicated, can be used to compute exact
answers in a much shorter time than simulations can give good approxima-
tions.

The goal of this book is to give an account of useful analytical results
in population genetics, together with their proofs. The latter are omitted in
many treatments, but are included here because the derivation often gives
insight into the underlying mechanisms and may help others to find new for-
mulas. Throughout the book, the theoretical results are developed in close
connection with examples from the biology literature that illustrate the use of
these results. Along the way, there are many numerical examples and graphs
to illustrate the main conclusions. To help the reader navigate the book, we
have divided the sections into a large number of subsections listed in the index,
and further subdivided the text with bold-faced headings (as in this preface).

This book is written for mathematicians and for biologists alike. With
mathematicians in mind, we assume no knowledge of concepts from biology.
Section 1.1 gives a rapid introduction to the basic terminology. Other expla-
nations are given as concepts arise. For biologists, we explain mathematical
notation and terminology as it arises, so the only formal prerequisite for biol-
ogists reading this book is a one-semester undergraduate course in probability
and some familiarity with Markov chains and Poisson processes will be very
useful. We have emphasized the word formal here, because to read and under-
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stand all of the proofs will require more than these simple prerequisites. On
the other hand, the book has been structured so that proofs can be omitted.

What is in this book?

Chapter 1 begins with the theory of neutral evolution in a homogeneously
mixing population of constant size. We introduce and study the discrete-
time Wright-Fisher model, the continuous-time Moran model, the coalescent,
which describes the genealogy of a nonrecombining segment of DNA, and two
simplified models of mutation: the infinite alleles and infinite sites models.
Based on these results, Chapter 2 introduces the problem of testing to see
if observed DNA sequences are consistent with the assumptions of the “null
model” underlying the theory developed in Chapter 1.

Chapters 3 through 6 confront the complications that come from relaxing
the assumptions of the models in Chapter 1. This material, which filled two
chapters in the first edition, has doubled in size and contains many results
from the last five years. Chapter 3 introduces the ancestral recombination
graph and studies the effect of recombination on genetic variability and the
problem of estimating the rate at which recombination occurs. Chapter 4
investigates the influence of large family sizes, population size changes, and
population subdivision in the form of island models on the genealogy of a
sample. Chapter 5 concerns the more subtle behavior of the stepping stone
model, which depicts a population spread across a geographical range, not
grouped into distinct subpopulations. Finally, Chapter 6 considers various
forms of natural selection: directional selection and hitchhiking, background
selection and Muller’s ratchet, and balancing selection.

Chapters 7 and 8, which are new in this edition, treat the previous top-
ics from the viewpoint of diffusion processes, continuous stochastic processes
that arise from letting the population size N →∞ and at the same time run-
ning time at rate O(N). A number of analytical complications are associated
with this approach, but, at least in the case of the one-dimensional processes
considered in Chapter 7, the theory provides powerful tools for computing fix-
ation probabilities, expected fixation time, and the site frequency spectrum.
In contrast, the theory of multidimensional diffusions described in Chapter 8
is more of an art than a science. However, it offers significant insights into
recombination, Hill-Robertson interference, and gene duplication.

Chapter 9 tackles the relatively newer, and less well-developed, study of
the evolution of whole genomes by chromosomal inversions, reciprocal translo-
cations, and genome duplication. This chapter is the least changed from the
previous edition but has new results about when the parsimony method is
effective, Bayesian estimation of genetic distance, and the midpoint problem.

In addition to the three topics just mentioned, there are a number of re-
sults covered here that do not appear in most other treatments of the subject
(given here with the sections in which they appear): Fu’s covariance matrix
for the site frequency spectrum (2.1), the sequentially Markovian coalescent
(3.4), the beta coalescent for large family sizes (4.1), Malécot’s recursion for
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identity by descent and its study by Fourier analysis (5.2), the “continuous”
(or long-range) stepping stone model (5.5–5.6), Muller’s ratchet and Kon-
drashov’s result for truncation selection (6.4), approximations for the effect of
hitchhiking and recurrent selective sweeps (6.5–6.7), the Poisson random field
model (7.11), fluctuating selection (7.12), a new approximate formula for the
effect of Hill-Robertson interference (8.3), and a new result showing that the
subfunctionalization explanation of gene duplication is extremely unlikely in
large populations (8.6).

Having bragged about what I do cover, I must admit that this book has lit-
tle to say about computationally intensive procedures. Some of these methods
are mentioned along the way, and in some cases (e.g., Hudson’s composite like-
lihood method for estimating recombination rates, and the Kim and Stephan
test) we give some of the underlying mathematics. However, not being a user
of these methods, I could not explain to you how to use them any better than
I could tell you how to make a chocolate soufflé. As in the case of cooking, if
you want to learn, you can find recipes on the Internet. A good place to start
is www.molpopgen.org.

Mens rea

In response to criticisms of the first edition and the opinions of a half-dozen
experts hired to read parts of the first draft of the second edition, I have
worked hard to track down errors and clarify the discussion. Undoubtedly,
there are bugs that remain to be fixed, five years from now in the third edition.
Comments and complaints can be emailed to rtd1@cornell.edu. My web page
www.math.cornell.edu/~durrett can be consulted for corrections.

Interdisciplinary work, of the type described in the book, is not easy and
is often frustrating. Mathematicians think that it is trivial because, in many
cases, the analysis does not involve developing new mathematics. Biologists
find the “trivial” calculations confusing, that the simple models omit impor-
tant details, and are disappointed by the insights they provide. Nonetheless,
I think that important insights can be obtained when problems are solved
analytically, rather than being conquered by complicated programs running
for days on computer clusters.

I would like to thank the postdocs and graduate students who in recent
years have joined me on the journey to the purgatory at the interface be-
tween probability and biology (in my case, genetics and ecology): Janet Best,
Ben Chan, Arkendra De, Emilia Huerta-Sanchez, Yannet Interian, Nicholas
Lanchier, Vlada Limic, Lea Popovic, Daniel Remenik, Deena Schmidt, and
Jason Schweinsberg. I appreciate the patience of my current co-authors on
this list as I ignored our joint projects, so that I could devote all of my energy
to finishing this book.

As I write this, a January (2008) thaw is melting the snow in upstate New
York, just in time so that my wife (and BFF) Susan can drive my younger son,
Greg, back to MIT to start his fourth semester as a computer scientist/applied
mathematician. My older son David, a journalism student in the Park School
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at Ithaca College, and I still have two weeks before classes start. Lying back
on the sofa proofreading and revising the text while the cats sleep by the fire,
it seems to me that academic life, despite its many frustrations, sure beats
working for a living.

Rick Durrett

Several figures included here come from other sources and are reprinted with
permission of the publisher in parentheses. Figures 3.6, 3.7, and 3.8, from
Hudson (2001), Figures 6.3 and 6.4 from Hudson and Kaplan (1988), and
Figure 6.6 from Hudson and Kaplan (1995) (Genetics Society of America).
Figure 8.7 from Lynch and Conrey (2000) (AAAS). Figure 4.3 from Cann,
Stoneking and Wilson (1987) (Nature Publishing Company).
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1

Basic Models

“All models are wrong, but some are useful.” George Box

1.1 ATGCs of life

Before we can discuss modeling the evolution of DNA sequences, the reader
needs a basic knowledge of the object being modeled. Biologists should skip
this very rapid introduction, the purpose of which is to introduce some of
the terminology used in later discussions. Mathematicians should concentrate
here on the description of the genetic code and the notion of recombination.
An important subliminal message is that DNA sequences are not long words
randomly chosen from a four-letter alphabet; chemistry plays an important
role as well.

5′ P dR P dR P dR P dR OH 3′

A C C T

T G G A

3′ HO dR P dR P dR P dR P 5′

. . ... ... . .

Fig. 1.1. Structure of DNA.

The hereditary information of most living organisms is carried by deoxyri-
bonucleic acid (DNA) molecules. DNA usually consists of two complementary
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chains twisted around each other to form a double helix. As drawn in the fig-
ure, each chain is a linear sequence of four nucleotides: adenine (A), guanine
(G), cytosine (C), and thymine (T). Adenine pairs with thymine by means
of two hydrogen bonds, while cytosine pairs with guanine by means of three
hydrogen bonds. The A = T bond is weaker than the C ≡ G one and sep-
arates more easily. The backbone of the DNA molecule consists of sugars
(deoxyribose, dR) and phosphates (P) and is oriented. There is a phosphoryl
radical (P) on one end (the 5′ end) and a hydroxyl (OH) on the other (3′

end). By convention, DNA sequences are written in the order in which they
are transcribed from the 5′ to the 3′ end.

The structure of DNA guarantees that the overall frequencies of A and
T are equal and that the frequencies of C and G are equal. Indeed, this
observation was one of the clues to the structure of DNA. If DNA sequences
were constructed by rolling a four-sided die, then all four nucleotides (which
are also called base pairs) would have a frequency near 1/4, but they do not.
If one examines the 12 million nucleotide sequence of the yeast genome, which
consists of the sequence of one strand of each of its 16 chromosomes, then the
frequencies of the four nucleotides are

A = 0.3090 T = 0.3078 C = 0.1917 G = 0.1913

Watson and Crick (1953a), in their first report on the structure of DNA,
wrote: “It has not escaped our attention that the specific [nucleotide base]
pairing we have postulated immediately suggests a possible copying mecha-
nism of the genetic material.” Later that year at a Cold Spring Harbor meet-
ing, Watson and Crick (1953b) continued: “We should like to propose . . . that
the specificity of DNA replication is accomplished without recourse to specific
protein synthesis and that each of our complimentary DNA chains serves as
a template or mould for the formation onto itself of a new companion chain.”
This picture turned out to be correct. When DNA is ready to multiply, its
two strands pull apart, along each one a new strand forms in the only possible
way, and we wind up with two copies of the original. The precise details of
the replication process are somewhat complicated, but are not important for
our study.

Much of the sequence of the 3 billion nucleotides that make up the human
genome apparently serves no function, but embedded in this long string are
about 30,000 protein-coding genes. These genes are transcribed into ribonu-
cleic acid (RNA), so-called messenger RNA (mRNA), which subsequently is
translated into proteins. RNA is usually a single-stranded molecule and differs
from DNA by having ribose as its backbone sugar and by using the nucleotide
uracil (U) in place of thymine (T).

Amino acids are the basic structural units of proteins. All proteins in all
organisms, from bacteria to humans, are constructed from 20 amino acids. The
next table lists them along with their three-letter and one-letter abbreviations.
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Ala A Alanine Leu L Leucine
Arg R Arginine Lys K Lysine
Asn N Asparagine Met M Methionine
Asp D Aspartic acid Phe F Phenylalanine
Cys C Cysteine Pro P Proline
Gly G Glycine Ser S Serine
Glu E Glutamic acid Thr T Threonine
Gln Q Glutamine Trp W Tryptophan
His H Histidine Tyr Y Tyrosine
Ile I Isoleucine Val V Valine

Amino acids are coded by triplets of adjacent nucleotides called codons. Of
the 64 possible triplets, 61 code for amino acids, while 3 are stop codons,
which terminate transcription. The correspondence between triplets of RNA
nucleotides and amino acids is given by the following table. The first letter of
the codon is given on the left edge, the second on the top, and the third on
the right. For example, CAU codes for Histidine.

U C A G
Phe Ser Tyr Cys U

U ” ” ” ” C
Leu ” Stop Stop A
” ” ” Trp G

Leu Pro His Arg U
C ” ” ” ” C

” ” Gln ” A
” ” ” ” G
Ile Thr Asn Ser U

A ” ” ” ” C
” ” Lys Arg A

Met ” ” ” G
Val Ala Asp Gly U

G ” ” ” ” C
” ” Glu ” A
” ” ” ” G

Note that in 8 of 16 cases, the first two nucleotides determine the amino
acid, so a mutation that changes the third base does not change the amino
acid that is coded for. Mutations that do not change the amino acid are
called synonymous substitutions; the others are nonsynonymous. For example,
a change at the second position always changes the amino acid coded for,
except for UAA→ UGA, which are both stop codons.

In DNA, adenine and guanine are purines while cytosine and thymine are
pyrimidines. A substitution that preserves the type is called a transition; the
others are called transversions. As we will see later in this chapter, transitions
occur more frequently than transversions.
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Most of the genes in our bodies reside on DNA in the nucleus of our cells
and are organized into chromosomes. Lower organisms such as bacteria are
haploid. They have one copy of their genetic material. Most higher organ-
isms are diploid (i.e., have two copies). However, some plants are tetraploid
(four copies), hexaploid (six copies, e.g., wheat), or polyploid (many copies,
e.g., sorghum, which has more than 100 chromosomes of 8 basic types). Sex
chromosomes in diploids are an exception to the two-copy rule. In humans,
females have two X chromosomes, while males have one X and one Y . In
birds, males have two Z chromosomes, while females have one Z and one W .

When haploid individuals reproduce, there is one parent that passes copies
of its genetic material to its offspring. When diploid individuals reproduce,
there are two parents, each of which contributes one of each of its pairs of
chromosomes. Actually, one parent’s contribution may be a combination of
its two chromosomes, since homologous pairs (e.g., the two copies of human
chromosome 14) undergo recombination, a reciprocal exchange of genetic ma-
terial that may be diagrammed as follows:

→

Fig. 1.2. Recombination between homologous chromosomes.

As we will see in Chapter 3, recombination will greatly complicate our
analysis. Two cases with no recombination are the Y chromosome, which ex-
cept for a small region near the tip does not recombine, and the mitochondrial
DNA (mtDNA), a circular double-stranded molecule about 16,500 base pairs
in length that exist in multiple identical copies outside the nucleus and are
inherited from the maternal parent. mtDNA, first sequenced by Anderson et
al. (1981), contains genes that code for 13 proteins, 22 tRNA genes, and 2
rRNA genes. It is known that nucleotide substitutions in mtDNA occur at
about 10 times the rate for nuclear genes. One important part of the molecule
is the control region (sometimes referred to as the D loop), which is about
1,100 base pairs in length and contains promoters for transcription and the
origin of replication for one of the DNA strands. It has received particular
attention since it has an even higher mutation rate, perhaps an order of mag-
nitude larger than the rest of the mtDNA.

These definitions should be enough to get the reader started. We will give
more explanations as the need arises. Readers who find our explanations of the
background insufficient should read the Cartoon Guide to Genetics by Gonick
and Wheelis (1991) or the first chapter of Li’s (1997) Molecular Evolution.
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1.2 Wright-Fisher model

We will begin by considering a genetic locus with two alleles A and a that have
the same fitness in a diploid population of constant sizeN with nonoverlapping
generations that undergoes random mating. The first thing we have to do is
to explain the terms in the previous sentence.

A genetic locus is just a location in the genome of an organism. A common
example is the sequence of nucleotides that makes up a gene.

The two alleles, A and a, could be the “wrinkled” and “round” types of peas
in Mendel’s experiments. More abstractly, alleles are just different versions of
the genetic information encoded at the locus.

The fitness of an individual is a measure of the individual’s ability to survive
and to produce offspring. Here we consider the case of neutral evolution in
which the mutation changes the DNA sequence but this does not change the
fitness.

Diploid individuals have two copies of their genetic material in each cell. In
general, we will treat the N individuals as 2N copies of the locus and not
bother to pair the copies to make individuals. Note: It may be tempting to
set M = 2N and reduce to the case of M haploid individuals, but that makes
it harder to compare with formulas in the literature.

To explain the terms nonoverlapping generations and random mating, we use
a picture.

A a a a

a a A a

a a A A

a A A A

generation n

→

generation n + 1

Fig. 1.3. Wright-Fisher model.

In words, we can represent the state of the population in generation n by an
“urn” that contains 2N balls: i with A’s on them and 2N − i with a’s. Then,
to build up the (n + 1)th generation, we choose at random from the urn 2N
times with replacement.

Let Xn be the number of A’s in generation n. It is easy to see that Xn is a
Markov chain, i.e., given the present state, the rest of the past is irrelevant for
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predicting the future. Remembering the definition of the binomial distribution,
it is easy to see that the probability there are j A’s at time n+ 1 when there
are i A’s in the urn at time n is

p(i, j) =
(

2N
j

)
pj

i (1− pi)2N−j (1.1)

Here pi = i/2N is the probability of drawing an A on one trial when there
are i in the urn, and the binomial coefficient(

2N
j

)
=

(2N)!
j!(2N − j)!

is the number of ways of choosing j things out of 2N , where j! = 1 · 2 · · · j is
“j factorial.”

Fixation probability

The long-time behavior of the Wright-Fisher model is not very exciting.
Since we are, for the moment, ignoring mutation, eventually the number of
A’s in the population, Xn, will become 0, indicating the loss of the A allele,
or 2N , indicating the loss of a. Once one allele is lost from the population,
it never returns, so the states 0 and 2N are absorbing states for Xn. That is,
once the chain enters one of these states, it can never leave. Let

τ = min{n : Xn = 0 or Xn = 2N}

be the fixation time; that is, the first time that the population consists of all
a’s or all A’s.

We use Pi to denote the probability distribution of the process Xn starting
from X0 = i, and Ei to denote expected value with respect to Pi.

Theorem 1.1. In the Wright-Fisher model, the probability of fixation in the
all A’s state,

Pi(Xτ = 2N) =
i

2N
(1.2)

Proof. Since the number of individuals is finite, and it is always possible to
draw either all A’s or all a’s, fixation will eventually occur. Let Xn be the
number of A’s at time n. Since the mean of the binomial in (1.1) is 2Np, it
follows that

E(Xn+1|Xn = i) = 2N ·
(

i

2N

)
= i = Xn (1.3)

Taking expected value, we have EXn+1 = EXn. In words, the average value
of Xn stays constant in time.

Intuitively, the last property implies

i = EiXτ = 2NPi(Xτ = 2N)
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and this gives the desired formula. To prove this, we note that since Xn = Xτ

when n > τ ,

i = EiXn = Ei(Xτ ; τ ≤ n) + Ei(Xn; τ > n)

where E(X;A) is short for the expected value of X over the set A. Now let
n → ∞ and use the fact that |Xn| ≤ 2N to conclude that the first term
converges to EiXτ and the second to 0.

From (1.2) we get a famous result of Kimura:

Theorem 1.2. Under the Wright-Fisher model, the rate of fixation of neutral
mutations in a population of size N is the mutation rate µ.

Proof. To see this note that mutations occur to some individual in the popu-
lation at rate 2Nµ and go to fixation with probability 1/2N .

Heterozygosity

To get an idea of how long fixation takes to occur, we will examine the
heterozygosity, which we define here to be the probability that two copies of
the locus chosen (without replacement) at time n are different:

Ho
n =

2Xn(2N −Xn)
2N(2N − 1)

Theorem 1.3. Let h(n) = EHo
n be the average value of the heterozygosity at

time n. In the Wright-Fisher model

h(n) =
(

1− 1
2N

)n

· h(0) (1.4)

Proof. It is convenient to number the 2N copies of the locus 1, 2, . . . 2N and
refer to them as individuals. Suppose we pick two individuals numbered x1(0)
and x2(0) at time n. Each individual xi(0) is a descendant of some individual
xi(1) at time n − 1, who is a descendant of xi(2) at time n − 2, etc. xi(m),
0 ≤ m ≤ n describes the lineage of xi(0), i.e., its ancestors working backwards
in time.

If x1(m) = x2(m), then we will have x1(`) = x2(`) for m < ` ≤ n. If
x1(m) 6= x2(m), then the two choices of parents are made independently, so
x1(m+1) 6= x2(m+1) with probability 1−(1/2N). In order for x1(n) 6= x2(n),
different parents must be chosen at all times 1 ≤ m ≤ n, an event with
probability (1− 1/2N)n. When the two lineages avoid each other, x1(n) and
x2(n) are two individuals chosen at random from the population at time 0, so
the probability that they are different is Ho

0 = h(0).

A minor detail. If we choose with replacement above, then the statistic is

Hn =
2Xn(2N −Xn)

(2N)2
=

2N − 1
2N

Ho
n

and we again have EHn = (1− 1/2N)n · H0. This version of the statistic is
more commonly used, but is not very nice for the proof given above.
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Fig. 1.4. A pair of genealogies.

1.2.1 The coalescent

When x is small, we have (1− x) ≈ e−x. Thus, when N is large, (1.4) can be
written as

h(n) ≈ e−n/(2N)h(0)

If we sample k individuals, then the probability that two will pick the same
parent from the previous generation is

≈ k(k − 1)
2

· 1
2N

where the first factor gives the number of ways of picking two of the k individ-
uals and the second the probability they will choose the same parent. Here we
are ignoring the probability that two different pairs choose the same parents
on one step or that three individuals will all choose the same parent, events
of probability of order 1/N2.

Theorem 1.4. When measured in units of 2N generation, the amount of time
during which there are k lineages, tk, has approximately an exponential dis-
tribution with mean 2/k(k − 1).

Proof. By the reasoning used above, the probability that the k lineages remain
distinct for the first n generations is (when the population size N is large)

≈
(

1− k(k − 1)
2

· 1
2N

)n

≈ exp
(
−k(k − 1)

2
· n

2N

)
Recalling that the exponential distribution with rate λ is defined by

P (T > t) = e−λt

and has mean 1/λ, we see that if we let the population size N → ∞ and
express time in terms of 2N generations, that is, we let t = n/(2N), then the



1.2 Wright-Fisher model 9

time to the first collision converges to an exponential distribution with mean
2/k(k − 1). Using terminology from the theory of continuous-time Markov
chains, k lineages coalesce to k − 1 at rate k(k − 1)/2. Since this reasoning
applies at any time at which there are k lineages, the desired result follows.

The limit of the genealogies described in Theorem 1.4 is called the coa-
lescent. Letting Tj be the first time that there are j lineages, we can draw a
picture of what happens to the lineages as we work backwards in time:

T1

T2

T3

T4

T5 = 0
t5

t4

t3

t2

3 1 4 2 5

Fig. 1.5. A realization of the coalescent for a sample of size 5.

For simplicity, we do not depict how the lineages move around in the set
before they collide, but only indicate when the coalescences occur. To give the
reader some idea of the relative sizes of the coalescent times, we have made
the tk proportional to their expected values, which in this case are

Et2 = 1, Et3 = 1/3, Et4 = 1/6, Et5 = 1/10

T1 is the time of the most recent common ancestor (MRCA) of the sample.
For a sample of size n, T1 = tn + · · ·+ t2, so the mean

ET1 =
n∑

k=2

2
k(k − 1)

= 2
n∑

k=2

(
1

k − 1
− 1
k

)
= 2 ·

(
1− 1

n

)
This quantity converges to 2 as the sample size n → ∞, but the time, t2, at
which there are only two lineages has Et2 = 1, so the expected amount of time
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spent waiting for the last coalescence is always at least half of the expected
total coalescence time.

Simulating the coalescent

It is fairly straightforward to translate the description above into a simu-
lation algorithm, but for later purposes it is useful to label the internal nodes
of the tree. The following picture should help explain the procedure
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J
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JJ

3 1 4 2 5

6
7

8

9

V0 = {1, 2, 3, 4, 5}

V1 = {2, 3, 5, 6}

V2 = {3, 6, 7}

V3 = {7, 8}

Fig. 1.6. Notation for the coalescent simulation algorithm.

For a sample of size n, we begin with V0 = {1, 2, . . . n} and Tn = 0.
For k = 0, 1, . . . n− 2 do

• Pick two numbers ik and jk from Vk.
• Let Vk+1 = Vk − {ik, jk} ∪ {n+ k + 1}.
• In the tree connect ik → n+ k + 1 and jk → n+ k + 1.
• Let tn−k be an independent exponential with mean

(
n−k

2

)−1
.

• Let Tn−k−1 = Tn−k + tn−k.

To implement this in a computer, one can let tn−k =
(
n−k

2

)−1
log(1/Uk),

where the Uk are independent uniform(0, 1). From the construction it should
be clear that the sequence of coalescence events is independent of the sequence
of times of interevent times tn, . . . t2.

In the next two sections, we will introduce mutations. To do this in the
computer, it is convenient to define the ancestor function in the third step of
the algorithm above so that anc[ik] = n+ k + 1 and anc[jk] = n+ k + 1. For
example, anc[2] = 7 and anc[5] = 7. One can then label the branches by the
smaller number 1 ≤ i ≤ 2n − 2 on the lower end and, if mutations occur at
rate µ per generation and θ = 4Nµ, introduce a Poisson number of mutations
on branch i with mean

θ

2
· (Tanc[i] − Ti)
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The reason for the definition of θ will become clear in Section 1.4. Before we
move on, the reader should note that we first generate the genealogy and then
introduce mutations.

1.2.2 Shape of the genealogical tree

The state of the coalescent at any time can then be represented as a partition,
A1, . . . Am, of {1, 2, . . . n}. That is, ∪m

i=1Ai = {1, 2, . . . n}, and if i 6= j the sets
Ai and Aj are disjoint. In words, each Ai consists of one subset of lineages that
have coalesced. To explain this notion, we will use the example that appears
in the two previous figures. In this case, as we work backwards in time, the
partitions are

T1 {1, 2, 3, 4, 5}
T2 {1, 3, 4} {2, 5}
T3 {1, 4} {2, 5} {3}
T4 {1, 4} {2} {3} {5}

time 0 {1} {2} {3} {4} {5}

Initially, the partition consists of five singletons since there has been no coa-
lescence. After 1 and 4 coalesce at time T4, they appear in the same set. Then
2 and 5 coalesce at time T3, etc. Finally, at time T1 we end up with all the
labels in one set.

Let En be the collection of partitions of {1, 2, . . . n}. If ξ ∈ En, let |ξ| be
the number of sets that make up ξ, i.e., the number of lineages that remain
in the coalescent. If, for example, ξ = {{1, 4}, {2, 5}, {3}}, then |ξ| = 3. Let
ξn
i , i = n, n− 1, . . . 1 be the partition of {1, 2, . . . n} at time Ti, the first time

there are i lineages. Kingman (1982a) has shown

Theorem 1.5. If ξ is a partition of {1, 2, . . . n} with |ξ| = i, then

P (ξn
i = ξ) = cn,i w(ξ)

Here the weight w(ξ) = λ1! · · ·λi!, where λ1, . . . λi are the sizes of the i sets
in the partition and the constant

cn,i =
i!
n!
· (n− i)!(i− 1)!

(n− 1)!

is chosen to make the sum of the probabilities equal to 1.

The proof of Theorem 1.6 will give some insight into the form of the constant.
The weights w(ξ) favor partitions that are uneven. For example, if n = 9 and
i = 3, the weights based on the sizes of the sets in the partition are as follows:

3-3-3 4-3-2 5-2-2 4-4-1 5-3-1 6-2-1 7-1-1
216 288 480 576 720 1440 5040
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Proof. We proceed by induction working backwards from i = n. When i = n,
the partition is always {1}, . . . {n}, all the λi = 1, and cn,n = 1 (by definition,
0! = 1). To begin the induction step now, write ξ < η (and say ξ is finer than
η) if |ξ| = |η| + 1 and η is obtained by combining two of the sets in ξ. For
example, we might have

ξ = {{1, 4}, {2, 5}, {3}} and η = {{1, 3, 4}, {2, 5}}

When ξ < η and |ξ| = i, there is exactly one of the
(

i
2

)
coalescence events

that will turn ξ into η, so

P (ξn
i−1 = η|ξn

i = ξ) =

{
2

i(i−1) if ξ < η

0 otherwise
(1.5)

and we have
P (ξn

i−1 = η) =
2

i(i− 1)

∑
ξ<η

P (ξn
i = ξ) (1.6)

If λ1, . . . λi−1 are the sizes of the sets in η, then for some ` with 1 ≤ ` ≤ i− 1
and some ν with 1 ≤ ν < λ`, the sets in ξ have sizes

λ1, . . . λ`−1, ν, λ` − ν, λ`+1, . . . λi−1

Using the induction hypothesis, the right-hand side of (1.6) is

=
2

i(i− 1)

i−1∑
`=1

λ`−1∑
ν=1

cn,i w`,ν

(
λ`

ν

)
· 1
2

where the weight

w`,ν = λ1! · · ·λ`−1! ν! (λ` − ν)!λ`+1! · · ·λi−1!

and
(
λ`

ν

)
· 1

2 gives the number of ways of picking ξ < η with the `th set in η
subdivided into two pieces of size ν and λ`− ν. (We pick ν of the elements to
form a new set but realize that we will generate the same choice again when
we pick the λ` − ν members of the complement.)

It is easy to see that w`,ν

(
λ`

ν

)
= w(η) so the sum above is

= w(η)
cn,i

i(i− 1)

i−1∑
`=1

λ`−1∑
ν=1

1

The double sum =
∑i−1

`=1(λ`−1) = n− (i−1). The last detail to check is that

cn,i

i(i− 1)
· (n− i+ 1) = cn,i−1 or

cn,i

cn,i−1
=

i(i− 1)
n− i+ 1

(1.7)

but this is clear from the definition.
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To write the partition ξn
i , it is natural, as we have done in the example

above, to order the sets so that ξn
i,1 is the set containing 1, ξn

i,2 contains the
smallest number not in ξn

i,1, etc. However, to compute the distribution of the
sizes of sets in the coalescent, it is useful to put the sets in the partition into
a randomly chosen order.

Theorem 1.6. Let π be a randomly chosen permutation of {1, 2, . . . i} and let
λj = |ξn

i,π(j)| be the size of the jth set in ξn
i when they are rearranged according

to π. (λ1, λ2, . . . λi) is uniformly distributed over the vectors of positive integers
that add to n.

Tajima (1983) proved this in the case i = 2. In words, if we pick one of the
two sets in ξn

2 at random, its size is uniformly distributed on 1, 2, . . . n− 1.

Proof. If we randomly order the sets in ξ, then each ordered arrangement has
probability cn,iw(ξ)/i!. If we only retain information about the sizes, then by
considering the number of collections of sets that can give rise to the vector
(λ1, . . . λi), we see that it has probability:

cn,iw(ξ)
i!

· n!
λ1!λ2! · · ·λi!

=
(n− i)!(i− 1)!

(n− 1)!
= 1

/(
n− 1
i− 1

)
Since the final quantity depends only on n and i and not on the actual vector,
we have shown that the distribution is uniform. To see that the denominator
of the last fraction gives the number of vectors of positive integers of length
i that add up to n, imagine n balls separated into i groups by i− 1 pieces of
cardboard. For example, if n = 10 and i = 4, we might have

OOO|O|OOOO|OO

Our i− 1 pieces of cardboard can go in any of the n− 1 spaces between balls,
so there are

(
n−1
i−1

)
possible vectors (j1, . . . , ji) of positive integers that add up

to n.

As a consequence of Theorem 1.6, we get the following amusing fact.

Theorem 1.7. The probability that the most recent common ancestor of a
sample of size n is the same as that of the population converges to (n−1)/(n+
1) as the population size tends to ∞.

When n = 10, this is 9/11.

Proof. Consider the first split in the coalescent tree of the population. Let X
be the limiting proportion of lineages in the left half of the tree, and recall that
X is uniformly distributed on (0, 1). In order for the MRCA of the sample to
come before that of the population either all of the n lineages must be in the
left half or all n in the right half. Thus, the probability the MRCAs coincide
is

1−
∫ 1

0

xn + (1− x)n dx = 1− 2
n+ 1

and this gives the desired result.
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Our final result in this section gives a dynamic look at the coalescent
process running backwards.

Theorem 1.8. To construct the partition ξn
i from ξn

i−1 = {A1, . . . Ai−1}, we
pick a set at random, picking Aj with probability (λj − 1)/(n− i− 1), where
λj = |Aj |, and then split Aj into two sets with sizes k and λj − k, where k is
uniform on 1, 2, . . . λj − 1.

Proof. By elementary properties of conditional probability,

P (ξn
i = ξ|ξn

i−1 = η) =
P (ξn

i−1 = η|ξn
i = ξ)P (ξn

i = ξ)
P (ξn

i−1 = η)

Suppose ξ < η are partitions of the correct sizes, and ξ is obtained from η by
splitting Aj into two sets with sizes k and λj −k. It follows from Theorem 1.5
and (1.5) that

P (ξn
i = ξ)

P (ξn
i−1 = η)

=
cn,i

cn,i−1
· k!(λj − k)!

λj !
=

i(i− 1)
n− i+ 1

· k!(λj − k)!
λj !

Using (1.7), now we have

P (ξn
i = ξ|ξn

i−1 = η) =
1

n− i+ 1
· k!(λj − k)!

λj !
· 2

The first factor corresponds to picking Aj with probability (λj−1)/(n− i−1)
and then picking k with probability 1/(λj − 1). Getting the correct division
of Aj to produce ξ has probability 1/

(
λj

k

)
. The final 2 takes into account the

fact that we can also generate ξ by choosing λj − k instead of k.

1.3 Infinite alleles model

In this section, we will consider the infinite alleles model. As the name should
suggest, we assume that there are so many alleles that each mutation is always
to a new type never seen before. To explain the reason for this assumption,
Kimura (1971) argued that if a gene consists of 500 nucleotides, the number
of possible DNA sequences is

4500 = 10500 log 4/ log 10 = 10301

For any of these, there are 3 · 500 = 1500 sequences that can be reached
by single base changes, so the chance of returning where one began in two
mutations is 1/1500 (assuming an equal probability for all replacements).
Thus, the total number of possible alleles is essentially infinite.

The infinite alleles model arose at a time when one had to use indirect
methods to infer diferences between individuals. For example, Coyne (1976)
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and Singh, Lewontin, and Felton (1976) studied Drosophila by performing
electrophoresis under various conditions. Coyne (1976) found 23 alleles in 60
family lines at the xanthine dehydrogenase locus of Drosophila persimilis that
displayed the following pattern, which we call the allelic partition:

a1 = 18, a2 = 3, a4 = 1, a32 = 1

That is, there were 18 unique alleles, 3 alleles had 2 representatives, 1 had
4, and 1 had 32. Singh, Lewontin, and Felton (1976) found 27 alleles in 146
genes from the xanthine dehydrogenase locus of D. pseudoobscura with the
following pattern:

a1 = 20, a2 = 3, a3 = 7, a5 = 2, a6 = 2, a8 = 1, a11 = 1, a68 = 1

The infinite alleles model is also relevant to DNA sequence data when there
is no recombination. Underhill et al. (1997) studied 718 Y chromosomes. They
found 22 nucleotides that were polymorphic (i.e., not the same in all of the
individuals). The sequence of nucleotides at these variable positions gives the
haplotype of the individual. In the sample, there were 20 distinct haplotypes.
The sequences can be arranged in a tree in which no mutation occurs more
than once, so it is reasonable to assume that the haplotypes follow the infinite
alleles model. The allelic partition has

a1 = 7, a2 = a3 = a5 = a6 = a8 = a9 = a26 = a36 = a37 = 1,
a82 = 2, a149 = 1, a266 = 1.

After looking at the data, the first obvious question is: What do we expect
to see? The answer to this question is given by Ewens’ sampling formula.
This section is devoted to the derivation of the formula and the description
of several perspectives from which one can approach it. At the end of this
section, we will lapse into a mathematical daydream about the structure of a
randomly chosen permutation.

1.3.1 Hoppe’s urn, Ewens’ sampling formula

The genealogical process associated with the infinite alleles version of the
Wright-Fisher model is a coalescent with killing. When there are k lineages,
coalescence and mutation occur on each step with probability

k(k − 1)
2

· 1
2N

as before, but now killing of one of the lineages occurs with probability kµ
because if a mutation is encountered, we know the genetic state of that in-
dividual and all of its descendants in the sample. Speeding up the system
by running time at rate 2N , the rates become k(k − 1)/2 and kθ/2, where
θ = 4Nµ.
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Turning the coalescent with killing around backwards leads to Hoppe’s
(1984) urn model. This urn contains a black ball with mass θ and various
colored balls with mass 1. At each time, a ball is selected at random with a
probability proportional to its mass. If a colored ball is drawn, that ball and
another of its color are returned to the urn. If the black ball is chosen, it is
returned to the urn with a ball of a new color that has mass 1. The choice
of the black ball corresponds to a new mutation and the choice of a colored
ball corresponds to a coalescence event. A simulation should help explain the
definition. Here a black dot indicates that a new color was added at that time
step.

•

•

•

•

time 1

2

3

4

5

6

7

8

9

10

11

Fig. 1.7. A realization of Hoppe’s urn.

As we go backwards from time k+1 to time k in Hoppe’s urn, we encounter
a mutation with probability θ/(θ+k) and have a coalescence with probability
k/(θ+k). Since in the coalescent there are k+1 lineages that are each exposed
to mutations at total rate kθ/2 and collisions occur at rate (k+ 1)k/2, this is
the correct ratio. Since by symmetry all of the coalescence events have equal
probability, it follows that

Theorem 1.9. The genealogical relationship between k lineages in the coales-
cent with killing can be simulated by running Hoppe’s urn for k time steps.

This observation is useful in computing properties of population samples
under the infinite alleles model. To illustrate this, let Kn be the random
variable that counts the number of different alleles found in a sample of size
n. Here and throughout the book, log is the “natural logarithm” with base e.
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Theorem 1.10 (Watterson (1975)). For fixed θ, as the sample size n →
∞,

EKn ∼ θ log n and var (Kn) ∼ θ log n

where an ∼ bn means that an/bn → 1 as n→∞. In addition, the central limit
theorem holds. That is, if χ has the standard normal distribution, then

P

(
Kn − EKn√

var (Kn)
≤ x

)
→ P (χ ≤ x)

Proof. Let ηi = 1 if the ith ball added to Hoppe’s urn is a new type and
0 otherwise. It is clear from the definition of the urn scheme that Kn =
η1 + · · ·+ ηn and η1, . . . ηn are independent with

P (ηi = 1) = θ/(θ + i− 1) (1.8)

To compute the asymptotic behavior of EKn, we note that (1.8) implies

EKn =
n∑

i=1

θ

θ + i− 1
(1.9)

Viewing the right-hand side as a Riemann sum approximating an integral,

...............................

.....................................................................................................

θ θ + 1 θ + n

it follows that
n∑

i=1

1
θ + i− 1

∼
∫ n+θ

θ

1
x
dx = log(n+ θ)− log(θ) ∼ log n (1.10)

From this, the first result follows. To prove the second, we note that

var (Kn) =
n∑

i=1

var (ηi) =
n∑

i=2

θ(i− 1)
(θ + i− 1)2

(1.11)

As i→∞, (i− 1)/(θ + i− 1) → 1, so
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var (Kn) ∼
n∑

i=2

θ

θ + i− 1
∼ θ log n

by the reasoning for EKn. Since the ηi are independent, the final claim follows
from the triangular array form of the central limit theorem. See, for example,
(4.5) in Chapter 2 of Durrett (2005).

An immediate consequence of Theorem 1.10 is that Kn/ log n is an asymp-
totically normal estimator of the scaled mutation rate θ. However, the asymp-
totic standard deviation of Kn/ log n is quite large, namely of order 1/

√
log n.

Thus, if the true θ = 1 and we want to estimate θ with a standard error
of 0.1, a sample of size e100 is required. Given this depressingly slow rate of
convergence, it is natural to ask if there is another way to estimate θ from the
data. The answer is NO, however. As we will see in Theorem 1.13 below, Kn

is a sufficient statistic. That is, it contains all the information in the sample
that is useful for estimating θ.

The last result describes the asymptotic behavior of the number of alleles.
The next one, due to Ewens (1972), deals with the entire distribution of the
sample under the infinite alleles model.

Theorem 1.11 (Ewens’ sampling formula). Let ai be the number of al-
leles present i times in a sample of size n. When the scaled mutation rate is
θ = 4Nµ,

Pθ,n(a1, . . . an) =
n!
θ(n)

n∏
j=1

(θ/j)aj

aj !

where θ(n) = θ(θ + 1) · · · (θ + n− 1).

The formula may look strange at first, but it becomes more familiar if we
rewrite it as

cθ,n

n∏
j=1

e−θ/j (θ/j)aj

aj !

where cθ,n is a constant that depends on θ and n and guarantees the sum of the
probabilities is 1. In words, if we let Y1, . . . Yn be independent Poisson random
variables with means EYj = θ/j, then the allelic partition (a1, a2, . . . an) has
the same distribution as(

Y1, Y2, . . . , Yn

∣∣∣∣∣∑
m

mYm = n

)

One explanation of this can be found in Theorem 1.19.

Proof. In view of Theorem 1.9, it suffices to show that the distribution of
the colors in Hoppe’s urn at time n is given by Ewens’ sampling formula. We
proceed by induction. When n = 1, the partition a1 = 1 has probability 1 so
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the result is true. Suppose that the state at time n is a = (a1, . . . , an) and let
ā = (ā1, . . . , ān−1) be the state at the previous time. There are two cases to
consider.

(i) ā1 = a1 − 1, i.e., a new color was just added. In this case, the transition
probability for Hoppe’s urn is

p(ā, a) =
θ

θ + n− 1

and the ratio of the probabilities in Ewens’ sampling formula is

Pθ,n(a)
Pθ,n−1(ā)

=
n

θ + n− 1
· θ
a1

(ii) For some 1 ≤ j < n, we have āj = aj +1, āj+1 = aj+1−1, i.e., an existing
color with j representatives was chosen and increased to size j + 1. In this
case, the transition probability is

p(ā, a) =
jāj

θ + n− 1

and the ratio of the probabilities in Ewens’ sampling formula is

Pθ,n(a)
Pθ,n−1(ā)

=
n

θ + n− 1
· jāj

(j + 1)aj+1

To complete the proof now, we observe∑
ā

Pθ,n−1(ā)
Pθ,n(a)

p(ā, a) =
θ

θ + n− 1
· θ + n− 1

n
· a1

θ

+
n−1∑
j=1

jāj

θ + n− 1
· θ + n− 1

n
· (j + 1)aj+1

jāj

Cancelling on the right-hand side, we have

=
a1

n
+

n−1∑
j=1

(j + 1)aj+1

n
= 1

since
∑

k kak = n. Rearranging, we have∑
ā

Pθ,n−1(ā)p(ā, a) = Pθ,n(a)

Since the distribution of Hoppe’s urn also satisfies this recursion with the
same initial condition, the two must be equal.
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Small sample sizes

To get a feeling for what Theorem 1.11 says, we will consider some small
values of n.

n = 2. The factor in front is 2/θ(θ + 1). There are two possible partitions:
(a1, a2) = (0, 1) or (2, 0). The products in these cases are (θ/2)1/1! and
(θ/1)2/2!, so the probabilities of the two partitions are 1/(θ+1) and θ/(θ+1).
From this it follows that the probability that two randomly chosen individ-
ual are identical (also known as the homozygosity) is 1/(θ + 1). This is easy
to see directly. Two lineages coalesce with probability 1/2N per generation
and experience mutation with probability 2u, so the probability of coalescence
before mutation is

1/2N
2u+ 1/2N

=
1

1 + θ
(1.12)

n = 3. The factor in front is 6/D where D = θ(θ + 1)(θ + 2). There are three
possible partitions. The next table gives the value of the product in this case
and the probability.

(a1, a2, a3) product probability
(0, 0, 1) θ/3 2θ/D
(1, 1, 0) (θ/1)(θ/2) 3θ2/D
(3, 0, 0) θ3/3! θ3/D

The probabilities add to 1, since D = θ3 + 3θ2 + 2θ.

n = 4. The factor in front is 24/D, where D = θ(θ + 1)(θ + 2)(θ + 3). There
are five possible partitions, listed below so that the largest set is decreasing.

(a1, a2, a3, a4) product probability
(0, 0, 0, 1) θ/4 6θ/D
(1, 0, 1, 0) (θ/1)(θ/3) 8θ2/D
(0, 2, 0, 0) (θ/2)2/2 3θ2/D
(2, 1, 0, 0) (θ/1)2(θ/2)/2 6θ3/D
(4, 0, 0, 0) θ4/4! θ4/D

The probabilities add to 1, since

D = (θ3 + 3θ2 + 2θ)(θ + 3) = θ4 + 6θ3 + 11θ2 + 6θ

1.3.2 Chinese restaurants and sufficient statistics

Joyce and Tavaré (1987) enriched Hoppe’s urn by adding bookkeeping to
keep track of the history of choices in the process as a permutation written
in its cycle decomposition. To explain, consider the following permutation of
eight objects, which mathematically is a mapping π from {1, 2, . . . 8} onto
{1, 2, . . . 8}.
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i 1 2 3 4 5 6 7 8
π(i) 7 8 2 1 6 5 4 3

To construct the cycle decomposition of the permutation, we note that

1 → 7 → 4 → 1 2 → 8 → 3 → 2 5 → 6 → 5

and write (174)(283)(56). To reconstruct the permutation from the short form,
each integer is mapped to the one to its right, except for the one adjacent to
the right parenthesis, which is mapped to the one at the beginning of the
cycle. Because of this the same permutation can be written as (741)(832)(65).

Numbering the balls according to the order that they enter the urn, the
rules are simple. A new color starts a new cycle. If ball k’s color was determined
by choosing ball j, it is inserted to the left of j. For an example, consider the
first eight events in the realization from the beginning of this section.

(1) 1 is always a new color
(1)(2) 2 is a new color

(1)(32) 3 is a child of 2
(41)(32) 4 is a child of 1

(41)(32)(5) 5 is a new color
(41)(32)(65) 6 is a child of 5

(741)(32)(65) 7 is a child of 4
(741)(832)(65) 8 is a child of 3

This scheme is also known as the “Chinese restaurant process”; see Aldous
(1985). In that formulation, one thinks of the numbers as successive arrivals
to a restaurant and the groups as circular tables. The nth person sits at a
new table with probability θ/(θ + n− 1) and sits to the left of 1 ≤ j ≤ n− 1
with probability 1/(θ+n−1). The cycles indicate who is sitting at each table
and in what order.

Let Πn be the permutation when there are n individuals. An important
property of this representation is that given a permutation, the path to it is
unique. Indeed, one can compute the path by successively deleting the largest
number that remains in the permutation. This property is the key to the
following result.

Theorem 1.12. If π is a permutation with k cycles, then in the Joyce-Tavaré
process,

Pθ(Πn = π) =
θk

θ(n)

When θ = 1, the right-hand side is 1/n!, i.e., all permutations are equally
likely.
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Proof. In our example, Pθ{Π8 = (741)(832)(65)} is

θ

θ
· θ

θ + 1
· 1
θ + 2

· 1
θ + 3

· θ

θ + 4
· 1
θ + 5

· 1
θ + 6

· 1
θ + 7

where the θ’s in the numerators of the first, second, and fifth fractions are due
to individuals sitting at a new table at those steps and the 1’s in the other
numerators come from the fact that the other individuals have exactly one
place they can sit. Generalizing from the example, we see that if a permu-
tation of {1, 2, . . . n} has k cycles, then the numerator is always θk and the
denominator is θ(n).

Comparing with Ewens’ sampling formula in Theorem 1.11 and noting that
k =

∑
aj is the number of cycles, we see that the number of permutations of

{1, 2, . . . n} with a1 cycles of size 1, a2 cycles of size 2, etc., is

n!∏n
j=1(jaj (aj)!)

Let Sk
n be the set of permutations of {1, 2, . . . n} with exactly k cycles, and

let |Sk
n| be the number of elements of Sk

n. Letting Kn be the number of alleles
in a sample of size n, it follows from Theorem 1.12 that

Pθ(Kn = k) =
θk

θ(n)
· |Sk

n| (1.13)

The |Sk
n| are called the Stirling numbers of the first kind. In order to compute

them, it is enough to know that they satisfy the relationship

|Sk
n| = (n− 1)|Sk

n−1|+ |Sk−1
n−1|

In words, we can construct a π ∈ Sk
n from a member of Sk−1

n−1 by adding (n)
as a new cycle, or from a σ ∈ Sk

n−1 by picking an integer 1 ≤ j ≤ n − 1 and
setting π(j) = n, π(n) = σ(j).

Combining (1.13) with Ewens’ sampling formula in Theorem 1.11, we see
that

Pθ(a1, . . . , an|Kn = k) =
n!
|Sk

n|

n∏
j=1

(
1
j

)aj 1
aj !

(1.14)

Since the conditional distribution of the allelic partition (a1, a2, . . . an) does
not depend on θ,

Theorem 1.13. Kn is a sufficient statistic for estimating θ.

To develop an estimate of θ based on Kn, we will use maximum-likelihood
estimation. Let

Ln(θ, k) =
θk

θ(n)
· |Sk

n|
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be the likelihood of observing Kn = k when the true parameter is θ. The
maximum-likelihood estimator finds the value of θ that maximizes the prob-
ability of the observed value of k. To find the maximum value, we compute

∂

∂θ
Ln(θ, k) = |Sk

n|
kθk−1θ(n) − θkθ′(n)

(θ(n))2
=
θk|Sk

n|
θ(n)

·

[
k

θ
−
θ′(n)

θ(n)

]

Setting the right-hand side equal to 0 and solving for k yields

k = θ
θ′(n)

θ(n)
= θ

d

dθ
log θ(n)

Recalling θ(n) = θ(θ + 1) · · · (θ + n− 1), we need to compute

d

dθ

n∑
i=1

log(θ + i− 1) =
n∑

i=1

1
θ + i− 1

and thus
k =

θ

θ
+

θ

θ + 1
+ · · ·+ θ

θ + n− 1
= EKn

In words, the maximum-likelihood estimator θ̂MLE is the θ that makes the
mean number of alleles equal to the observed number.

The theory of maximum-likelihood estimation tells us that asymptotically
Eθ̂MLE = θ and var (θ̂MLE) = 1/I(θ̂MLE), where I(θ) is the Fisher informa-
tion

I(θ) = E

(
∂

∂θ
logLn(θ, k)

)2

This is easy to compute.

∂

∂θ
logLn(θ, k) =

∂

∂θ
log

θk|Sk
n|

θ(n)
=
k

θ
− ∂

∂θ
log θ(n)

=
k

θ
−

n∑
i=1

1
θ + i− 1

=
1
θ

(
k −

n∑
i=1

θ

θ + i− 1

)

Since EKn =
∑n

i=1
θ

θ+i−1 , it follows that

I(θ) =
1
θ2

var (Kn)

Theorem 1.10 implies that var (Kn) ∼ θ log n, so var (θ̂MLE) → 0 as the
sample size n→∞ but rather slowly.

Sample homozygosity

Letting δij = 1 if individuals i and j have the same allele and 0 otherwise,
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F̂n =
(
n

2

)−1∑
i<j

δij

is the sample homozygosity. It is a random variable that gives the probability
that in the given sample two randomly chosen members are identical. As (1.12)
shows,

EF̂n =
1

1 + θ

We will now show

var (F̂n) =
(
n

2

)−1(
θ

(1 + θ)2
+ 2(n− 2) · θ

(1 + θ)2(2 + θ)

+
(
n− 2

2

)
· 2θ
(1 + θ)2(2 + θ)(3 + θ)

)
(1.15)

Since
(
n−2

2

)/ (
n
2

)
→ 1 as n→∞, it follows that

var (F̂n) → 2θ
(1 + θ)2(2 + θ)(3 + θ)

as found by Stewart (1976). In principle, one could estimate θ by

θ̄ =
1
F̂n

− 1

but (i) the last calculation shows that θ̄ 6→ θ as n→∞, and (ii) 1/x is convex
so Jensen’s inequality implies that

Eθ̄ >
1

EF̂n

− 1 = θ

i.e., the estimator is biased.

Proof. To compute the variance of F̂n, we begin by observing that

F̂ 2
n =

(
n

2

)−2 ∑
{i1,j1}

∑
{i2,j2}

δi1,j1δi2,j2

where the sum is over all subsets of size 2. There are three types of terms:

(i) |{i1, j1, i2, j2}| = 2. Since i1 = i2, j1 = j2, there are
(
n
2

)
of these.

(ii) |{i1, j1, i2, j2}| = 3. There are
(
n
2

)
2(n− 2) of these.

(iii) {i1, j1} ∩ {i2, j2} = ∅. There are
(
n
2

)(
n−2

2

)
of these.

To check the combinatorics, note that
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1 + 2(n− 2) +
(n− 2)(n− 3)

2
=

2 + 4n− 8 + n2 − 5n+ 6
2

=
n2 − n

2
=
(
n

2

)
Sorting out the three types of terms

E(F̂ 2
n) =

(
n

2

)−1(
E(δ2ij) + 2(n− 2)E(δijδik) +

(
n− 2

2

)
E(δijδk`)

)
(1.16)

where the indices i, j, k, ` are different. Since δij only takes the values 1 and
0, E(δ2ij) = E(δij) = 1/(1 + θ). δijδik = 1 only if i, j, k are identical, i.e., the
allelic partition a3 = 1, which by our discussion of small sample sizes after
Theorem 1.11 is 2/(θ + 1)(θ + 2). δijδk` = 1 can only happen if the partition
is a4 = 1 or a2 = 2. It always occurs in the first case and with probability 1/3
in the second, so by the small sample size discussion,

E(δijδk`) =
6θ + θ2

θ(θ + 1)(θ + 2)(θ + 3)

Combining the results in the previous paragraph

E(F̂ 2
n) =

(
n

2

)−1( 1
1 + θ

+
2(n− 2) · 2

(1 + θ)(2 + θ)
(1.17)

+
(
n− 2

2

)
· (6 + θ)
(1 + θ)(2 + θ)(3 + θ)

)
(1.18)

Subtracting

1
(1 + θ)2

=
(
n

2

)−1(
1 + 2(n− 2) +

(
n− 2

2

))
1

(1 + θ)2

gives the desired result.

Testing the infinite alleles model

Returning to the motivating question from the beginning of the section,
we would like to know if the observations are consistent with Ewens’ sampling
formula. Since the conditional distribution of the allelic partition given the
number of alleles given in (1.14) does not depend on θ, one can use any
function of the allele frequencies to test for departures from the infinite alleles
model. Watterson (1977) suggested the use of the following slightly different
version of the sample homozygosity:

Fn =
k∑

i=1

x2
i =

n∑
j=1

aj

(
j

n

)2

where xi is the frequency of the ith allele, and aj is the number of alleles with
j representatives. In words, Fn is the probability that two individuals chosen
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with replacement are the same, while the version F̂n discussed above is the
probability that two individuals chosen without replacement are the same.

For the Coyne data, Fn = 0.2972. For that of Singh, Lewontin, and Felton,
Fn = 0.2353. To assess the significance of the value for the Coyne data,
Watterson (1977) generated 1000 samples of size 60 with 23 alleles. No sample
had a value of F̂ larger than 0.2972. For the Singh, Lewontin, and Felton data,
2000 samples of size 146 with 27 alleles produced only 8 values larger than
0.2353. We may thus conclude that both data sets depart significantly from
the neutral alleles distribution in the direction of excess homozygosity.

1.3.3 Branching process viewpoint

In addition to introducing the bookkeeping described above, Joyce and Tavaré
(1987) related Hoppe’s urn to the Yule process with immigration. In this pro-
cess, immigrants enter the population at times of a Poisson process with rate
θ, and each individual in the population follows the rules of the Yule process.
That is, they never die and they give birth to new individuals at rate 1. If
we only look at the process when the number of individuals increases, then
we get a discrete-time process in which when there are k individuals, a new
type is added with probability θ/(k + θ) and a new individual with a type
randomly chosen from the urn is added with probability k/(k+ θ). From this
description, it should be clear that

Theorem 1.14. If each immigrant is a new type and offspring are the same
type as their parents, then the sequence of states the branching process with
immigration moves through has the same distribution as those generated by
Hoppe’s urn.

This result becomes very useful when combined with the fact, see page
109 of Athreya and Ney (1972), that

Theorem 1.15. Starting from a single individual, the number of individuals
in the Yule process at time t has a geometric distribution with success proba-
bility p = e−t.

In this way, we obtain a simple proof of Theorem 1.6.

Theorem 1.16. Consider the coalescent starting with ` lineages and stop
when there are k. Let J1, . . . Jk be the number of lineages in the k elements
of the partition when they are labeled at random. (J1, . . . Jk) is uniformly dis-
tributed over the vectors of positive integers that add up to `, and hence

P (Ji = m) =
(
`−m− 1
k − 2

)/(
`− 1
k − 1

)
(1.19)

for 1 ≤ i ≤ k and 1 ≤ m ≤ `− k + 1.
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Proof. Let Zi
t , 1 ≤ i ≤ k, be independent copies of the Yule process. If j1, . . . jk

are positive integers that add up to ` then by Lemma 1.15

P (Z1
t = j1, . . . Z

k
t = jk) = (1− p)`−kpk where p = e−t

Since the right-hand side only depends on the sum ` and the number of terms
k, all of the possible vectors have the same probability. As shown in the proof
of Theorem 1.6, there are

(
`−1
k−1

)
possible vectors (j1, . . . , jk) of positive integers

that add up to `. From this it follows that

P

(
Z1

t = j1, . . . Z
k
t = jk

∣∣∣∣ k∑
j=1

Zj
t = `

)
= 1

/(
`− 1
k − 1

)
that is, the conditional distribution is uniform over the set of possible vectors.
Since the number of vectors (j2, . . . , jk) of positive integers that add up to
`−m is

(
`−m−1

k−2

)
,

P

(
Z1

t = m

∣∣∣∣ k∑
j=1

Zj
t = `

)
=
(
`−m− 1
k − 2

)/(
`− 1
k − 1

)
which completes the proof.

The passage from the discrete-time urn model to the continuous-time
branching process with immigration is useful because it makes the growth
of the various families independent. This leads to some nice results about the
asymptotic behavior of Ewens’ sampling distribution when n is large. The
proofs are somewhat more sophisticated than the others in this section and
we will not use the results for applications, so if the discussion becomes con-
fusing, the reader should feel free to move on to the next section. Let sj(n) be
the size of the jth family when there are n individuals. Donnelly and Tavaré
(1986) have shown in their Theorem 6.1 that

Theorem 1.17. For j = 1, 2, . . ., limn→∞ sj(n)/n = Pj with

Pj = Zj

j−1∏
i=1

(1− Zi)

where the Zi are independent and have a beta(1, θ) density: θ(1− z)θ−1.

An immediate consequence of this result is

Theorem 1.18. The sample homozygosity F̂n converges in distribution to∑∞
j=1 P

2
j as n→∞.
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Note that when θ = 1, the Zi are uniform. By our discussion of the Chinese
restaurant process, Theorem 1.17 describes the “cycle structure” of a random
permutation. To be precise, given a permutation, we start with 1 and follow
the successive iterates π(1), π(π(1)) until we return to 1. This is the first cycle.
Now pick the smallest number not in the first cycle and repeat the procedure
to construct the second cycle, etc. This gives us a size-biased look at the cycle
structure, i.e., cycles are chosen with probability proportional to their length.

Sketch of proof of Theorem 1.17. We content ourselves to explain the main
ideas, referring the reader to Tavaré (1987) for details. Let X(t) be the number
of individuals at time t in the Yule process. It follows from Theorem 1.15 that
as t→∞, X(t)/et converges to a limit we will denote by E . From Lemma 1.15
it follows that E has an exponential distribution. Let Xi(t) be the number of
individuals in the ith family at time t. From the previous result, it follows
that

e−t(X1(t), X2(t), . . .) → (e−T1E1, e
−T2E2, . . .)

where T1, T2, . . . are the arrival times of the rate θ Poisson process and
E1, E2, . . . are independent mean 1 exponentials. Let I(t) = X1(t)+X2(t)+ · · ·
be the total number of individuals at time t. Leaving the boring details of jus-
tifying the interchange of sum and limit to the reader, we have

e−tI(t) →
∞∑

i=1

e−TiEi

A little calculation shows that the sum has a gamma(θ,1) distribution. From
the last two results, it follows that

X1(t)
I(t)

→ e−T1E1∑∞
i=1 e

−TiEi
=

E1

E1 +
∑∞

i=2 e
−(Ti−T1)Ei

≡ Z1

where the last three-lined equality (≡) indicates we are making a definition.
Writing d= to indicate that two things have the same distribution,

∞∑
i=2

e−(Ti−T1)Ei
d=

∞∑
i=1

e−TiEi

has a gamma(θ,1) distribution and is independent of E1, which has an ex-
ponential distribution, so the ratio has a beta(1, θ) distribution. To get the
result for i = 2, we note that

X2(t)
I(t)

→ e−T2E2∑∞
i=1 e

−TiEi

= (1− Z1) ·
eT2E2∑∞

i=2 e
−TiEi

≡ (1− Z1)Z2

Similar algebra leads to the result for i > 2.
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Theorem 1.17 gives the limiting distribution of the sizes of the partition
when they are ordered by their ages. In words, the oldest part of the partition
contains a fraction Z1, the next a fraction Z2 of what is left, etc. The amount
that is not in the oldest j part of the partition is

∏j
i=1(1 − Zi) → 0 expo-

nentially fast, so for large n most of the sample can be found in the oldest
parts of the partition. The ages of the alleles are, of course, not visible in the
data, but this result translates immediately into a limit theorem for the sizes
in decreasing order: P̂1 ≥ P̂2 ≥ P̂3 . . .. The limit is called the Poisson Dirichlet
distribution.

Somewhat surprisingly, it has a simple description. Let y1 > y2 > y3 . . .
be the points of a Poisson process with intensity θe−x/x, i.e., the number of
points in the interval (a, b) is Poisson with mean

∫ b

a
θe−x/x dx and the number

of points in disjoint intervals are independent. P̂1 ≥ P̂2 ≥ P̂3 . . . has the same
distribution as y1/y, y2/y, y3, . . ., where y =

∑∞
i=1 yi.

Theorem 1.17 concerns the large parts of the partition. At the other end of
the size spectrum, Arratia, Barbour, and Tavaré (1992) have studied Aj(n),
the number of parts of size j, and showed

Theorem 1.19. As n → ∞, (A1(n), A2(n), . . .) converges to (Y1, Y2, . . .),
where the Yi are independent Poissons with mean θ/i.

Proof (Sketch). Let T`,m = (`+ 1)Y` + · · ·+mYm. By the remark after (3.5),
if z = y1 + 2y2 + · · ·+ `y`, then

P (A1(n) = y1, . . . A`(n) = y`) =
P (Y1 = y1, . . . Y` = y`)P (T`,n = n− z)

P (T0,n = n)

so it suffices to show that for each fixed z and `,

P (T`,n = n− a)/P (T0,n = n) → 1

When θ = 1, this can be done using the local central limit theorem but for
θ 6= 1 this requires a simple large deviations estimate, see Arratia, Barbour,
and Tavaré (1992) for details.

The book by Arratia, Barbour, and Tavaré (2003) contains a thorough account
of these results.

1.4 Infinite sites model

The infinite alleles model arose in an era where the information about the
genetic state of an individual was obtained through indirect means. With
the availability of DNA sequence data, it became more natural to investigate
the infinite sites model of Kimura (1969) in which mutations always occur at
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distinct sites. In this section, we will study several aspects of this model. To
motivate the developments and help illustrate the concepts we will consider
data from Ward et al. (1991), who sequenced 360 nucleotides in the D loop of
mitochondria in 63 humans.

11111112222222222333333
68902466990134556779000134
98164926040937157156124994

TCCGCTCTGTCCCCGCCCTGTTCTTA
1 .......CA.T....T.......... 3
2 ........A.T....T.......... 2
3 ..........T....T.......... 1
4 ..........T....T........C. 1
5 .T.A..T...T.....T..A....C. 2
6 .T.A......T........A....C. 2
7 CT.A......T..T.....A....C. 1
8 .T.A......T.....T..A....C. 2
9 CT........T.....T..A....C. 2
10 .T........T.....T..A....CG 1
11 .T........T.....T..A....C. 5
12 .T..............T..A....C. 9
13 .T......A.......T..A....C. 1
14 .T........T....TT..A....C. 1
15 .T........T....TT..AC...C. 2
16 ..........TT..........T.C. 1
17 ....T.....T.........C...C. 1
18 ....T.....T..........C..C. 2
19 ..T.......T......T...C..C. 1
20 .....C....T...A......C..C. 3
21 ..........T..........C..C. 3
22 C.........T..........C.... 3
23 ..........TT......C..C.... 1
24 ..........T.......C..CT... 7
25 ..........TT......C..CTC.. 3
26 ...........T......C..CTC.. 1
27 .......C.C................ 1
28 .......C.C..T............. 1

We ignore the positions at which all of the sequences are the same. The
sequence at the top is the published human reference sequence from Ander-
son et al. (1981). The numbers at the top indicate the positions where the
mutations occurred in the fragment sequenced. To make it easier to spot mu-
tations, the others sequences have dots where they agree with the reference
sequence. The numbers at the right indicate how many times each pattern, or
haplotype, was observed. If we were to examine this data from the view point
of the infinite alleles model, it would reduce to the allelic partition:

a1 = 13, a2 = 7, a3 = 5, a5 = 1, a7 = 1, a9 = 1
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1.4.1 Segregating sites

We begin by considering the number of segregating sites, Sn, in the sample of
size n, that is, the number of positions where some pair of sequences differs.
In the example above, n = 63 and S63 = 26.

Theorem 1.20. Let u be the mutation rate for the locus being considered and
θ = 4Nu. Under the infinite sites model, the expected number of segregating
sites is

ESn = θhn where
n−1∑
i=1

1
i

(1.20)

Here h stands for harmonic series. The reader should note that although the
subscript is n to indicate the sample size, the last term has i = n− 1.

Proof. Let tj be the amount of time in the coalescent during which there are j
lineages. In Theorem 1.4, we showed that if N is large and time is measured in
units of 2N generations, then tj has approximately an exponential distribution
with mean 2/j(j − 1). The total amount of time in the tree for a sample of
size n is

Ttot =
n∑

j=2

jtj

Taking expected values, we have

ETtot =
n∑

j=2

j · 2
j(j − 1)

= 2
n∑

j=2

1
j − 1

(1.21)

Since mutations occur at rate 2Nu, ESn = 2Nu ·ETtot, and the desired result
follows.

To understand the variability in Sn, our next step is to show that

Theorem 1.21. Under the infinite sites model, the number of segregating
sites Sn has

var (Sn) = θhn + θ2gn where gn =
n−1∑
i=1

1
i2

(1.22)

Proof. Let sj be the number of segregating sites created when there were
j lineages. While there are j lineages, we have a race between mutations
happening at rate 2Nuj and coalescence at rate j(j − 1)/2. Mutations occur
before coalescence with probability

2Nuj
2Nuj + j(j − 1)/2

=
4Nu

4Nu+ j − 1
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so we have

P (sj = k) =
(

θ

θ + j − 1

)k
j − 1

θ + j − 1
for k = 0, 1, 2, . . .

This is a shifted geometric distribution (i.e., the smallest value is 0 rather
than 1) with success probability p = (j − 1)/(θ + j − 1), so

var (sj) =
1− p

p2
=

θ

θ + j − 1
· (θ + j − 1)2

(j − 1)2

=
θ2 + (j − 1)θ

(j − 1)2
=

θ

j − 1
+

θ2

(j − 1)2

Summing from j = 2 to n and letting i = j − 1 gives the result.

The last proof is simple, but one can obtain additional insight and general-
ity by recalling the simulation algorithm discussed earlier. First, we generate
the tree, and then we put mutations on each branch according to a Poisson
process with rate θ/2. This implies that the distribution of (Sn|Ttot = t) is
Poisson with mean tθ/2. From this it follows that

E(Sn) =
θ

2
ETtot

var (Sn) = E{ var (Sn|Ttot)}+ var {E(Sn|Ttot)} (1.23)

=
θ

2
ETtot +

(
θ

2

)2

var (Ttot)

The last result is valid for any genealogy. If we now use the fact that in the
Wright-Fisher model Ttot =

∑n
j=2 jtj , where the tj are exponential with mean

2/j(j−1) and variance 4/j2(j−1)2, then (1.22) follows and we see the source
of the two terms.

• The first, E{ var (Sn|Ttot)} is called the mutational variance since it is
determined by how many mutations occur on the tree.

• The second, var {E(Sn|Ttot)}, is called the evolutionary variance since it
is due to the fluctuations in the genealogy.

(1.20) and (1.22) show that

Theorem 1.22. Watterson’s estimator θW = Sn/hn has E(θW ) = θ and

var (θW ) = θ
1
hn

+ θ2
gn

h2
n

(1.24)

Example 1.1. In the Ward et al. (1991) data set, there are n = 63 sequences
and 26 segregating sites. Summing the series gives h63 = 4.7124, so our esti-
mate based on the number of segregating sites S63 is

θW = 26/4.7124 = 5.5173

Dividing by 360 gives an estimate of θb = 0.015326 per nucleotide.
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Remark. In the derivation of (1.10) we observed that hn =
∑n−1

i=1 1/i >
log n. The difference increases with n and converges to Euler’s constant
γ = 0.577215, so if you don’t want to sum the series then you can use
h63 ≈ γ + log 63 = 4.7203 (instead of the exact answer of 4.7124).

Figure 1.8 shows the distribution of Sn when θ = 3 and n = 10, 30, 100.
It follows from (1.20) and (1.22) that the mean ESn and standard deviation
σ(Sn) are given by:

n 10 30 100
ESn 8.49 11.88 15.53
σ(Sn) 4.73 5.14 5.49

0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

Fig. 1.8. The distribution of Sn is approximately normal.

Theorem 1.23. Under the infinite sites model, Watterson’s estimate θW has

P

(
θW − θ√
var (θW )

≤ x

)
→ P (χ ≤ x)

where χ has the standard normal distribution.

Proof. The proof of (1.22) shows that the number of segregating sites in the
infinite sites model Sn =

∑n
j=2 sj , where the sj are independent shifted geo-

metrics with success probabilities p = (j−1)/(θ+ j−1). Using the triangular
array form of the central limit theorem, see (4.5) on page 116 of Durrett
(2005), we have that as n→∞,

P

(
Sn − ESn√

var (Sn)
≤ x

)
→ P (χ ≤ x)

Dividing by hn in the numerator and denominator gives the desired result.



34 1 Basic Models

(1.24) implies

var (θW ) = θ
1
hn

+ θ2
gn

h2
n

Since hn =
∑n−1

i=1 1/i ∼ log n and gn =
∑n−1

i=1 1/i2 → g∞ < ∞ as n → ∞,
var (θW ) ∼ θ/ log n, so as in Theorem 1.10, the rate of convergence to the
limiting expected value θ = Eθ̂ is painfully slow.

Can we do better?

Fu and Li (1993) had a clever idea that allows us to use statistical theory
to get lower bounds on the variance of unbiased estimates of θ.

Theorem 1.24. Any unbiased estimator of θ has variance at least

J(θ) = θ

/
n−1∑
k=1

1
k + θ

Proof. The proof of (1.22) shows that the number of segregating sites in the
infinite sites model Sn =

∑n
j=2 sj , where the sj are independent shifted geo-

metrics with success probabilities p = (j − 1)/(θ + j − 1). So the likelihood

Ln(θ) =
n∏

j=2

(
θ

θ + j − 1

)sj j − 1
θ + j − 1

= (n− 1)!θSn

n∏
j=2

(θ + j − 1)−(sj+1)

logLn = log((n− 1)!) + Sn log θ −
∑n

j=2(sj + 1) log(θ + j − 1), so

d

dθ
logLn =

Sn

θ
−

n∑
j=2

sj + 1
θ + j − 1

and the maximum-likelihood estimate, θB , where B is for bound, is obtained
by solving

θ = Sn

/
n∑

j=2

sj + 1
θ + j − 1

The estimator θB is not relevant to DNA sequence data. The next pic-
ture explains why. At best we can only reconstruct the branches on which
mutations occur and even if we do this, we would not have enough informa-
tion needed to compute θB , since moving the mutations on the branches will
change the values of the sj .

The reason for pursuing the likelihood calculation is that the Cramér-Rao
lower bound implies that all unbiased estimators have variance larger than
J(θ) = 1/I(θ), where I(θ) is the Fisher information:
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•

•

•

•

•

•

•

•

s5 = 2

s4 = 2

s3 = 3

s2 = 1

Fig. 1.9. The variables sj cannot be determined from the data.

E

(
d2

dθ2
logLn

)2

= −E d2

dθ2
logLn.

The equality is a well-known identity, see e.g., Casella and Berger (1990)
p. 312, which can be established by integrating by parts. To compute the
lower bound, we differentiate again:

d2

dθ2
logLn = −Sn

θ2
+

n∑
j=2

sj + 1
(θ + j − 1)2

Taking expected value and recalling E(sj + 1) = (θ + j − 1)/(j − 1), we get

−E d2

dθ2
logLn =

hn

θ
+

n∑
j=2

1
(j − 1)(θ + j − 1)

=
1
θ

n−1∑
k=1

(
1
k
− θ

k(θ + k)

)
=

1
θ

n−1∑
k=1

1
k + θ

which completes the proof.

To compare with Watterson’s estimator, we recall

var (θW ) = θ
1
hn

+ θ2
gn

h2
n

where hn =
∑n−1

i=1 1/i and gn =
∑n−1

i=1 1/i2. If we fix θ and let n → ∞, then
since the series in the denominator of the lower bound J(θ) is the harmonic
series with a few terms left out at the beginning and a few added at the end,
J(θ) ∼ θ/hn and hence
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var (θW )
J(θ)

→ 1

On the other hand, if we fix n and let θ →∞ then J(θ) ∼ θ2/(n− 1) and

var (θW )
J(θ)

→ h2
n

gn
≥ (log n)2

π2/6

As Tavaré (2004) says in his St. Flour notes, this suggests that we explore
estimation of θ using the likelihoods formed from the full data rather than
their summary statistics, a computationally intensive approach that we will
not consider in this book.

Exact distribution of Sn

Breaking things down according to whether the first event is a mutation
or coalescence, we conclude

P (Sn = k) =
θ

n− 1 + θ
P (Sn = k − 1) +

n− 1
n− 1 + θ

P (Sn−1 = k)

Tavaré (1984) used this approach to obtain explicit expressions for the distri-
bution of Sn:

P (Sn = k) =
n− 1
θ

n−1∑
i=1

(−1)i−1

(
n− 2
i− 1

)(
θ

θ + i

)k+1

(1.25)

The result is very simple for k = 0. In that case,

P (Sn = 0) = P (Sn−1 = 0) · n− 1
θ + n− 1

Since P (S1 = 0) = 1, iterating gives

P (Sn = 0) =
(n− 1)!

(θ + 1) · · · (θ + n− 1)
(1.26)

Example 1.2. Dorit, Akashi, and Gilbert (1995) examined a 729 base pair in-
tron between the third and fourth exons of the ZFY gene in 38 individuals and
found no variation. Whether or not this is unusual depends on the value of θ.
A simple bisection search shows that when θ = 0.805, P (S38 = 0) = 0.049994,
so if θ > 0.805, no variation has a probability smaller than 0.05. Dividing by
729 translates this into a per base pair value of θb = 0.0011. As we will see
in a moment, this number is exactly Li and Sadler’s value for the nucleotide
diversity. However, females have no Y chromosome and males one, so if Nm

is the number of males, then for the Y chromosome θb = 2Nmu, and if we
assume males are half the population, this is 1/4 of the value of θ = 4Nu for
autosomes. If we use θ = 729(0.0011)/4 = 0.2, we find P (S38 = 0) = 0.443,
and the data does not look unusual at all.
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Segregating sites vs. haplotypes

To compare the number of segregating sites Sn with the number of alleles
(haplotypes) Kn, we note that Sn ≥ Kn − 1 since a new mutation is needed
to increase the number of haplotypes. We have computed in (1.20) and (1.9)
that

ESn =
n−1∑
j=1

θ

j
and E(Kn − 1) =

n−1∑
j=1

θ

θ + j

Taking the difference, we see that

0 ≤ E{Sn − (Kn − 1)} =
n−1∑
j=1

θ2

j(θ + j)

If θ = 1, this is

n−1∑
j=1

1
j(j + 1)

=
n−1∑
j=1

1
j
− 1

(j + 1)
= 1− 1

n

so on the average there is one more segregating site than haplotype. The last
computation generalizes to show that if θ = k is an integer, then

E{Sn − (Kn − 1)} = k

n−1∑
j=1

(
1
j
− 1

(j + k)

)
≈ k

k∑
j=1

1
j

= khk+1

so if θ = k is large, there are many more segregating sites than haplotypes.

Example 1.3. At this point, some readers may recall that in the Ward et
al. (1991) data set, there are Sn = 26 segregating sites but Kn = 28 hap-
lotypes. The reason for this is that the data does not satisfy the assumptions
of the infinite sites model. To explain this, consider the following example
genealogy.

The sets of individuals affected by mutations A, B, and C are SA = {1, 2},
SB = {5, 6}, and SC = {5, 6, 7}. Note that SB ⊂ SC while SC and SA are
disjoint. A little thought reveals that any two mutations on this tree must obey
this pattern. That is, their sets of affected individuals must be nested (i.e.,
one a subset of the other) or disjoint. If we introduce lowercase letters a, b, c
to indicate the absence of the corresponding capital-letter mutations, then
this can be reformulated as saying that if all loci share the same genealogy,
it is impossible to observe all four combinations AB, Ab, aB, and aa in one
data set. Returning to the original data set of Ward et al. (1991), we see that
all four combinations occur in columns 69 and 88, 190 and 200, 255 and 267,
296 and 301, and 302 and 304, so at least five sites have been hit twice by
mutation.
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•

•

•

A

B

C

1 2 3 4 5 6 7

Fig. 1.10. It is is impossible to observe all four combinations of alleles at two sites
without repeat mutations (or recombination).

Birthday problem

At first, it may seem surprising that if there are 26 mutations in a 360
nucleotide region, then there will be more than one at some site. However,
this is just the classical birthday problem of probability theory. The probability
that no site is hit more than once is(

1− 1
360

)(
1− 2

360

)
· · ·
(

1− 25
360

)
= 0.396578

Using
∏25

i=1(1− xi) ≈ exp(−
∑25

i=1 xi) and
∑25

i=1 i = (26 · 25)/2, the above is

≈ exp
(
−26 · 25

2
· 1
360

)
= 0.40544

Thus, we should not be surprised to find one site hit more than once. Gener-
alizing, we see that if there are m mutations in a region of L nucleotides, the
probability is

≈ exp
(
−m(m− 1)

2L

)
which becomes < 1 when m ≈

√
L.

On the other hand, it is very unusual in this example to have five sites hit
twice. If we suppose that there are 31 mutations in a 360 nucleotide region,
then the expected number of sites that are hit more than once is

31 · 30
2

· 1360 = 1.2916

Since we have a lot of events with small probability of success and these events
are almost independent, the number of double hits will have roughly a Poisson



1.4 Infinite sites model 39

distribution with mean 1.2916. (This intuition can be made precise using the
Chen-Stein method in the form of Arratia, Gordon, and Goldstein 1989.) For
the Poisson, the probability of exactly five double hits is

e−1.2916 (1.2916)5

5!
= 0.00823

Using a computer, we find

∞∑
k=5

e−1.2916 (1.2916)k

k!
= 0.010393

or only 1% of the time are there 5 a more double hits.

1.4.2 Nucleotide diversity

The probability that two nucleotides differ in two randomly chosen individuals
is called the nucleotide diversity and is denoted by π.

Theorem 1.25. Let µ be the mutation rate per nucleotide per generation and
θ = 4Nµ. Under the infinite sites model,

Eπ =
θ

1 + θ
≈ θ (1.27)

since in most cases 4Nµ is small.

Proof. In each generation two lineages coalesce with probability 1/2N and
mutate with probability 2µ, so the probability of mutation before coalescence
is

2µ
2µ+ 1/2N

=
4Nµ

1 + 4Nµ

Li and Sadler (1991) estimated π for humans by examining 49 genes. At
four-fold degenerate sites (i.e., where no substitution changes the amino acid)
they found π = 0.11% (i.e., π = 0.0011). At two-fold degenerate sites (i.e.,
where only one of the three possible changes is synonymous) and nondegener-
ate sites, the values were 0.06% and 0.03%, respectively. More recent studies
have confirmed this. Harding et al. (1997) sequenced a 3 kb stretch includ-
ing the β-globin gene in 349 chromosomes from nine populations in Africa,
Asia, and Europe, revealing an overall nucleotide diversity of π = 0.18%.
Clark et al. (1998) and Nickerson et al. (1998) sequenced a 9.7 kb region near
the lipoprotein lipase gene in 142 chromosomes, finding an average nucleotide
diversity of 0.2%.

In contrast, data compiled by Aquadro (1991) for various species of
Drosophila give the following estimates for π:
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D. pseudoobscura D. simulans D. melanogaster
Adh 0.026 0.015 0.006
Amy 0.019 0.008
rosy 0.013 0.018 0.005

Since π = 4Nµ, the differences in the value of π can be due to differences
in N or in µ. Here N is not the physical population size, i.e., 6 billion for
humans or an astronomical number for Drosophila, but instead is the “effective
population size.” To explain the need for this concept, we note that in the
recent past the human population has grown exponentially and Drosophila
populations undergo large seasonal fluctuations, so neither fits our assumption
of a population of constant size. The effective population size will be defined
precisely in Section 3.1. To illustrate its use in the current example, we note
that current estimates (see Drake et al. 1998) of the mutation rate in humans
are µ = 10−8 per nucleotide per generation. Setting 1.1 × 10−3 = 4N · 10−8

and solving gives Ne = 27, 500.

1.4.3 Pairwise differences

Given two DNA sequences of length L, let ∆2 be the number of pairwise
differences. For example, the two sequences

AATCGCTTGATACC

ACTCGCCTGATAAC

have three pairwise differences at positions 2, 7, and 13. Given n DNA se-
quences, let ∆ij be the number of pairwise differences between the ith and
jth sequences, and define the average number of pairwise differences by

∆n =
(
n

2

)−1 ∑
{i,j}

∆ij

where the sum is over all pairs {i, j} ⊂ {1, 2, . . . n} with i 6= j.

Theorem 1.26. Let u be the mutation rate for the locus and let θ = 4Nu.
Under the infinite sites model,

E∆n = θ (1.28)

In words, ∆n is an unbiased estimator of θ. In situations where we want to
emphasize that ∆n is an estimator of θ, we will call it θπ, i.e., the estimate of
θ based on the nucleotide diversity π.

Proof. To compute the distribution of ∆2, note that (1.12) implies that the
probability of coalescence before mutation is 1/(1 + 4Nu). If, however, mu-
tation comes before coalescence, we have an equal chance of having another
mutation before coalescence, so letting θ = 4Nu, we have
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P (∆2 = k) =
(

θ

θ + 1

)k 1
θ + 1

for k = 0, 1, 2, . . . (1.29)

To compute the mean of ∆2 now, we recall that the shifted geometric distribu-
tion P (X = k) = (1−p)kp for k = 0, 1, 2, . . . has mean (1/p)−1, so E∆2 = θ.
Since there are

(
n
2

)
pairs, and E∆ij = E∆2, the desired result follows.

Example 1.4. Ward et al. (1991). To compute ∆n, it is useful to note that if
km is the number of columns in which the less frequent allele has m copies,
then

∆n =
(
n

2

)−1∑
ij

∆ij =
n/2∑
m=1

km ·m(n−m)

In the example under consideration, k1 = 6, k2 = 2, k3 = 3, k4 = 1, k6 = 4,
k7 = 1, k10 = 1, k12 = 2, k13 = 1, k23 = 1, k24 = 1, k25 = 1, and k28 = 2,
so our formula gives ∆63 = 5.2852 compared to Watterson’s estimate θW =
5.5173 based on segregating sites.

Tajima (1983) has shown that

var (∆n) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)
9n(n− 1)

θ2 (1.30)

Note that when n = 2, this says var (∆2) = θ+ θ2, which follows from (1.29).
We will postpone the proof to Chapter 3. See (3.8).

As in the case of Watterson’s estimator,

• the term with θ is the mutational variance due to the placement of muta-
tions on the tree;

• the term with θ2 is the evolutionary variance due to fluctuations in the
shape of the tree.

To prepare for future estimates of θ, we will prove a general result. Let ηk be
the number of sites in the sample where k individuals have the mutant allele,
and consider an estimate of the form

θ̂ =
n−1∑
k=1

cn,kηk

where cn,k are constants. In Section 2.2, we will see that many estimates
of θ have this form. So far we have seen two: ∆n corresponds to cn,k =

2
n(n−1)k(n − k) and Watterson’s estimate θW to cn,k = 1/hn. Adapting the
argument in (1.23) we will now show that

Theorem 1.27. There are constants an and bn, which depend on the cn,k so
that

var (θ̂) = anθ + bnθ
2
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Proof. Let Lk be the total length of branches in the tree with k descendants
and let L = (L1, . . . , Ln−1). Since mutations occur on the tree according to a
Poisson process with rate θ/2,

dist(θ̂|L) =
n−1∑
k=1

cn,k Poisson(θLk/2)

where Poisson(λ) is shorthand for Poisson with mean λ and the different Pois-
son variables are independent. Since the mean and variance of the Poisson(λ)
distribution are both equal to λ, it follows that

E(θ̂|L) =
n−1∑
k=1

cn,k · θLk/2 var(θ̂|L) =
n−1∑
k=1

c2n,k · θLk/2

From this we can conclude that

E{var(∆n|L)} = θan where an =
n−1∑
k=1

c2n,k · ELk/2

var {E(∆n|L)} = θ2bn where

bn = (1/4)
∑

1≤j,k≤n−1

cn,jcn,k cov (Lj , Lk)

which proves the desired result.

Letting n→∞ in (1.30) we see that

var (∆n) → θ

3
+

2
9
θ2

so the variance of ∆n does not go to 0. This is due to the fact that the value
of ∆n is determined mostly by mutations on a few braches near the top of
the tree. The next result will make this precise and determine the limiting
distribution of ∆n.

Theorem 1.28. Let U1, U2, . . . be independent uniform on (0, 1). For fixed m
let Um,1 < Um,2 < . . . < Um,m be the first m of the Ui arranged in increasing
order, and let Um,0 = 0, Um,m+1 = 1. Let Vm,j = Um,j − Um,j−1 be the
spacing in between the order statistics Um,i for 1 ≤ j ≤ m + 1. Let tm be
independent exponentials with mean 2/m(m + 1) and, conditional on tm, let
Zm,0, . . . Zm,m be independent Poisson with mean θtm/2. As n → ∞, ∆n

converges in distribution to

∞∑
m=1

m∑
j=0

2Vm,j(1− Vm,j)Zn,j
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Proof. We look at the coalescent tree starting from the most common ancestor
and working down. Theorem 1.8 shows that if λk

j , 1 ≤ j ≤ k are the number
of members of the sample that are descendants of the jth lineage when there
are k lineages left, then λk

j is constructed from λk−1
j by picking λk−1

j with
probability (λk−1

j − 1)/(n− k− 1) and then splitting λk−1
j into i and λk−1

j − i
where i is uniform on 1, 2, . . . λk−1

j − 1.
When k = 1, λ1

1 = n, i.e., all individuals are descendants of the most
recent common ancestor. When k = 2, λ2

1 is uniform on 1, 2, . . . n − 1, so as
n → ∞, (λ2

1/n, λ
2
2/n) converges in distribution to (V1,0, V1,1) = (U1, 1 − U1).

Continuing we see that the fractions of descendants (λk
1/n, . . . λ

k
k/n) converge

in distribution to (Vk−1,1, . . . Vk−1,k). The first index of V is k − 1 because
k − 1 uniforms will break the interval into k pieces.

The amount of time in the coalescent when there are m + 1 lineages is
exponential with mean 2/m(m+ 1). Conditional on this time, the number of
mutations on the m + 1 lineages are independent Poisson with mean θtm/2.
If we number the lineages by 0 ≤ j ≤ m then a mutation on the jth produces
approximately Vm,j(1−Vm,j)n2 pariwise differences. Dividing by

(
n
2

)
, we end

up with 2Vm,j(1− Vm,j).

As a check on our derivation, we will show that the limit has mean θ. It
is known and not hard to check that Vm,j has a beta(1,m) distribution, i.e.,
the density function is m(1− x)m−1. Integrating by parts, we find

E(Vm,j) =
∫ 1

0

x ·m(1− x)m−1 dx =
∫ 1

0

(1− x)m dx =
1

m+ 1

which is intuitive since we are breaking the interval into m+ 1 pieces.

E(V 2
m,j) =

∫ 1

0

x2 ·m(1− x)m−1 dx =
∫ 1

0

2x(1− x)m dx

=
2

m+ 1

∫ 1

0

(1− x)m+1 dx =
2

(m+ 1)(m+ 2)

Using this we have

E∆n →
∞∑

m=1

(m+ 1)2E(Vm,j − V 2
m,j) ·

θ

2
· 2
m(m+ 1)

= 2θ
∞∑

m=1

(
1− 2

m+ 2

)
· 1
m(m+ 1)

= 2θ
∞∑

m=1

1
(m+ 1)(m+ 2)

= 2θ
∞∑

m=1

1
m+ 1

− 1
m+ 2

= θ

1.4.4 Folded site frequency spectrum

For motivation, consider the following data set.
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Example 1.5. Aquadro and Greenberg (1983) studied data on 900 nucleotides
in 7 mtDNA sequences. We ignore the positions at which all of the sequences
are the same, and three positions where there has been an insertion or deletion.
As before, to make it easier to spot mutations, the last six sequences have dots
where they agree with the first one.

1 GTCTCATATGCGAGGATCTAAAGAGAAGTTGAGTAGAGGAGTGGC
2 AC.C......................G............G.....
3 ...CTGC.C.T......TC..G..AG.......C.AGCAGA.A.T
4 ..TCT...GA.AGA..C..GG.A..G.ACCA....AG.A..C...
5 ...C........G..GC..G.....G........G..........
6 ...C...G....G.A.C..G...G.......GA..........A.
7 ...C............C..G..........A..............

In this data set, we have no way of telling what is the ancestral nucleotide, so
all we can say is that there are m of one nucleotide and n −m of the other.
This motivates the definition of the folded site frequency spectrum. Let η̃n be
the number of sites where the less frequent nucleotide appears m times.

The next result tells us what to expect.

Theorem 1.29. Consider a segregating site where two different nucleotides
appear in the sample. The probability the less frequent nucloetide has m copies
is

1
hn

(
1
m

+
1

n−m

)
if m < n/2

1
hn

(
1
m

)
if m = n/2

Proof. To derive this result, we use Ewens’ sampling formula to compute the
conditional distribution of the number of individuals with the two alleles given
that there was one mutation. Consider first the situation in which one allele
has m and the other n −m > m representatives. Let am,n−m be the allelic
partition with am,n−m

m = 1 and am,n−m
n−m = 1. Writing q(m,n−m) as shorthand

for Pθ,n(am,n−m), Theorem 1.11 gives

q(m,n−m) =
n!
θ(n)

· θ

m1 · 1!
· θ

(n−m)1 · 1!
=
n!θ2

θ(n)
· 1
m(n−m)

In the exceptional case that n−m = m, the allelic partition has am = 2, so

q(m,m) =
n!θ2

θ(n)
· 1
m2 · 2!

We are interested in the conditional probability:

pm = q(m,n−m)

/ ∑
1≤m≤n/2

q(m,n−m)
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To compute this, we note that since n!θ2/θ(n) is common to both formulas,
there is a constant c so that

pm =

{
c
n

(
1
m + 1

n−m

)
if m < n/2

c
n

1
m if m = n/2

where in the second formula we have substituted m = n/2. Since the proba-
bilities have to add to 1, c = 1/hn and the desired result follows.

Example 1.6. In the case of n = 7 individuals, the probabilities are

1/6 :
c7

1 · 6
2/5 :

c7
2 · 5

3/4 :
c7

3 · 4

where c7 is the constant needed to make the sum of the probabilities equal to
1. A little arithmetic shows that c7 = 60/21, so the relative frequencies are

1/6 :
10
21

= 0.476 2/5 :
6
21

= 0.286 3/4 :
5
21

= 0.238

Ignoring the ninth position in the Aquadro and Greenberg data set, which
has had two mutations, we find an excess of 1/6 splits over what is expected:

partition observed expected
3/4 4 10.48
2/5 6 12.58
1/6 34 20.94

While we have the data in front of us, we would like to note that there are 44
segregating sites and

h7 = 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

so θW = 44/2.45 = 17.96. Using the table,

∆7 = 34 · (1 · 6)
21

+ 6 · (2 · 5)
21

+ 4 · (3 · 4)
21

=
312
21

= 14.86

which is a considerably smaller estimate of θ. Is the difference of the two
estimates large enough to make us doubt the assumptions underlying the
Wright-Fisher model (a homogeneously mixing population of constant size
with neutral mutations)? Chapter 2 will be devoted to this question.

Singletons

Taking the viewpoint of Hoppe’s urn, the expected number of colors that
have exactly one ball in the urn is
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Ea1 =
n∑

i=1

θ

θ + i− 1

n∏
k=i+1

(
1− 1

θ + k − 1

)
since the color must be introduced at some time i and then not chosen after
that. The right-hand side simplifies nicely:

=
n∑

i=1

θ

θ + i− 1

n∏
k=i+1

θ + k − 2
θ + k − 1

=
nθ

θ + n− 1

In contrast, it follows from the folded site frequency spectrum described in
Theorem 1.29 and the formula for the expected number of segregating sites
(1.20) that the number of sites η̃m, where there are m < n/2 of the less
frequent allele, has (for n > 2)

Eη̃m = ESn ·
1

2hn
· 2
(

1
m

+
1

n−m

)
= θ

n

m(n−m)
(1.31)

When m = 1 and n > 2, we have

Eη̃1 =
nθ

n− 1

A haplotype that occurs in only one individual must have at least one nu-
cleotide that appears in only one individual so η̃1 ≥ a1. The difference

Eη̃1 − Ea1 =
nθ2

(n− 1)(θ + n− 1)

is the number of extra singletons in unique haplotypes. This is small if n is
larger than θ2.

1.5 Moran model

The Wright-Fisher model considers nonoverlapping generations, as one has
in annual plants and the deer herds of upstate New York. However, in many
species, e.g., humans, Drosophila, and yeast, the generations are not synchro-
nized and it is convenient to use a model due to Moran (1958) in which only
one individual changes at a time. In the Wright-Fisher model, the 2N copies
of our locus could either come from N diploid individuals or 2N haploid in-
dividuals (who have one copy of their genetic material in each cell). In our
formulation of the Moran model we think in terms of 2N haploid individuals.

• Each individual is replaced at rate 1. That is, individual x lives for an
exponentially distributed amount with mean 1 and then is “replaced.”

• To replace individual x, we choose an individual at random from the pop-
ulation (including x itself) to be the parent of the new individual.
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One could make a version of the Moran model for N diploid individuals by
replacing two copies of the locus at once. This should not change the dynamics
very much, but it would eliminate one property that is very important for the
analysis. The number of copies of an allele never changes by more than one.

Even though the Wright-Fisher model and the Moran model look much
different going forward, they are almost identical going backwards.

Theorem 1.30. When time is run at rate N , the genealogy of a sample of
size n from the Moran model converges to Kingman’s coalescent.

Thus, when we reverse time, the only difference is that the Moran model
coalesces twice as fast, so if we want to get the same answers we have to
double the mutation rate in the Moran model.

Proof. If we look backwards in time, then when there are k lineages, each
replacement leads to a coalescence with probability (k − 1)/2N . If we run
time at rate N , then jumps occur at rate N · k/2N = k/2, so the total rate
of coalescence is k(k − 1)/2, the right rate for Kingman’s coalescent.

Returning to the forward perspective, suppose that we have two alleles A
and a, and let Xt be the number of copies of A. The transition rates for Xt

are

i→ i+ 1 at rate bi = (2N − i) · i

2N

i→ i− 1 at rate di = i · 2N − i

2N

where b is for birth and d is for death. In words, a’s are selected for possible
replacement at total rate 2N − i. The number of A’s will increase if an A is
chosen to be the parent of the new individual, an event of probability i/2N .
The reasoning is similar for the second rate. Note that the two rates are equal.

1.5.1 Fixation probability and time

The next result is the same as the one for the Wright-Fisher model given in
(1.2). Let τ = min{t : Xt = 0 or Xt = 2N} be the fixation time.

Theorem 1.31. In the Moran model, the probability that A becomes fixed
when there are initially i copies is i/2N .

Proof. The rates for up and down jumps are the same, so (d/dt)EiXt = 0, and
hence EiXt is constant in time. As in the Wright-Fisher model, this implies

i = EiXτ = 2NPi(Xτ = 2N)

and the desired result follows. .
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Writing Ēiτ = Ei(τ |T2N < T0), we can state

Theorem 1.32. Let p = i/2N . In the Moran model

Ēiτ ≈ −2N(1− p)
p

log(1− p) (1.32)

Recalling that the Moran model coalesces twice as fast as the Wright-Fisher
model, this agrees with the classic result due to Kimura and Ohta (1969a).
As p→ 0, − log(1− p)/p→ 1, so

Ēiτ → 2N (1.33)

In particular, this gives the expected fixation time of a new mutation, condi-
tional on its fixation.

Proof. Let Sj be the amount of time spent at j before time τ and note that

Eiτ =
2N−1∑
j=1

EiSj (1.34)

Let Nj be the number of visits to j. Let q(j) = j(2N − j)/2N be the rate at
which the chain leaves j. Since each visit to j lasts for an exponential amount
of time with mean 1/q(j), we have

EiSj =
1
q(j)

EiNj (1.35)

If we let Tj = min{t : Xt = j} be the first hitting time of j, then

Pi(Nj ≥ 1) = Pi(Tj <∞)

Letting T+
j = min{t : Xt = j and Xs 6= j for some s < t} be the time of the

first return to j, we have for n ≥ 1

Pi(Nj ≥ n+ 1|Nj ≥ n) = Pj(T+
j <∞)

The last formula shows that, conditional on Nj ≥ 1, Nj has a geometric
distribution with success probability Pj(T+

j = ∞). Combining this with our
formula for Pi(Nj ≥ 1), we have

EiNj =
Pi(Tj <∞)
Pj(T+

j = ∞)
(1.36)

Since the average value of Xt is constant in time, the martingale argument
shows that for 0 ≤ i ≤ j

i = jPi(Tj < T0) + 0 · [1− Pi(Tj < T0)]
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and solving gives

Pi(Tj < T0) =
i

j
Pi(Tj > T0) =

j − i

j
(1.37)

Similar reasoning shows that for j ≤ i ≤ 2N ,

i = jPi(Tj < T2N ) + 2N [1− Pi(Tj < T2N )]

and solving gives

Pi(Tj < T2N ) =
2N − i

2N − j
Pi(Tj > T2N ) =

i− j

2N − j
(1.38)

When the process leaves j, it goes to j − 1 or j + 1 with equal probability, so

Pj(T+
j = ∞) =

1
2
· Pj+1(Tj > T2N ) +

1
2
· Pj−1(Tj > T0)

=
1
2
· 1
2N − j

+
1
2
· 1
j

=
2N

2j(2N − j)

Putting our results into (1.36) gives

EiNj =

{
i
j ·

2j(2N−j)
2N i ≤ j

2N−i
2N−j ·

2j(2N−j)
2N j ≤ i

Since q(j) = 2j(2N − j)/2N , (1.35) gives

EiSj =

{
i
j i ≤ j

2N−i
2N−j j ≤ i

(1.39)

If we let h(i) = Pi(T2N < T0) and let pt(i, j) be the transition proba-
bility for the Moran model, then it follows from the definition of conditional
probability and the Markov property that

p̄t(i, j) =
Pi(Xt = j, T2N < T0)

Pi(T2N < T0)
= pt(i, j) ·

h(j)
h(i)

Integrating from t = 0 to ∞, we see that the conditioned chain has

ĒiSj =
∫ ∞

0

p̄t(i, j) dt =
h(j)
h(i)

EiSj (1.40)

h(i) = i/2N , so using the formula for EiSj given in (1.39), we have

ĒiSj =

{
1 i ≤ j
2N−i

i · j
2N−j j ≤ i

(1.41)
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By the reasoning that led to (1.34),

Ēiτ =
2N−1∑
j=1

ĒiSj =
2N−1∑
j=i

1 +
2N − i

i
·

i−1∑
j=1

j

2N − j

The first sum is 2N − i. For the second we note that

i−1∑
j=1

j

2N − j
= 2N

i−1∑
j=1

j/2N
1− j/2N

· 1
2N

≈ 2N
∫ p

0

u

1− u
du

where p = i/2N . To evaluate the integral, we note that it is

=
∫ p

0

−1 +
1

1− u
du = −p− log(1− p)

Combining the last three formulas gives

Ēiτ ≈ 2N(1− p) +
2N(1− p)

p
(−p− log(1− p))

= −2N(1− p)
p

log(1− p)

which gives (1.32).

1.5.2 Site frequency spectrum mean

Consider now the Moran model with infinite sites mutations.

Theorem 1.33. Suppose the per locus mutation rate is u, and we have a
sample of size n. Let ηm be the sites where m individuals in the sample have
the mutant nucleotide. For the Moran model, Eηm = 2Nu/m. For the Wright-
Fisher model, Eηm = 4Nu/m.

Proof. It suffices to prove the result for the Moran model, because to pass
from the Moran model to the Wright-Fisher model, we only have to replace
u by 2u. If we are to find a mutation in k individuals at time 0, then it must
have been introduced into one individual at some time t units in the past and
risen to frequency k, an event of probability pt(1, k), where pt is the transition
probability for the Moran model. Integrating over time gives that the expected
number of mutations with frequency k in the population is

2Nu
∫ ∞

0

pt(1, k) dt

The quantity G(i, j) =
∫∞
0
pt(i, j) dt is called the Green’s function for the

Markov chain and represents the expected value of Sj , the time spent at j for
a process starting at i. By (1.39),



1.5 Moran model 51

G(i, j) = EiSj =

{
i
j i ≤ j

2N−i
2N−j j ≤ i

When i = 1 we only have the first case, so G(1, k) = 1/k, and the expected
number of mutations with k copies in the population is 2Nu/k. If there are k
copies of a mutant in the population and we take a sample of size n from the
population (with replacement), then the number of mutants in the sample
is binomial(n, k/2N) and hence the expected number of mutations with m
copies in the sample is

2N−1∑
k=1

2Nu
k

(
n

m

)
(k/2N)m(1− k/2N)n−m

If the sample size n is much smaller than the population size N , this will be a
good approximation for sampling without replacement. To evaluate this sum,
we write it as

2Nu · 1
2N

2N−1∑
k=1

2N
k

(
n

m

)
(k/2N)m(1− k/2N)n−m

and change variables y = k/2N to see that this is approximately

2Nµ
m

∫ 1

0

dy

(
n

m

)
mym−1(1− y)n−m

The term in front is the answer, so we want to show that the integral is 1. To do
this, we integrate by parts (differentiating ym−1 and integrating (1− y)n−m)
to conclude that if 2 ≤ m < n,

n(n− 1) · · · (n−m+ 1)
(m− 1)!

∫ 1

0

ym−1(1− y)n−m dy

=
n(n− 1) · · · (n−m+ 2)

(m− 2)!

∫ 1

0

ym−2(1− y)n−m+1 dy

Iterating, we finally reach
∫ 1

0
nyn−1 dy = 1 when m = 2.

Example 1.7. Single nucleotide polymorphisms (abbreviated SNPs and pro-
nounced “snips”) are nucleotides that are variable in a population but in
which no allele has a frequency of more than 99%. If we restrict our attention
to nucleotides for which there has been only one mutation, then our previous
result can be used to estimate the number of SNPs in the human genome.
The probability that the less frequent allele is present in at least a fraction x
of the population is then

θ

(1−x)n∑
m=xn

1
m

= θ

∫ 1−x

x

1
y
dy = θ log

(
1− x

x

)
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in agreement with a computation of Kruglyak and Nickerson (2001). If we use
their figure for the nucleotide diversity of θ = 1/1331 and take x = 0.01 then
we see the density of SNPs is log(99) = 4.59 times θ or 1 every 289 bp, or
more than 10 million in the human genome.



2

Estimation and Hypothesis Testing

“It is easy to lie with statistics. It is hard to tell the truth without
it.” Andrejs Dunkels

2.1 Site frequency spectrum covariance

Assume the Wright-Fisher model with infinitely many sites, and let ηi be the
number of sites where the mutant (or derived) allele has frequency i in a
sample of size n. In this section, we will describe work of Fu (1995), which
allows us to compute var (ηi) and cov (ηi, ηj). We begin with the new proof
of the result for the mean given in Theorem 1.33.

Theorem 2.1. Eηi = θ/i.

Proof. We say that a time t is at level k if there are k sample lineages in
the coalescent at that time. The key to the proof is to break things down
according to the level at which mutations occur.
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Let Lm be the total length of branches with m descendants. Let Jk
` be the

number of sampled individuals that are descendants of edge ` at level k.
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Theorem 1.6 implies that (Jk
1 , . . . , J

k
k ) is uniformly distributed over the vectors

of k positive integers that add up to n. Recalling that the number of such
vectors is

(
n−1
k−1

)
, it follows that for 1 ≤ i ≤ n− k + 1

P (Jk
` = i) =

(
n− i− 1
k − 2

)/(
n− 1
k − 1

)
(2.1)

since the numerator gives the number of ways of breaking the remaining n− i
individuals into k − 1 nonempty groups.

Since level k lasts for an amount of time with mean 2/k(k − 1) and there
are k edges on level k,

ELi =
n∑

k=2

2
k(k − 1)

· k ·
(
n−i−1

k−2

)(
n−1
k−1

) (2.2)

Since mutations occur on the tree at rate θ/2, it suffices to show ELi = 2/i.
To evaluate the sum, we need the following identity:(

n−i−1
k−2

)(
n−1
k−1

) 1
k − 1

=

(
n−k
i−1

)(
n−1

i

) 1
i

(2.3)

Skipping the proof for the moment and using this in (2.2) gives

ELi =
2
i

n∑
k=2

(
n−k
i−1

)(
n−1

i

) =
2
i

To see the last equality, note that if we are going to pick i things out of n− 1
and the index of the first one chosen is k − 1, with 2 ≤ k ≤ n, then we must
choose i− 1 from the last (n− 1)− (k − 1) items.

The last detail is to prove (2.3). Recalling the definition of the binomial
coefficients,(

n−i−1
k−2

)(
n−1
k−1

) 1
k − 1

=
1

k − 1
(n− i− 1)!

(k − 2)!(n− i− k + 1)!
· (k − 1)!(n− k)!

(n− 1)!

Cancelling the (k − 1)!, swapping the positions of (n − i − 1)! and (n − k)!,
and then multiplying by i!/(i− 1)!i, the above becomes

=
(n− k)!

i(i− 1)!(n− k − (i− 1))!
· i!(n− i− 1)!

(n− 1)!
=

(
n−k
i−1

)(
n−1

i

) 1
i

and the proof is complete.

To state Fu’s (1995) result for the covariances, we recall hn =
∑n−1

i=1 1/i
and let

βn(i) =
2n

(n− i+ 1)(n− i)
(hn+1 − hi)−

2
n− i
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Theorem 2.2. var (ηi) = θ/i+ θ2σii and for i 6= j, cov (ηi, ηj) = σijθ
2. The

diagonal entries σii are given by

βn(i+ 1) i < n/2

2
hn − hi

n− i
− 1
i2

i = n/2 (2.4)

βn(i)− 1
i2

i > n/2

while σij with i > j are given by

βn(i+ 1)− βn(i)
2

i+ j < n

hn − hi

n− i
+
hn − hj

n− j
− βn(i) + βn(j + 1)

2
− 1
ij

i+ j = n (2.5)

βn(j)− βn(j + 1)
2

− 1
ij

i+ j > n

To help understand the formulas, we begin by computing σij in the special
case n = 8.

j = 1 2 3 4 5 6 7
i = 1 0.3211 -0.0358 -0.0210 -0.0141 -0.0103 -0.0079 0.1384

2 -0.0358 0.2495 -0.0210 -0.0141 -0.0103 0.1328 -0.0356
3 -0.0210 -0.0210 0.2076 -0.0141 0.1283 -0.0346 -0.0356
4 -0.0141 -0.0141 -0.0141 0.3173 -0.0359 -0.0275 -0.0267
5 -0.0103 -0.0103 0.1283 -0.0359 0.1394 -0.0230 -0.0216
6 -0.0079 0.1328 -0.0346 -0.0275 -0.0230 0.1310 -0.0183
7 0.1384 -0.0356 -0.0267 -0.0216 -0.0183 -0.0159 0.1224

The numbers on the diagonal must be positive since var (ηi) > 0. All of the
off-diagonal elements are negative numbers, except for the σij with i+ j = n.
Intuitively, these are positive due the fact that the first split in the tree may
have i lineages on the left and n− i on the right, and this event increases both
ηi and ηn−i. The negative off-diagonal elements are small, but since there are
O(n2) of them, their sum is significant.

The next two figures give the values of the covariance matrix whenN = 25.
The first gives the values on the diagonal i = j and the anti-diagonal i+j = 25.
Since 25 is odd, these do not intersect. The bump in the middle of the graph of
the diagonal covariances may look odd, but when i ≥ 13, there cannot be two
edges in the tree that produce these mutations. To better see the off-diagonal
entries in the covariance matrix in the second figure, we have plotted −σij

and inserted 0’s on the two diagonals. The largest value is at σ12. Note the
jump in the size of the correlations when we enter the region i+ j > 25.
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Fig. 2.1. Diagonals of the covariance matrix when N = 25.
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Fig. 2.2. Off-diagonal entries (times −1) of the covariance matrix when N = 25.

Proof. Let ν`,k = the number of mutations that occur on edge ` at level k. To
compute variances and covariances, we use the identity

ηi =
n∑

k=2

k∑
`=1

1(Jk
` =i)ν`,k

where the indicator function 1(Jk
` =i) is equal to 1 if Jk

` = i and 0 otherwise.
Multiplying two copies of the sum and sorting the terms, we conclude that
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E(ηiηj) = 1(i=j)

n∑
k=2

kP (Jk
1 = i)Eν2

1,k

+
n∑

k=2

k(k − 1)P (Jk
1 = i, Jk

2 = j)E(ν1,kν2,k) (2.6)

+
∑
k 6=h

khP (Jk
1 = i, Jh

1 = j)E(ν1,kν1,h)

To evaluate the last expression, we have to compute (i) the expected values
of the ν`,k, and (ii) the joint distribution of the Jk

` . Readers who lose interest
in the details can skip to the result given in Theorem 2.2.

The expected values of the ν`,k are easy to compute. Let tk be the
amount of time at level k. Conditioning on the value of tk,

(ν`,k|tk = t) = Poisson(θt/2)

Since tk is exponential with mean 2/k(k − 1),

Eν`,k =
θ

k(k − 1)
(2.7)

Reasoning as in the derivation of (1.23), recalling Poisson(θt/2) has variance
θt/2, and using var (tk) = 4/(k2(k − 1)2), we have

var (ν`,k) = E( var (ν`,k|tk)) + var (E(ν`,k|tk))

=
θ

2
E(tk) +

θ2

4
var (tk))

=
θ

k(k − 1)
+

θ2

k2(k − 1)2

Adding the square of the mean we have

Eν2
`,k =

θ

k(k − 1)
+

2θ2

k2(k − 1)2
(2.8)

Conditioning on the values of tk and th, and using E(t2k) = 8/(k2(k − 1)2),

for ` 6= m E(ν`,kνm,k) =
θ2

4
Et2k =

2θ2

k2(k − 1)2
(2.9)

for k 6= h E(ν`,kνm,h) =
θ2

4
EtkEth =

θ2

k(k − 1)h(h− 1)
(2.10)

The joint probabilities for pairs of edges are more difficult to com-
pute. The easiest situation occurs when both edges are on the same level.
When k = 2, Tajima’s result, Theorem 1.6, tells us that
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P (J2
1 = i, J2

2 = n− i) =
1

n− 1
(2.11)

Extending the reasoning for (2.1) shows that for k ≥ 3 and i+ j < n

P (Jk
` = i, Jk

m = j) =

(
n−i−j−1

k−3

)(
n−1
k−1

) (2.12)

since the remaining n − (i + j) sampled individuals are divided between the
other k − 2 lineages. Similar reasoning shows that if 2 ≤ t ≤ k − 1 and
j < i < n,

P

(
Jk

1 = j,

t∑
`=2

Jk
` = i− j

)
=

(
i−j−1

t−2

)(
n−i−1
k−t−1

)(
n−1
k−1

) (2.13)

Suppose now that k < h and let Dh
`,k be the number of descendants on

level h of edge (`, k), i.e., edge ` on level k. Writing (m,h) < (`, k) for (m,h)
is a descendant of (`, k), there are two cases to consider: (m,h) < (`, k) and
(m,h) 6< (`, k). In each case there is the general situation and a degenerate
subcase in which one group of vertices is empty.

Case 1.
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@
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t− 1 h− t

(`, k)

(m,h)

i− j j n− i

Here we have not drawn the tree, but have indicated the sizes of the various
sets of descendants. Recalling that edges on each level are randomly labeled,
we see that if j < i < n and t ≥ 2,

P (Dh
`,k = t, (m,h) < (`, k), Jk

` = i, Jh
m = j)

=

(
h−t−1

k−2

)(
h−1
k−1

) · t
h
·
(
i−j−1

t−2

)(
n−i−1
h−t−1

)(
n−1
h−1

) (2.14)

The first factor is P (Dh
`,k = t), computed from (2.1). The second is P ((m,h) <

(`, k)|Dh
`,k = t). When the first two events occur, we need Jh

m = j and the
other t−1 descendants of (`, k) on level h to have a total of i− j descendants,
so the desired result follows from (2.13).

If i = j, then we must have t = 1 and
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P (Dh
`,k = 1, (m,h) < (`, k), Jk

` = i, Jh
m = i)

=

(
h−2
k−2

)(
h−1
k−1

) · 1
h
·
(
n−i−1

h−2

)(
n−1
h−1

) (2.15)

If one is willing to adopt the somewhat strange convention that
(−1
−1

)
= 1, this

can be obtained from the previous formula by setting t = 1 and i− j = 0.

Case 2.
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Reasoning similar to Case 1 shows that if t ≤ h− 2 and i+ j < n,

P (Dh
`,k = t, (m,h) 6< (`, k), Jk

` = i, Jh
m = j)

=

(
h−t−1

k−2

)(
h−1
k−1

) · h− t

h
·
(

i−1
t−1

)(
n−(i+j)−1

h−t−2

)(
n−1
h−1

) (2.16)

If i+ j = n, then we must have t = h− 1 and k = 2. (We may have h > 2.)

P (Dh
`,k = h− 1, (m,h) 6< (`, k), Jk

` = i, Jh
m = n− i)

=
1

h− 1
· 1
h
·
(

i−1
h−2

)(
n−1
h−1

) (2.17)

Again, if
(−1
−1

)
= 1, this can be obtained from the previous formula by setting

t = h− 1 and n− (i+ j) = 0.

At this point we have everything we need to compute the variances and
covariances. The expressions in (2.14)–(2.17) are complicated and two of them
must be summed over t. Remarkably, Fu (1995) was able to obtain the given
analytical formulas for the quantities of interest. Many details need to end up
with these results, so we refer the reader to the original article for details.

2.2 Estimates of θ

Let ηi be the number of sites where the mutant allele is present i times in a
sample of size n. There are a number of ways of estimating θ = 4Nu, where u
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is the mutation rate for the locus, using linear functions of the site frequency
spectrum, that is, estimators of the form

θ̂ =
n−1∑
i=1

cn,iηi.

Fu and Li (1993). θFL = η1.

Watterson (1975). θW = h−1
n

∑n−1
i=1 ηi, where hn =

∑n−1
i=1 1/i.

Zeng, Fu, Shi, and Wu (2006). θL = 1
n−1

∑n−1
i=1 iηi

Tajima (1983). θπ = 2
n(n−1)

∑n−1
i=1 i(n− i)ηi.

Fay and Wu (2000). θH = 2
n(n−1)

∑n−1
i=1 i

2ηi = 2θL − θπ.

To check that these are unbiased estimators, we note that Eθ̂ =
∑n−1

i=1 cn,iθ/i.
The fact that Eθ̂ = θ in the first three cases is easy to see. For the fourth and
fifth, we note that

n−1∑
i=1

i =
n(n− 1)

2
=

n−1∑
i=1

(n− i)

It is much more difficult to compute the variances. Using gn =
∑n−1

i=1 1/i2,
we can write the answers as

var (θW ) =
θ

hn
+
gn

h2
n

θ2 (2.18)

var (η1) = θ + 2
nhn − 2(n− 1)
(n− 1)(n− 2)

θ2 (2.19)

var (θπ) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)
9n(n− 1)

θ2 (2.20)

var (θL) =
n

2(n− 1)
θ +

[
2
(

n

n− 1

)2

(gn+1 − 1)− 1

]
θ2 (2.21)

var (θH) = θ +
2[36n2(2n+ 1)gn+1 − 116n3 + 9n2 + 2n− 3]

9n(n− 1)2
θ2 (2.22)

We have seen the first and third results in (1.22) and (1.30). The second is
due to Fu and Li (1993). The fourth and fifth are from Zeng, Fu, Shi, and Wu
(2006). Note that, as we proved in Theorem 1.27, each variance has the form
anθ+ bnθ

2. The term with θ is the mutational variance due to the placement
of mutations on the tree, while the term with θ2 is the evolutionary variance
due to fluctuations in the shape of the tree.

It is easy to visually compare the terms with θ. In the case of θW , θ/hn → 0.
η1 and θH have θ, while for θπ and θL the terms are ≈ θ/3 and ≈ θ/2
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respectively. It is hard to understand the relationship between the variances
by looking at the formulas. In the next table, we have evaluated the coefficient
of θ2 for the indicated values of n. The limits as n→∞ are 0, 0, 2/9, 0.289863,
and 0.541123.
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Fig. 2.3. Coefficient of θ2 in the variance of 1. θW , 2. η1, 3. θπ, 4. θL, and 5. θH .

In addition to formulas for the variances, we will need the following co-
variances:

cov (ηk, Sn) =
θ

k
+
hn − hk

n− k
θ2 (2.23)

cov (θL, Sn) = θ +
ngn − (n− 1)

(n− 1)
θ2 (2.24)

cov (θπ, Sn) = θ +
(
n+ 2
2n

)
θ2 (2.25)

cov (θL, θπ) =
n+ 1

3(n− 1)
θ +

7n2 + 3n− 2− 4n(n+ 1)gn+1

2(n− 1)2
(2.26)

The first for k = 1 is formula (25) from Fu and Li (1993). We prove the more
general result here. The third is (25) from Tajima (1989). The other two are
in (A1) of Zeng, Fu, Shi, and Wu (2006).

Where do these formulas come from?

In principle, the problem is solved by Fu’s result for the site freqeuncy
spectrum covariance. Given Xj =

∑n−1
i=1 c

j
n,iηi, cov (X1, X2) = anθ + bnθ

2,
where
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an =
n−1∑
i=1

c1n,ic
2
n,i/i (2.27)

bn =
∑
i,j

c1n,iσijc
2
n,j (2.28)

Of course, var (X1) = cov (X1, X1).
If one wants numerical values for a fixed n, then (2.27), (2.28), and The-

orem 2.2 lead easily to the desired answer. It is fairly straightforward to use
(2.27) to algebraically compute the coefficients an, but the bn are considerably
more difficult. To illustrate this point, we will compute cov (ηk, Sn), which is
the simplest of these tasks.

Proof of 2.23. In this case, c1n,i = 1 if i = k and c2n,i = 1 for all i, so an = 1/k.
Using (2.28) and Theorem 2.2,

bn =
∑

j

σkj = βn(k) +
βn(1)− βn(k)

2

+(n− k − 1)
βn(k)− βn(k + 1)

2
− (n− k − 1)

βn(k)− βn(k + 1)
2

−βn(1)− βn(n− k)
2

− βn(i) + βn(n− k)
2

+
hn − hk

n− k
+
hn − hn−k

k
− 1
k

n−1∑
j=n−k

1
j

The terms involving βn add up to 0, and the last two terms cancel, leaving us
with

bn =
n−1∑
j=1

σkj =
hn − hk

n− k
(2.29)

which proves (2.23).

Using (2.23), one can, with some effort, compute var (Sn), cov (θL, Sn),
and cov (θπ, Sn), since they are all equal to

n−1∑
k=1

c1n,k cov (ηk, Sn)

However, in the other cases, the terms involving βn do not cancel, and we
have not been able to derive the other formulas given above from Theorem
2.2. On the other hand, the results in this section allow one to easily compute
the variances and covariances numerically, so perhaps such tedious algebraic
manipulations are obsolete.
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2.3 Hypothesis testing overview

One of the most important questions we face is:

Is the observed DNA sequence data consistent with neutral evolution
in a homogeneously mixing population of constant size?

As the last sentence indicates, there are many assumptions that can be vio-
lated. Much of the rest of the book is devoted to investigating consequences of
alternatives to this null hypothesis. In Chapters 4 and 5, we study population
size changes and population structure. In Chapters 6 and 7, we study various
types of fitness differences between alleles. Most of the alternative hypotheses
can be grouped into two categories.

A. Those that tend to make a star-shaped genealogy:
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Examples of this are:

• Population bottleneck. If, as we work backwards in time, there is a sudden
decrease in the population size, then the coalescence rate will become large.
Situations that can cause this are the founding of a new population by a
small number of migrants or, what is essentially the same, improving a
crop species by choosing a few individuals with desirable properties.

• Selective sweep. This term refers to the appearance of a favorable mutation
that rises in frequency until it takes over the population. In the absence
of recombination, this is a severe population bottleneck because the en-
tire population will trace its ancestry to the individual with the favorable
mutation.

• Population growth. In the human population, which has experienced a
period of exponential growth, then the coalescence rate will be initially
small, and the genealogical tree will have tips that are longer than usual.

B. At the other extreme from a star-shaped genealogy is a chicken legs ge-
nealogy. There are two long, skinny legs with feet on the ends.
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Examples of this are:

• Population subdivision. Imagine two isolated populations that exchange
migrants infrequently. If we sample 10 individuals from each population,
then the two subsamples will coalesce as usual and then eventually the
their two ancestral lineages will coalesce.

• Balancing selection. This term refers to a situation in which the fitness of
heterozygotes Aa is larger than that of homozygotes AA and aa. In this
case, the population will settle into a equilibrium in which the two alleles
A and a are each present with fixed frequencies. As we will see in Section
6.2, this is essentially a two-population model, with migration between
chromosomes with A and chromosomes with a being caused by mutation
or recombination.

Notice that in each case there are different explanations that produce the
same effect. Thus, one of the problems we will face in hypothesis testing is
that if we reject neutral evolution in a homogeneously mixing population of
constant size, it will be difficult to say if this is due to natural selection or to
demographic factors such as population structure or population size changes.

This is a serious problem for the difference statistics considered in the next
section because the tests are performed by comparing the observation to the
distribution of the statistic under the neutral model. The HKA test discussed
in Section 2.5 avoids this problem by comparing patterns of variability at two
regions in the same individuals. The McDonald-Kreitman test discussed in
Section 2.6 compares the ratio of nonsynonymous to synonymous polymor-
phisms within species to the ratio of nonsynonymous to synonymous fixed
differences between species, which should not be affected by the shape of the
tree.

Here, we will content ourselves to describe the mechanics of the tests and
give a few examples to illustrate their use. For more on the issues involved
in the use of these and other tests, there are a number of excellent survey
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articles: Kreitman (2000), Nielsen (2001), Fay and Wu (2001), Bamshad and
Wooding (2003), Nielsen (2005), and Sabeti et al. (2006).

As the reader will see from these articles, there are many tests that we
have not discussed. An important omission is the method of demonstrating
the presence of positive selection by comparing the number of nonsynonymous
mutations per nonsynonymous site (dN ) to the number of nonsynonymous
mutations per nonsynonymous site (dS). Hughes and Nei (1988) showed that
ω = dN/dS > 1 for the antigen binding cleft of the Major Histocompatibility
Complex. A statistical framework for making inferences regarding dN and
dS was developed by Goldman and Yang (1994) and Muse and Gaut (1994).
In this framework, the evolution of a gene is modeled as a continuous-time
Markov chain with state space the 61 possible non-stop codons.

In general, testing ω < 1 for an entire gene is a very conservative test of
neutrality. Purifying selection often acts on large parts of genes to preserve
their function. To address this, Nielsen and Yang (1998) developed a model
in which there are three categories of sites: invariable sites (ω = 0), neutral
sites (ω = 1), and positively selected sites (ω > 1). Later, Yang et al. (2000)
replaced the neutral class by constrained sites that have a distribution of ω
values in (0, 1). This test, which is implemented in the computer program
PAML, has been used to provide evidence of positive selection in a number
of cases; see Nielsen (2001) for some examples.

2.4 Difference statistics

Given two unbiased estimators of θ, we can subtract them to get a random
variable with mean 0 that can be used for testing whether the data is consistent
with our model of neutral mutations in a homogeneously mixing population
of constant size.

2.4.1 Tajima’s D

Tajima (1989) was the first to do this, taking the difference d = θW − θπ. We
have computed that

var (Sn) = a1θ + a2θ
2 where a1 =

n−1∑
i=1

1/i a2 =
n−1∑
i=1

1/i2

var (θπ) = b1θ + b2θ
2 where b1 =

n+ 1
3(n− 1)

b2 =
2(n2 + n+ 3)

9n(n− 1)

To compute var (d), we need (2.25):

cov (Sn, θπ) = θ +
(

1
2

+
1
n

)
θ2
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Recalling θW = Sn/a1, we have

var (d) = c1θ + c2θ
2 where c1 = b1 −

1
a1
, c2 = b2 −

n+ 2
a1n

+
a2

a2
1

To finish the definition of Tajima’s statistic, we need estimators of θ and
θ2, so we can construct an estimator of var (d). For the first we use θ̂ = Sn/a1.
For the second we note that

E(S2
n)− ESn = var (Sn) + E(Sn)2 − ESn = (a2

1 + a2)θ2

so our estimate of var (d) is v̂(d) = e1Sn + e2Sn(Sn − 1), where e1 = c1/a1

and e2 = c2/(a2
1 + a2) and Tajima’s test statistic is

DT =
θπ − θW√

e1Sn + e2Sn(Sn − 1)
(2.30)

The smallest value of DT , call it u, occurs when the minor allele has
frequency 1 at each segregating site. This happens when there is a star-shaped
genealogy. In this case,

θπ − θW =

[(
n

2

)−1

(n− 1)− 1
hn

]
Sn

If Sn is large, we have

u ≈
(

2
n
− 1
hn

)/
√
e2

The largest value of DT , call it v, occurs where the split between the two
nucleotides at each site is as even as it can be. If n is even,

θπ − θW =

[(
n

2

)−1

(n/2)2 − 1
hn

]
Sn

If Sn is large, we have

v ≈
(

1
2
− 1
hn

)/
√
e2

Tajima argued on the basis of simulations that the density function of DT

is approximately a generalized beta distribution with range [u, v]:

f(D) =
Γ (α+ β)(v −D)α−1(D − u)β−1

Γ (α)Γ (β)(v − u)α+β−1

where α and β are chosen to make the mean 0 and the variance 1:

α = − (1 + uv)v
v − u

β =
(1 + uv)u
v − u

Table 2 in Tajima’s paper gives 90%, 95%, 99%, and 99.9% confidence intervals
for a variety of sample sizes.
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Example 2.1. Aquadro and Greenberg (1983). In Section 1.4, we computed
θW = 17.959184 and θπ = 14.857143. Using a small computer program, one
can compute

a1 = 2.450000 a2 = 1.491389
b1 = 0.444444 b2 = 0.312169
c1 = 0.036281 c2 = 0.035849
e1 = 0.014809 e2 = 0.004784

and
√

v̂ar (d) = 3.114888, so

DT =
14.857143− 17.959184

3.114888
= −0.995875

The negative value of DT is caused by an excess of rare alleles. However, from
Table 2 on page 592 of Tajima (1989), we see that the 90% confidence interval
for DT in the case n = 7 is (−1.498, 1.728), so this value of DT is not very
unusual.

2.4.2 Fu and Li’s D

Fu and Li (1993) used the difference θW − θFL as a test statistic, or what is
essentially the same, d = Sn−hnη1, where hn =

∑n−1
i=1 1/i. Again, this statistic

is normalized by dividing by the square root of an estimate of var (d). The
ingredients necessary for the computation of var (d) are given in the previous
section, but we skip the somewhat messy details of the derivation, which is
similar to the computation of Tajima’s denominator.

DFL =
Sn − hnη1√
uDSn + vDS2

n

(2.31)

where uD = hn − 1− vD, gn =
∑n−1

i=1 1/i2,

vD = 1 +
h2

n

gn + h2
n

(
cn −

n+ 1
n− 1

)
and cn =

2nhn − 4(n− 1)
(n− 1)(n− 2)

To save you some arithmetic, Table 1 of Fu and Li (1993) gives the values of
hn (which they call an) and vD.

Table 2 of Fu and Li (1993) gives cutoff values for their test, which are
based on simulation. Since the cutoff values depend on θ, they chose to present
conservative percentage points that are valid for θ ∈ [2, 20]. To illustrate their
method, we will consider a data set.

Example 2.2. Hamblin and Aquadro (1996) studied DNA sequence variation at
the glucose dehydrogenase (Gld) locus in Drosophila simulans. The Gld locus
is near the centromere of chromosome 3 in a region of low recombination.
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Hamblin and Aquadro sequenced 970 nucleotides from exon 4 from 11 D.
simulans chromosomes sampled from a population in Raleigh, N.C. These 11
sequences and that of one D. melanogaster individual are given in the table
below. As usual, dots in rows 1–11 indicate that the sequence agrees with the
D. melanogaster sequence.

These two Drosophila species diverged about 2.5 million years ago, which
is about 25 million generations. Since a typical estimate of the Drosophila
effective population size is one million, it seems likely that the most recent
common ancestor of the 11 D. simulans individuals, which has mean roughly
4 million generations, will occur before coalescence with the D. melanogaster
lineage. Thus, the D. melanogaster sequence gives us information about the
state of the most recent common ancestor of the D. simulans individuals and
allows us to conclude which nucleotides represent mutations. Note that in all
cases but position 5413, the nucleotide in D. melanogaster agrees with one of
the D. simulans individuals. In this case, the state of the most recent common
ancestor is ambiguous, but it is clear from the data that the mutation is

44444444455555555555555555
66677789901111233344444555
01925869913579056912568115
92039316947867002235516024

mel CCTTACCCGTGAAGTCCCCTGACCGG
1 T.GT.G....AG.A....G.......
2 T.G..G....AG.A....G.......
3 T....G.....G.A....G.A...G.
4 T....G....AG.A....G.A...G.
5 T..CT.....AGGA...TA.....G.
6 T..CT......G.A...TA.....G.
7 T..CT.....AGGA.TTTA.....G.
8 ...CTG.AAC.G.C.TTTGC...A..
9 ...CTG.AACAGGC...TGC...A..
10 .T...GA..CA...ATTTG.AT..GA
11 .T...GA..CA...ATTTG.ATT.GA

There are 26 segregating sites, but since there are two mutations at 5197,
the total number of mutations η = 27. This represents a deviation from the
infinite sites model, but in light of the birthday problem calculations in Section
1.4 is not an unexpected one, since the expected number of nucleotides hit
twice is (27 · 26)/(2 · 970) = 0.35926 and the probability of no double hit is
≈ exp(−0.35962) = 0.6982. However, as we will now see, it is very unusual for
there to be only one external mutation at 5486. Table 2 of Fu and Li (1993)
gives h11 = 2.929 and vD = 0.214, so uD = h11 − 1 − vD = 1.929 − 0.214 =
1.715. The value of Fu and Li’s statistic is thus

DFL =
27− 1 · 2.929√

(1.715)(27) + (0.214)(27)2
= 1.68

When n = 11, a 95% confidence interval for DFL is (−2.18, 1.57). Thus, there
is a significant deficiency of external mutations.
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To perform Tajima’s test on these data, we ignore the column with two
mutations so that there are 25 segregating sites. The folded site frequency
spectrum is

m 1 2 3 4 5
η̃m 1 11 4 7 2

Using the fact that
(
11
2

)
= 55, we can compute that

θπ =
1 · 10 + 11 · 18 + 4 · 24 + 7 · 28 + 2 · 30

55
=

560
55

= 10.181818

Dividing θπ by the 970 bp gives an estimate of π of 0.0105, which is consistent
with the estimates for Adh, Amy, and rosy discussed in Section 1.4. In contrast,
the estimate of θ based on the 25 segregating sites is 25/2.928968 = 8.535429.
Computing as in the previous example, we find

a1 = 2.928968 a2 = 1.549768
b1 = 0.400000 b2 = 0.272727
c1 = 0.058583 c2 = 0.049884
e1 = 0.020001 e2 = 0.004925

and
√

v̂ar (d) = 1.858779, so Tajima’s D is

DT =
10.1818181− 8.535429

1.858779
= 0.885737

Consulting Tajima’s table, we see that a 90% confidence interval for DT is
(−1.572, 1.710), so this value of DT is far from significant.

p values. Tajima’s use of the beta distribution and Fu and Li’s choice of
θ ∈ [2, 20] are somewhat arbitrary. To improve the computation of p values for
these tests, Simonsen, Churchill, and Aquadro (1995) used (1.25) to construct
a 1− β confidence interval (θL, θU ) for θ and then defined an interval for the
test statistic which had probability ≥ 1−(α−β) for a grid of values in [θL, θU ].

2.4.3 Fay and Wu’s H

Fay and Wu (2000) considered the difference

H = θH − θπ

In their original paper, they did not normalize the statistic to have variance
approximately 1, and they determined the distribution of H using simulations
of a neutral coalescence algorithm (without recombination) conditioning on
the observed number of segregating sites. Their motivation for defining H,
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which we will not be able to explain until we consider hitchhiking in Section
6.5, and the site freqeuncy spectrum in Section 7.11, is that the fixation of ad-
vantageous alleles should result in an excess of high frequency derived alleles.
Since

θH =
2

n(n− 1)

n−1∑
i=1

ηii
2 versus θπ =

2
n(n− 1)

n−1∑
i=1

ηii(n− i)

and i2 > i(n − i) when i > n/2, this will produce positive values of H. For
this reason they consider a one-sided test that rejects the null hypothesis if
the observed value is too large.

In computing θH an outgroup is needed to infer the ancestral and derived
states, but a mutation before the most recent common ancestor or in the
outgroup lineage would lead to misinference of the ancestral state. To com-
pensate for this, the probability of misinference was incorporated in the null
distribution of the H statistic by exchanging the frequencies of the derived
and the ancestral states with probability pd, where d is the net divergence or
the average number of fixed differences per site between the two species. If all
mutation rates are equal p = 1/3. For Drosophila data they use p = 3/8. This
number is chosen based on the idea that in Drosophila transitions A ↔ G
and C ↔ T occur at twice the rate of transversions (the other eight possible
mutations). Since for any nucleotide there are two transversions and one tran-
sition, 1/2 of the mutations are transitions and 1/2 are transversions. Taking
into account the rate of back mutations in the two cases, we get

1
2
· 1
2

+
1
2
· 1
4

=
3
8

Example 2.3. Accessory gland proteins. This is a group of specialized proteins
in the seminal fluid of Drosophila that have been suggested to be involved in
egg-laying stimulation, remating inhibition, and sperm competition. Among
the Acp genes, Acp26Aa and nearby Acp26Ab have been extensively studied.
Here we use data of Tsaur, Ting, and Wu (1998) who analyzed 49 sequences
from five populations in four continents.

The site frequency spectrum for Acp26Aa given in their Table 2 for the
31 sites (out of 38) where the derived nucleotide could be unambiguously
inferred with reference to the three outgroup species had η1 = 9, η2 = 5,
η3 = 2, η46 = 3, and ηm = 1 for m = 6, 7, 11, 16, 21, 29, 31, 38, 39, 42, 45,
and 47. There are 31 segregating sites and h49 = 4.458797, so

θW = 31/4.458797 = 6.95248

Using the site frequency spectrum, one can compute

θπ = 5.265306 θH = 15.359694

Fay and Wu’s test can be run from
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http://www.genetics.wustl.edu/jflab/htest.html

Because of results of Zeng, Shi, Fu, and Wu (2006) they now scale the statistic
by the variance of the difference, so their H = −4.369243. Using 10,000 simu-
lations and a back mutation probability of 0.03 produces a p value of 0.0254.
If we grind through the details of computing Tajima’s D, we find

a1 = 4.458797 a2 = 1.624316
b1 = 0.347222 b2 = 0.231765
c1 = 0.122946 c2 = 0.080038
e1 = 0.027574 e2 = 0.003722

and
√

v̂ar (d) = 2.077509, so Tajima’s D is

DT =
5.265306− 6.95248

2.077509
= −0.812146

Consulting Tajima’s table, we see that a 90% confidence interval for DT is
(−1.571, 1.722), so this value of DT is far from significant. Indeed, the output
from Fay’s program says that the one-tailed p value is 0.229700.

One can, of course, also calculate Fu and Li’s DFL. To do this, we begin
by computing vD = 0.137393 and uD = 3.321404. Since η1 = 9,

DFL =
31− 9 · 4.458797√

(3.321404)(31) + (0.137393)(31)2
= −0.595524

When n = 50, a 95% confidence interval for DFL is (−1.96, 1.37), so again
this value is far from significant.

Example 2.4. In the Hamblin and Aquadro (1996) data, throwing out the
column in which the outgroup sequence differs from both nucleotides in D.
simulans, we have 24 segregating sites and a site frequency spectrum of

m 1 2 3 4 5 6 7 8 9 10
ηm 1 10 1 4 2 0 3 2 1 0

Running Fay and Wu’s test from the web page with 10,000 simulations and a
back mutation probability of 0.03, gives a value for H of 0.117960 (scaled by
the variance) and a one-tailed p value of 0.3343.

2.4.4 Conditioning on Sn

Since the number of segregating sites is observable and θ is not, it is natural,
as Fay and Wu (2002) have done, to perform simulations of the coalescent
conditional on the number of segregating sites Sn = k. An easy, but incorrect,
way to do this is to generate a genealogy and then place k mutations on it
at random. This method was suggested by Hudson (1993, page 27). However,
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discussion in his paper indicates he knew it was not correct. The reason is
that for fixed values of θ and k not all genealogies have an equal probability
of producing k segregating sites.

To see this, let τj be the amount of time there are j lineages:

P (τ2 = t2, . . . τn = tn) =
n∏

j=2

(
j

2

)
exp

(
−
(
j

2

)
t

)
and note that if τ = 2τ2 + · · ·+ nτn is the total size of the tree,

P (Sn = k|τ2 = t2, . . . τn = tn) = e−θτ (θτ)k

k!

Combining the last two formulas and dividing by P (Sn = k), we have

P (τ2 = t2, . . . τn = tn|Sn = k)

= cθ,n,k(2t2 + · · ·+ ntn)k
n∏

j=2

(
j

2

)
exp

(
−
((

j

2

)
+ jθ

)
tj

)
where cθ,n,k is a normalizing constant that depends on the indicated param-
eters. It is clear from the last formula that, for fixed k, as θ changes not only
the total size of the tree τ changes but:

• Due to the jθ in the exponential, the relative sizes of τ2, . . . τn change, so
the distribution of test statistics conditional on Sn = k will depend on θ.

• Due to the (2t2 + · · ·+ ntn)k, the τj are no longer independent, since the
joint density function is not a product f2(t2) · · · fn(tn).

Markovstova, Marjoram, and Tavaré (2001) have shown for two tests of neu-
trality of Depaulis and Veuille (1998) that under the simple but incorrect
algorithm of generating a tree and then putting a fixed number of mutations
on it, the fraction of observations that fall in an interval claimed to have prob-
ability 0.95 can be very small for extreme values of θ. In the other direction,
Wall and Hudson (2001) have shown that these problems do not occur if the
true value of θ is near Watterson’s estimator θW = Sn/hn.

2.5 The HKA test

Suppose now that we have a sample from one species and one sequence from
another closely related species. The ratio of the number of segregating sites in
one species to the amount of divergence between the two species is determined
by the time since divergence of the two species, the effective population size,
and the size of the sample, but does not depend on the mutation rate at the
locus. Hence, these ratios should be similar for different loci, and sufficiently
large differences provide evidence for nonneutral evolution.
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Having explained the motivation behind the HKA test, we turn now to the
mechanics. Consider data collected from two species, referred to as species A
and species B, and from L ≥ 2 regions of the genome referred to as locus 1
through locus L. Assume that a random sample of nA gametes from species
A have been sequenced at all L loci and nB gametes from species B have
been sequenced at the same loci. Let SA

i denote the number of sites that are
polymorphic at locus i in the sample from species A. Similarly, let SB

i denote
the number of sites that are polymorphic at locus i in the sample from species
B. Let Di denote the number of differences between a random gamete from
species A and a random gamete from species B. The 3L observations SA

i , SB
i ,

and Di constitute the data with which the test devised by Hudson, Kreitman,
and Aguadé (1987) is carried out.

It is assumed that each locus evolves according to the standard Wright-
Fisher infinite sites model: (1) generations are discrete, (2) all mutations are
selectively neutral, (3) the number of sites at each locus is very large, so that
each mutation occurs at a previously unmutated site, (4) in each generation,
mutations occur independently in each gamete and at each locus, (5) at locus i,
the number of mutations per gamete in each generation is Poisson distributed
with mean ui, and (6) no recombination occurs within the loci. In addition, we
assume that (7) all loci are unlinked, (8) species A and B are at stationarity
at the time of sampling with population sizes 2N and 2Nf , respectively, and
(9) the two species were derived T ′ generations ago from a single ancestral
population with size 2N(1 + f)/2 gametes.

Letting θi = 4Nui and C(n) =
∑n−1

j=1 1/j, it follows from (1.20) that

E(SA
i ) = θiC(nA) E(SB

i ) = fθiC(nB)

Using (1.22) in Chapter 1 and letting C2(n) =
∑n−1

j=1 1/j2, we have

var (SA
i ) = E(SA

i ) + θ2iC2(nA)
var (SB

i ) = E(SB
i ) + (fθi)2C2(nB)

To compute the expected value of Di, we note that it is 2ui times the expected
coalescence time of two individuals: one chosen at random from A and one
from B. Those two lineages must stay apart for T ′ units of time and then
coalescence occurs as in a single population of size 2N(1 + f)/2. Measured in
units of 2N generations, the second phase takes an exponentially distributed
amount of time with mean (1 + f)/2, so letting T = T ′/2N ,

EDi = θi(T + (1 + f)/2)

To compute the variance, we note that in the first phase, the number of
mutations is Poisson with mean 2uiT

′ = θiT . By (1.22) with n = 2, the
number in the second phase has variance θi(1 + f)/2 + (θi(1 + f)/2)2 and is
independent of the number in the first phase, so



74 2 Estimation and Hypothesis Testing

var (Di) = EDi + (θi(1 + f)/2)2

There are L+2 parameters. These can be estimated by solving the follow-
ing L+ 2 equations:

L∑
i=1

SA
i = C(nA)

L∑
i=1

θ̂i

L∑
i=1

SB
i = C(nB)f̂

L∑
i=1

θ̂i

L∑
i=1

Di = (T̂ + (1 + f̂)/2)
L∑

i=1

θ̂i

and for 1 ≤ i ≤ L− 1

SA
i + SB

i +Di = θ̂i

{
T̂ + (1 + f̂)/2 + C(nA) + C(nB)

}
These equations may look complicated, but they are simple to solve. The first
can be used to compute

∑L
i=1 θ̂i, the second can then be used to find f̂ , the

third to compute T̂ , and then the individual θ̂i can be computed from the
remaining L − 1. We do not need the equation with i = L since we have
already computed the sum of the θ̂i.

To measure the goodness of fit of these parameters, we can use

X2 =
L∑

i=1

(SA
i − Ê(SA

i ))2/v̂ar(SA
i )

+
L∑

i=1

(SB
i − Ê(SB

i ))2/v̂ar(SB
i )

+
L∑

i=1

(Di − Ê(Di))2/v̂ar(Di)

If the quantities SA
i , SB

i , and Di were stochastically independent of each other
and normally distributed, then the statistic X2 should be approximately χ2

with 3L − (L + 2) = 2L − 2 degrees of freedom. For nA, nB , and T suffi-
ciently large, all of these quantities are approximately normally distributed.
Since the loci are unlinked, SA

i is independent of SA
j and SB

j when j 6= i.
Also, SA

i is independent of SB
i as long as T is large enough so that there are

no shared polymorphisms. However, a small positive correlation is expected
between SA

i and Di, and between SB
i and Di, because a positive fraction of

the mutations that contribute to polymorphism also contribute to differences
between species. The last observation, and the fact that the normality is only
asymptotic, forces the test to be carried out by doing simulations with the
estimated parameters.
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Example 2.5. Adh. The first application of the HKA test was to the alco-
hol dehydrogenase locus in Drosophila melanogaster. The polymorphism data
came from a four-cutter restriction enzyme survey of 81 isochromosomal lines
of D. melanogaster studied by Kreitman and Aguadé (1986a,b). Nine poly-
morphic restriction sites were identified in the flanking region and eight in
the Adh locus. They estimated the effective number of sites to be 414 in the
flanking region and 79 in the Adh locus. Their interspecific data was based
on a sequence comparison of one D. melanogaster sequence and one D. seche-
lia sequence. This comparison revealed 210 differences in 4052 bp of flanking
sequence and 18 differences in 324 bp in the Adh locus. The next table sum-
marizes the data:

within D. melanogaster between species
sites variable % sites variable %

flanking region 414 9 0.022 4052 210 0.052
Adh locus 79 8 0.101 324 18 0.056

Note that the divergence between species is almost the same in the two regions,
but there is a considerably higher rate of polymorphism in the Adh locus
compared to the flanking sequence.

We have no data on the variability within D. simulans, so we will suppose
that the ancestral population size is the same as the current population size,
that is, f = 1. To take account of the differing number of sites in the compar-
isons within (w1 = 414, w2 = 79) and between (b1 = 4052, b2 = 324) species
and to prepare for the fact that in the next example the two sample sizes will
be different (here n1 = n2 = 81), we let µi be the per nucleotide mutation
rate at the ith locus, let πi = 4Nµi, and note that

ESA
1 = C(n1) · w1π1

ESA
2 = C(n2) · w2π2

ED1 = b1π1(T + 1)
ED2 = b2π2(T + 1)

Adding the equations as before, we arrive at

SA
1 + SA

2 = C(n1) · w1π̂1 + C(n2) · w2π̂2

D1 +D2 = (b1π̂1 + b2π̂2)(T̂ + 1)
SA

1 +D1 = C(n1) · w1π̂1 + b1π̂1(T̂ + 1)

These equations are not as easy to solve as the previous ones. Letting x = π̂1,
y = π̂2, and z = T̂ + 1, they have the form

c = ax+ by

f = dxz + eyz

i = gx+ hxz
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The three equations can be written as

z =
f

dx+ ey
y =

c− ax

b
(1− gx)

f

z
= fhx

Using the first two in the third equation leads to αx2 + βx+ γ = 0, where

α = g
(
d− ea

b

)
β =

gec

b
+ hf − i

(
d− ea

b

)
γ =

−iec
b

At this point, there are two cases to consider. If n1 = n2, b1 = w1, and
b2 = w2, then

d− ea

b
= b1 −

b2C(n1)w1

C(n2)w2
= 0

In this case, α = 0 so we solve the linear equation to get x = −γ/β. When
α 6= 0, the root of the quadratic equation that we want is

x =
−β +

√
β2 − 4αγ

2α

In either case, once x is found, we can compute y and z.
Carrying out the arithmetic in this example gives

π̂1 = 6.558× 10−3, π̂2 = 8.971× 10−3, T̂ = 6.734

Using the relationships

var (SA
i ) = ESA

i + (wiπi)2C2(ni)
var (Di) = EDi + (biπi)2

we can compute X2 = 6.09. Monte Carlo simulations with the parameters set
equal to these estimates show that the probability of X2 > 6.09 is approxi-
mately 0.016. As the reader may have noticed, the flanking sequence is not far
enough from the gene region to make it reasonable to assume that the two are
unlinked. However, the positive correlation that results from interlocus link-
age will shift the distribution of X2 toward smaller values and make rejections
based on the model conservative. Likewise, the intralocus recombination we
are ignoring will reduce the variance of the quantities estimated and tend to
decrease the value of X2.

Having identified a significant departure from neutrality, the next step
is to seek an explanation. The fact that there is more polymorphism in the
coding region than in the adjacent flanking sequence suggests that something
is acting there to make the genealogies larger than they would be under the
neutral model. In Section 6.2, we will see that one possible explanation for
this is balancing selection acting on the fast/slow polymorphism.
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Example 2.6. Drosophila fourth chromosome. Berry, Ajioka, and Kreitman
(1991) studied a 1.1kb fragment of the cubitus interruptus Dominant (ciD) lo-
cus on the small nonrecombining fourth chromosome for 10 lines of Drosophila
melanogaster and 9 of Drosophila simulans. They found no polymorphism
within Drosophila melanogaster and a single polymorphism within Drosophila
simulans. To perform the HKA test, they used data on the 5′ region of Adh
from 11 sequences of Kreitman and Hudson (1991) as their comparison neutral
locus. This yielded the following data:

ciD 5′ Adh
nucleotides 1106 3326
polymorphism 0 30
divergence 54 78

Calculating as in the previous example we find

π̂1 = 3.136× 10−3 π̂2 = 2.072× 10−2 T̂ = 11.74

and X2 = 6.85. Using the result of Hudson, Kreitman, and Aguadé (1987)
that in this case the statistic has approximately a chi-square distribution with
1 degree of freedom, Berry, Ajioka, and Kreitman (1991) concluded that the
probability of an X2 value this large is < 0.01. (Note that the value of 1 here
contrasts with the 2L−2 = 2 degrees of freedom that the statistic would have
if SA

i and Di were independent.)
One explanation for these data is purifying selection. The original pop-

ulation sizes in both species were small, permitting effectively neutral drift
of mildly deleterious alleles and causing the accumulation of fixed differences
between the two species. Subsequent population expansion has increased the
efficacy of selection against such mildly deleterious mutations, and what we
see, within species, is the wholesale removal of variation by purifying selection.
While this explanation is possible, it seems unlikely. Given the lack of vari-
ation at both silent and replacement sites, a slightly deleterious allele model
would require that selection coefficients against both silent and replacement
sites would fall between 1/2N2 and 1/2N1, where N1 and N2 are the pre-
and post-expansion population sizes. It is unlikely that these two types of
mutations, which have entirely different functional consequences, would have
similar selection coefficients.

A second explanation is that a selective sweep eliminated variation in this
region for both species. In order to estimate the time of occurrence of such a
sweep, we note that if Ttot is the total time in the genealogy of our sample,
µ is the mutation rate per nucleotide per generation, and k is the number of
silent sites, then the expected number of segregating sites

ES = Ttotµk

To simplify calculations, we will suppose that the sweep was recent enough so
that the resulting genealogy is star-shaped. In this case, Ttot = nt, where n is
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the sample size and t is the time of the sweep. For the Drosophila melanogaster
sample, S = 0, so we are left with an estimate of t = 0. For D. simulans
substituting 1 for ES, and taking n = 9, k = 331, and µ = 1×10−9, we arrive
at

t =
ES

nkµ
=

1
9 · 331 · 10−9

= 3.35× 105 generations ago

Assuming 10 generations per year, this translates into 33,500 years.
Having assumed a star-shaped phylogeny and calculated a time, we should

go back and check to see if our assumption is justified. The probability of no
coalescence in a sample of size n during t generations in a population of size
N is

≈ exp
(
−
(
n

2

)
t

2N

)
If we take 2N = 5× 106, n = 9, and t = 3.35× 105, then the above

= exp
(
−36

3.35
50

)
= e−2.412 = 0.0896

i.e., it is very likely that there has been at least one coalescence. Once one
abandons the assumption of a star-shaped phylogeny, calculations become
difficult and it is natural to turn to simulation. Using 4Nµ = 3 for D. sim-
ulans, Berry, Ajioka, and Kreitman (1991) computed that there was a 50%
probability of sweep in the last 0.36N generations, or 72,000 years.

2.6 McDonald-Kreitman test

To describe the test of McDonald and Kreitman (1991), we need some no-
tation. Of M possible mutations in a coding region, let Mr be the number
of possible neutral replacement mutations (i.e., ones that change the amino
acid but not the effectiveness of the protein) and let Ms be the number of
possible neutral synonymous mutations. By definition, all of the M−Mr−Ms

remaining mutations are deleterious.
Let µ be the mutation rate per nucleotide, so that the mutation rate for

any one of the three possible changes at a site is µ/3. Under the neutral
theory, the expected number of fixed replacement substitutions in a set of
alleles is Tb(µ/3)Mr, where Tb is the total time on between-species branches.
The expected number of fixed synonymous substitutions in a set of alleles
is Tb(µ/3)Ms. For a particular phylogeny and mutation rate, the number of
replacement substitutions is independent of the number of synonymous substi-
tutions. Therefore, the ratio of expected replacement to expected synonymous
fixed mutations is

Tb(µ/3)Mr

Tb(µ/3)Ms
=
Mr

Ms
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If Tw is the total time on within-species branches, then the ratio of expected
replacement to expected synonymous polymorphic mutations is

Tw(µ/3)Mr

Tw(µ/3)Ms
=
Mr

Ms

Thus, if protein evolution occurs by neutral processes, the two ratios are the
same and we can use standard statistical tests for 2× 2 contingency tables to
test this null hypothesis.

Under the alternative model of adaptive protein evolution, there should
be relatively more replacement substitution between species than replacement
polymorphism within a species, so a deviation in this direction is interpreted
as evidence for positive selection.

Example 2.7. To explain the workings of the test, we will begin with the orig-
inal data set of McDonald and Kreitman (1991). They compared DNA se-
quences of the Adh locus in Drosophila melanogaster, D. simulans, and D.
yakuba. The DNA sequence data can be found on page 653 of their paper. To
carry out the test, the following summary is sufficient:

Fixed Polymorphic
Replacement 7 2
Synonymous 17 42

To analyze the table, we first compute the number of observations we expect
to find in each cell (given in parentheses in the next table):

Fixed Polymorphic Total
Replacement 7 (3.176) 2 (5.824) 9
Synonymous 17 (20.824) 42 (38.176) 59
Total 24 44 68

Then we compute the χ2 statistic:

(7− 3.176)2

3.176
+

(2− 5.824)2

5.824
+

(17− 20.824)2

20.824
+

(42− 38.176)2

38.176
= 8.198

The number of degrees of freedom in this case is 1, so the χ2 distribution
is just the square of a standard normal, χ, and we can use a table of the
standard normal to conclude that the probability of a deviation this large by
chance is 2P (χ >

√
8.198) = 0.0042. McDonald and Kreitman analyzed the

contingency table with a G test of independence (with the Williams correction
for continuity), finding G = 7.43 and p = 0.006.

Geneticists have embraced the McDonald-Kreitman test as a useful tool
for looking for positive selection. However, the initial paper did not get such a
warm reception. Graur and Li, and Whittam and Nei, each wrote letters that
appeared in the November 14, 1991 issue of Nature suggesting that the test had
serious problems. Both pairs of authors objected to some of the bookkeeping
involved in the three-species comparison. For this reason, we will now consider
only pairwise comparisons. The data for D. melanogaster and D. simulans, is
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1111111111111111111111111
7888990012222233444445555555556
8137576890237801234590125556991
1640048993951346513204871570064

GGTCGGCCCCTCACCCCTTCACCCCCCGCGC
TT.T..T......A..AC...T.T..A.T..
TT.T..T.T....A..AC...T.T..A.T..
TT.T......C..........T.T..A.TA.
TT.T......C..........T.T..A.TA.
T..T......C..........T.T..A.T..
T..T......C........T.TTT....TA.
T..T......C.......GTCTT.....T..
T..T......C.......GTCTT.....T..
T..T......C.......GTCTT.....T..
T..T......C.......GTCTT.....T..
T..T......CA......GTCTT.....T..

TT.T......C.......GTCTT..T..TA.

The contingency table is now much different, with the 24 fixed differences
having been reduced to just 4.

Fixed Polymorphic Total
Replacement 2 2 4
Synonymous 2 26 28
Total 4 28 32

Since the cell counts are small, we analyze the results with Fisher’s exact
test. To derive this test, we note that if we condition on the number of re-
placement substitutions nr, then the number of fixed replacements, nfr, is
binomial(nr,p), where p = Tb/(Tw +Tb). Likewise, if we condition on the num-
ber of synonymous substitutions, ns, then the number of fixed synonymous
substitutions, nfs, is binomial(ns,p). Let nf and np be the number of fixed
and polymorphic substitutions. The probability of a given table conditioned
on the marginal values nr, ns, nf , np is

nr!
nfr!npr!

pnfr (1− p)npr · ns!
nfs!nps!

pnfs(1− p)nps =
C

nfr!npr!nfs!nps!

where C is a constant independent of (nfr, npr, nfs, nps).
There are only five 2× 2 tables with the indicated row and column sums:

nfr can be 0, 1, 2, 3, or 4 and this determines the rest of the entries. Of these,
the ones with nfr = 2, 3, 4 are more extreme than the indicated table. Using
the preceding formula, it is easy to compute the conditional probability that
nfr = k given the row and column sums:

k 0 1 2 3 4
prob. 0.569383 0.364405 0.063070 0.003115 0.000028

From this we see that the probability of a table this extreme is 0.066212 >
0.05.
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In contrast, if we compare D. simulans with D. yakuba using the data in
McDonald and Kreitman (1991),

1111111111111111111111111
7888990012222233444445555555556
8137576890237801234590125556991
1640048993951346513204871570064

GGTCGGCCCCTCACCCCTTCACCCCCCGCGC
.TC..T.A....................T..
.TC.A..A....T...............T.G
.T...T.A.T.....T............T..
.T...T.A....T..T........T..A...
.T...T.A......T................
.TC..T.A.......................
RSSSSSSRSSSSSSSSSSSSRSSSSRSSSSS

PPFPPPFPPPPPPPPPPPPPPFPPPPPPPPP

The contingency table is:

Fixed Polymorphic Total
Replacement 6 0 6
Synonymous 17 29 46
Total 23 29 52

Fisher’s exact test gives that the probability nfr = 6 given the row and column
sums is 0.00493, so there is a clear departure from neutral evolution.

Example 2.8. Eanes, Kirchner, and Yoon (1993) sequenced 32 and 12 copies
of the gene (G6pd) in Drosophila melanogaster and D. simulans respectively.
This revealed the following results (the number of observations we expect to
find in each cell is given in parentheses):

Fixed Polymorphic Total
Replacement 21 (12.718) 2 (10.282) 23
Synonymous 26 (34.282) 36 (27.717) 62
Total 47 38 85

The χ2 statistic is 16.541. The probability of a χ2 value this large by chance
is < 0.0001. Thus, there is a very strong signal of departure from neutral
evolution. The most likely explanation is that replacement substitutions are
not neutral but have been periodically selected through the populations of
one or both species as advantageous amino acid mutations.

Example 2.9. Accessory gland proteins are specialized proteins in the seminal
fluid of Drosophila. They have been suggested to be involved in egg-laying
stimulation, remating inhibition, and sperm competition, so there is reason to
suspect that they are under positive selection. Tsaur, Ting, and Wu (1998)
studied the evolution of Acp26Aa. They sequenced 39 D. melanogaster chro-
mosomes, which they combined with 10 published D. melanogaster sequences
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and 1 D. simulans sequence in Aguadé, Miyashita, and Langley (1992). The
reader’s first reaction to the sample size of 1 for D. simulans may be that
this makes it impossible to determine whether sites are polymorphic in D.
simulans. This does not ruin the test, however. It just reduces Tw to the total
time in the genealogy for the D. melanogaster sample.

The next table gives the data as well as the number of observations we
expect to find in each cell (given in parentheses):

Fixed Polymorphic Total
Replacement 75 (69.493) 22 (27.507) 97
Synonymous 21 (26.507) 16 (10.492) 37
Total 96 38 134

The χ2 statistic is 5.574. The probability of a χ2 value this large by chance is
2P (χ ≥

√
5.574) = 0.0181. It is interesting to note that while the McDonald-

Kreitman test leads to a rejection of the neutral model, Tajima’s D, which is
−0.875, and Fu and Li’s D, which is −0.118, do not come close to rejection.

Example 2.10. The first three examples have all shown a larger ratio of re-
placement to silent changes between species. Mitochondrial DNA shows the
opposite pattern. Nachman (1998) describes the results of 25 comparisons
involving a wide variety of organisms. Seventeen of the contingency tables de-
viate from the neutral expectation, and most of the deviations (15 of 17) are in
the direction of greater ratio of replacement to silent variation within species.
A typical example is the comparison of the ATPase gene 6 from Drosophila
melanogaster and D. simulans from Kaneko, Satta, Matsura, and Chigusa
(1993). As before, the number of observations we expect to find in each cell
is given in parentheses:

Fixed Polymorphic Total
Replacement 4 (1.482) 4 (6.518) 8
Synonymous 1 (3.518) 18 (15.482) 19
Total 5 22 27

The χ2 statistic is 7.467. The probability of a χ2 value this large by chance
is 2P (χ ≥

√
7.467) = 0.0064. One explanation for a larger ratio of replace-

ment to silent changes within populations is that many of the replacement
polymorphisms are mildly deleterious.
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Recombination

“In mathematics you don’t understand things. You get used to them.”
John von Neumann

In this chapter, we will begin to investigate the effects of recombination
on the patterns of genetic variability.

3.1 Two loci

Going forward in time, the dynamics of a Wright-Fisher model with two loci
may be described as follows. To generate an individual in the next generation,
with probability 1−r we copy both loci from one randomly chosen individual,
while with probability r a recombination occurs and we copy the two loci
from two randomly chosen individuals. Reversing our perspective, suppose
we sample m individuals from the population. Each locus will have its own
genetic history leading to a coalescent, but the two coalescent processes will
be correlated, due to the fact that in the absence of recombination the two
loci will be copied from the same parent.

3.1.1 Sample of size 2

We call the two loci the a locus and the b locus. Ignoring the numbering of
the copies, using parentheses to indicate the loci at which the individual has
genetic material ancestral to the sample, the possible states of the system
are given in the first column of the next table. The second column describes
the state by giving the number of (a)’s, (b)’s, and (ab)’s. The third gives the
number of a’s, na, and the number of b’s, nb,
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(a), (b), (ab) na, nb

(a b) (a b) (0, 0, 2) 2, 2
(a b) (a) (b) (1, 1, 1) 2, 2

(a) (a) (b) (b) (2, 2, 0) 2, 2
(a) (b) (b) (1, 2, 0) 1, 2 ∆1

(b) (a) (a) (2, 1, 0) 2, 1 ∆1

(a b) (b) (0, 1, 1) 1, 2 ∆1

(a b) (a) (1, 0, 1) 2, 1 ∆1

(a b) (0, 0, 1) 1, 1 ∆2

(a) (b) (1, 1, 0) 1, 1 ∆2

To explain the notation, the initial state is (ab)(ab), i.e., we have sampled two
individuals and examined the states of their two loci. If the first event going
backwards in time is a coalescence, the chain enters (ab) and the process stops
before it gets interesting. If the first event is a recombination, the two copies
in one individual become separated and the state is (ab)(a)(b). At this point,
a second recombination might produce (a)(b)(a)(b), or a coalescence might
produce (ab)(b), (ab)(a) or return us to the original (ab)(ab).

The next figure shows a possible realization. The a locus is denoted by a
solid dot and the b locus by an open circle. At the bottom, the first individual
is on the left and the second on the right. On the right edge of the figure,
we have indicated the sequence of states. The parts are sometimes listed in a
different order from the table of states to make it easier to connect the state
with the picture.

•◦ •◦

Tb

Ta

(ab)(ab)

(a)(b)(ab)

(a)(b)(a)(b)

(a)(ab)(b)

(a)(ab)

(ab)

Fig. 3.1. Realization of the two-locus coalescent with recombination.

Let Ta be the coalescence time for the a locus and Tb be the coalescence
time for the b locus. Our next task is to compute Ex(TaTb) for the possible
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initial states x. We will use the notation in the table above. If na = 1 or
nb = 1, then TaTb = 0, so we will use ∆1 to denote the set of configurations
where one coalescence has occurred, and ∆2 the configurations where both
have. Considering the Wright-Fisher model, speeding up time by a factor of
2N , and following the standard practice of letting ρ = 4Nr, the rates become

from/to (0, 0, 2) (1, 1, 1) (2, 2, 0) ∆1 ∆2 total
(0, 0, 2) . ρ . . 1 ρ+ 1
(1, 1, 1) 1 . ρ/2 2 . (ρ/2) + 3
(2, 2, 0) . 4 . 2 . 6

In the first row, (0, 0, 2) → (1, 1, 1), i.e., (ab), (ab) → (a), (b), (ab) by two
possible recombinations, or (0, 0, 2) → ∆2 by coalescence. In the second row,
if the (a) and (b) coalesce, (1, 1, 1) → (0, 0, 2), while the other two possible
coalescence events lead to∆1, and if recombination happens to (ab), (1, 1, 1) →
(2, 2, 0). When the state is (2, 0, 0) = (a), (a), (b), (b), four possible coalescence
events lead back to (1, 1, 1), while two lead to ∆1.

Theorem 3.1. Let v(x) be cov (Ta, Tb) when the initial state is x.

v(0, 0, 2) =
ρ+ 18

ρ2 + 13ρ+ 18
v(1, 1, 1) =

6
ρ2 + 13ρ+ 18

v(2, 2, 0) =
4

ρ2 + 13ρ+ 18
(3.1)

These are sometimes referred to as Cij,ij , Cij,ik, Cij,k` with i, j, k, ` distinct
numbers that indicate the individuals sampled at the two locations.

Proof. Since ETa = ETb = 1, we have

cov (Ta, Tb) = ETaTb − ETaETb = ETaTb − 1

Let u(x) = Ex(TaTb). To get an equation for u(x), let J be the time of the
first jump, and let XJ be the state at time J :

E(TaTb|J,XJ) = E((Ta − J + J)(Tb − J + J)|J,XJ)
= E((Ta − J)(Tb − J)|J,XJ) + JE(Ta − J |J,XJ)

+ JE(Tb − J |J,XJ) + J2

Let va(XJ) and vb(XJ) be 1 if coalescence has not occurred at the indicated
locus and 0 if it has. Noting that J is independent of XJ and taking the
expected value gives

u(x) = Exu(XJ) + ExJ · (Exva(XJ) + Exvb(XJ)) + ExJ
2

If J is exponential with rate λ, then EJ = 1/λ and EJ2 = 2/λ2. Using this
with our table of rates gives
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u(0, 0, 2) =
ρ

ρ+ 1

(
u(1, 1, 1) + 2 · 1

ρ+ 1

)
+

1
ρ+ 1

(
u(∆2) + 0 · 1

ρ+ 1

)
+

2
(ρ+ 1)2

since the probabilities of the two transitions are their rate over the total. Here
and in the next two equations ExJ

2 is last and does not depend on the state
XJ the chain jumps to. Similar reasoning gives

u(1, 1, 1) =
(ρ/2)

(ρ/2) + 3

(
u(2, 2, 0) + 2 · 1

(ρ/2) + 3

)
+

1
(ρ/2) + 3

(
u(0, 0, 2) + 2 · 1

(ρ/2) + 3

)
+

2
(ρ/2) + 3

(
u(∆1) + 1 · 1

(ρ/2) + 3

)
+

2
((ρ/2) + 3)2

u(2, 2, 0) =
4
6

(
u(1, 1, 1) + 2 · 1

6

)
+

2
6

(
u(∆1) + 1 · 1

6

)
+

2
62

Simplifying and using u(∆i) = 0 gives

u(0, 0, 2) =
ρ

ρ+ 1
u(1, 1, 1) +

2
ρ+ 1

u(1, 1, 1) =
1

(ρ/2) + 3
u(0, 0, 2) +

(ρ/2)
(ρ/2) + 3

u(2, 2, 0) +
2

(ρ/2) + 3

u(2, 2, 0) =
2
3
u(1, 1, 1) +

1
3

u(x) = Ex(TaTb). What we want to compute is the covariance v(x) = u(x)−1,
which satisfies the following equations (substitute u(x) = v(x) + 1):

v(0, 0, 2) =
ρ

ρ+ 1
v(1, 1, 1) +

1
ρ+ 1

v(1, 1, 1) =
1

(ρ/2) + 3
v(0, 0, 2) +

(ρ/2)
(ρ/2) + 3

v(2, 2, 0) (3.2)

v(2, 2, 0) = 2v(1, 1, 1)/3

Rearranging the second equation, and then using the third equation,

v(0, 0, 2) =
(ρ

2
+ 3
)
v(1, 1, 1)− ρ

2
v(2, 2, 0)

=
(ρ

2
+ 3− ρ

3

)
v(1, 1, 1) =

ρ+ 18
6

v(1, 1, 1)

Using this in the first equation, we have

v(0, 0, 2) =
ρ

ρ+ 1
· 6
ρ+ 18

v(0, 0, 2) +
1

ρ+ 1
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Multiplying each side by ρ+ 1, we have

1 =
(
ρ+ 1− 6ρ

ρ+ 18

)
v(0, 0, 2) =

ρ2 + 13ρ+ 18
ρ+ 18

v(0, 0, 2)

which gives the first formula. The first equation in (3.2) implies

v(1, 1, 1) =
(ρ+ 1)v(0, 0, 2)− 1

ρ

=
1
ρ

(
ρ2 + 19ρ+ 18
ρ2 + 13ρ+ 18

− 1
)

=
6

ρ2 + 13ρ+ 18

The final result follows from v(2, 2, 0) = 2v(1, 1, 1)/3.

3.1.2 Sample of size n

To generalize the previous argument to larger sample sizes, we give up on
trying to solve the equations to get formulas and content ourselves with a
recursion that can be solved numerically. Let τa and τb be the total size of the
genealogical trees for the two loci. Kaplan and Hudson (1985, see pages 386–
387), wrote equations for E(τaτb). However, Pluzhnikov and Donnelly (1996,
see page 1260) noticed that the recursion for the covariance is much nicer.
Suppose that na = i+ k chromosomes are sampled at locus a and nb = j + k
chromosomes are sampled at locus b, in such a way that k chromosomes are
common to the two samples, and let F (i, j, k) = cov (τa, τb) when the initial
configuration is (i, j, k). Let ` = i + j + k. The configuration x = (i, j, k)
changes at rate

βx =
`(`− 1) + ρk

2
due to coalescence of two of the ` chromosomes or recombination separating
the a and b loci on one of the k chromosomes with both.

Theorem 3.2. If x = (i, j, k) and X is the state after the first jump, then

F (x) = ExF (X) +
2k(k − 1)

βx(na − 1)(nb − 1)

Proof. This clever proof is from Tavaré’s St. Flour notes. We start by deriving
the formula for conditional covariances. Since E{E(Y |X)} = EY , we have

cov (τa, τb) = E(τaτb)− E(τa)E(τb)
= E{E(τaτb|X)} − E{E(τa|X)E(τb|X)}

+E{E(τa|X)E(τb|X)} − E(τa)E(τb)
= E{ cov (τa, τb|X)}+ cov (E(τa|X), E(τb|X)) (3.3)
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Letting J be the time of the first jump, we can write τa = naJ + τ ′a and
τb = nbJ + τ ′b, where the waiting times after J , τ ′a and τ ′b, and the state X are
independent of J . From this we get

E{ cov (τa, τb|X)} = nanb var (J) + E{ cov (τ ′a, τ
′
b|X)}

= (nanb)/β2 + ExF (X) (3.4)

where for simplicity we have dropped the subscript x on β. To evaluate the
second term in (3.3), we recall that E(E(τa|X)) = Eτa, so

cov (E(τa|X), E(τb|X)) = E{(E(τa|X)− Eτa)) · (E(τb|X)− Eτb))}

Let Na and Nb be the number of a and b lineages after the jump. If h(m) =
2
∑m

j=2 1/j, then

E(τc|X)− Eτc =
nc

β
+ h(Nc)− h(nc) (3.5)

To compute the expected value of the product, we have to look in detail at
the transition rates:

(i, j, k) to at rate Na Nb

(i+ 1, j + 1, k − 1) r1 = ρk/2 na nb

(i− 1, j − 1, k + 1) r2 = ij na nb

(i− 1, j, k) r3 = ik + i(i− 1)/2 na − 1 nb

(i, j − 1, k) r4 = jk + j(j − 1)/2 na nb − 1
(i, j, k − 1) r5 = k(k − 1)/2 na − 1 nb − 1

From this it follows that

Eh(Na)−h(na) = − 2
na − 1

· r3 + r5
β

Eh(Nb)−h(nb) = − 2
nb − 1

· r4 + r5
β

Hence, using (3.5),

E{(E(τa|X)− Eτa)) · (E(τb|X)− Eτb))}

=
nanb

β2
− nb

β
· 2
na − 1

r3 + r5
β

− na

β
· 2
nb − 1

r4 + r5
β

+
4

(na − 1)(nb − 1)
· r5
β

To simplify, notice that E(E(τc|X)− Eτc) = 0 and (3.5) imply

na

β
=

2
na − 1

r3 + r5
β

nb

β
=

2
nb − 1

r4 + r5
β

so the second and third terms from the previous formula are equal to −1 times
the first and we have

cov (E(τa|X), E(τb|X)) = −nanb

β2
+

2k(k − 1)
β(na − 1)(nb − 1)

Adding this to (3.4) gives the desired result.
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Samples of size 2

To make the connection between the new formula and the old one, recall
that the jump rate in state x = (i, j, k) is βx = [`(` − 1) + ρk]/2, where
` = i+ j + k, so we have

state ` βx

(0, 0, 2) 2 1 + ρ
(1, 1, 1) 3 3 + (ρ/2)
(2, 2, 0) 4 6

Since F (i, j, k) = 0 for all the other states, and 2k(k − 1) = 0 unless k = 2,
consulting the table of rates before Theorem 3.1, and using Theorem 3.2 gives

F (0, 0, 2) =
ρ

ρ+ 1
F (1, 1, 1) +

4
ρ+ 1

F (1, 1, 1) =
1

(ρ/2) + 3
F (0, 0, 2) +

(ρ/2)
(ρ/2) + 3

F (2, 2, 0)

F (2, 2, 0) = 2F (1, 1, 1)/3

and we have F (i, j, k) = 4v(i, j, k). The factor of 4 comes from the fact that
we are considering the total size of the tree, which for a sample of size 2 is 2
times the coalescence time, so the covariance is four times as large.

Samples of size 3

To explain how the equations in Theorem 3.2 can be solved, consider the
problem of computing F (0, 0, 3). To do this we have to consider the other
configurations with na = 3 and nb = 3: (1,1,2), (2,2,1), and (3,3,0); the
configurations with na = 2 and nb = 3: (0,1,2), (0,2,1), and (2,3,0); and of
course the configurations with na = 3 and nb = 2. We have already computed
the values for na = 2, nb = 2. Those with na = 1 or nb = 1 are 0.

To compute the values for the states with na = 2 and nb = 3, we begin by
identifying the transition rates:

na, nb to/from (0,1,2) (1,2,1) (2,3,0)
2,3 (0,1,2) 2
2,3 (1,2,1) ρ 6
2,3 (2,3,0) ρ/2
1,3 (0,2,1) 1+0
1,3 (1,3,0) 0+1
2,2 (0,0,2) 2+0
2,2 (1,1,1) 2+1
2,2 (2,2,0) 0+3
1,2 (0,1,1) 1

total = βx ρ+ 3 (ρ/2) + 6 10
g(x) 2/βx 0 0
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The final row gives the value of g(x) = 2k(k − 1)/[βx(na − 1)(na − 2)]. It is
comforting to note that the total rate in each case βx = [`(` − 1) + ρk]/2,
where ` = i + j + k. Using the notation from the proof of Theorem 3.2, the
entries in the table with ρ’s come from r1. The numbers on the first two rows
come from r2. The entries with plus signs come from r3 or r4. The remaining
rate (0, 1, 2) → (0, 1, 1) in the lower left is an r5.

Using the values we have computed for na = 2, nb = 2, and recalling that
when na = 1, F = 0, we get three equations in three unknowns. To make the
equations easier to write, we let b = ρ+3, c = (ρ/2)+6, and d = ρ2+13ρ+18.

F (0, 1, 2) =
ρ

b
F (1, 2, 1) +

2
b
· ρ+ 18

d
+

2
b

F (1, 2, 1) =
2
c
F (0, 1, 2) +

ρ/2
c
F (2, 3, 0) +

3
c
· 6
d

F (2, 3, 0) =
6
10
F (1, 2, 1) +

3
10
· 4
d

In matrix form, they become 1 −ρ
b 0

− 2
c 1 − ρ

2c
0 − 6

10 1

F (0, 1, 2)
F (1, 2, 1)
F (2, 3, 0)

 =

2(ρ+ 18 + d)/bd
18/cd
12/10d


The equations can be solved by row reducing the matrix to upper triangular
form, but the answer is not very pretty.

For a sample of size n there are (n − 1)2 values of 2 ≤ na, nb ≤ n, which
one must tackle by considering all the na + nb = m for m = 4, 5, . . . 2n. For
a given value of na, nb we have a system of min{na, nb} + 1 equations to
solve. Each system can be solved in at most O(n2) operations, so of order n4

computations are needed, which is feasible for samples of size 100. One could,
as Ethier and Griffiths (1990) suggested, write O(n3) equations for F (i, j, k)
with 2 ≤ na, nb ≤ n, but then solving the matrix equations would take n6

steps.

3.2 m loci

Our task in this section is to generalize the two-locus results to m linearly ar-
ranged loci, each of which follows the infinite sites model, and to let m→∞
to get a model of a segment of DNA where recombination can occur between
any two adjacent nucleotides. The number of mutations per generation per
locus is assumed to have a Poisson distribution with mean u/m. Recombi-
nation does not occur within subloci, but occurs between adjacent subloci at
rate r/(m− 1) per generation. With this assumption, the recombination rate
between the most distant subloci is r.
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3.2.1 Samples of size 2

Let S2 be the number of segregating sites in a sample of size n and let f2(x) =
(x+18)/(x2 +13x+18) be the covariance of the coalescence time for samples
of size 2 at two loci with scaled recombination rate x between them.

Theorem 3.3. For the infinite sites model with recombination

var (S2) = θ + θ2
∫ 1

0

2(1− y)f2(yρ) dy (3.6)

If ρ = 0, f2(0) = 1 and this reduces to (1.22): var (S2) = θ + θ2.

Proof. Let Sj
2 be the number of segregating sites in the jth locus in a sample

of two alleles.

var (S2) =
m∑

i=1

var (Sj
2) +

∑
1≤i 6=j≤m

cov (Si
2, S

j
2)

If we let θ = 4Nu, then it follows from (1.22) that

var (Sj
2) =

θ

m
+
(
θ

m

)2

Let T i
2 be the coalescence time of the two copies of locus i. This distribution

of Si
2 given T i

2 is Poisson with mean (θ/m)T i
2, so E(Si

2|T i
2) = (θ/m)T i

2. The
numbers of segregating sites Si

2, S
j
2 are conditionally independent given T i

2

and T j
2 , so

E(Si
2S

j
2|T i

2, T
j
2 ) =

(
θ

m

)2

T i
2 T

j
2

and cov (Si
2, S

j
2) = (θ/m)2 cov (T i

2, T
j
2 ). Using (3.1), we see that the variance

of the total number of segregating sites is

var (S2) = θ +
θ2

m
+

θ2

m2

m−1∑
k=1

2(m− k)f2

(
kρ

m− 1

)
where ρ = 4Nr, since there are 2(m − k) pairs 1 ≤ i, j ≤ n with |i − j| = k.
Letting m→∞, setting y = k/m, and noting that the sum approximates an
integral gives the indicated result.

3.2.2 Samples of size n

Let Sn be the number of segregating sites in a sample of size n, recall
hn =

∑n−1
i=1 1/i, and let fn(x) be the covariance between the total time in

the genealogical trees for two loci with scaled recombination rate x between
them. This can be computed numerically using Theorem 3.2.
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Theorem 3.4. For the infinite sites model with recombination,

var (Sn) = θhn +
θ2

4

∫ 1

0

2(1− y)fn(yρ) dy (3.7)

Here, in contrast to (3.6), θ2 is divided by 4. This is due to the fact that we
consider the total size of the tree, which for a sample of size 2 is two times the
coalescence time, and hence has a variance four times as large. Note that the
mutational variance θhn is the same as the case of no recombination, but the
genealogical variance is reduced by recombination. Comparing with (1.23)

var (Sn) =
θ

2
E(Ttot) +

(
θ

2

)2

var (Ttot)

we see that the integral gives var (Ttot), a fact that can be seen from the
derivation.

Proof. To compute the variance of the number of segregating sites for a sample
of size n > 2, we again begin with

var (Sn) =
m∑

i=1

var (Sj
n) +

∑
1≤i 6=j≤m

cov (Si
n, S

j
n)

(1.22) implies that

var (Si
n) =

θ

m

n−1∑
j=1

1
j

+
(
θ

m

)2 n−1∑
j=1

1
j2

Let τ i
n be the total time in the tree for the ith locus. This distribution of Si

n

given τ i
n is Poisson with mean (θ/2m)τ i

n, so E(Si
n|τ i

n) = (θ/2m)τ i
n,

E(Si
nS

j
n|τ i

n, τ
j
n) =

(
θ

2m

)2

τ i
nτ

j
n

and cov (Si
n, S

j
n) = (θ/2m)2 cov (τ i

n, τ
j
n). The scaled recombination rate be-

tween i and j is 4Nr(j − i)/(m− 1). Combining our results gives

var (Sn) = θ

n−1∑
j=1

1
j

+
θ2

m

n−1∑
j=1

1
j2

+
θ2

4m2

m−1∑
k=1

2(m− k)fn

(
kρ

(m− 1)

)
Letting m→∞, setting y = j/m, and noting that the sum approximates an
integral gives the indicated result.
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3.2.3 Pairwise differences

The computations above can also be used to study the variance of the number
of pairwise differences, ∆n, but the formula is nicer since it is explicit rather
than in terms of fn(x), which must be computed numerically for n > 2.

Theorem 3.5. For the infinite sites model with recombination,

var (∆n) =
θ(n+ 1)
3(n− 1)

+
2θ2

n(n− 1)

∫ 1

0

2(1− x)
ρx+ (2n2 + 2n+ 6)
(ρx)2 + 13(ρx) + 18

dx (3.8)

When ρ = 0, this reduces to Tajima’s result in (1.30).

var (∆n) = θ
n+ 1

3(n− 1)
+ θ2

2(n2 + n+ 3)
9n(n− 1)

Proof. Following the appendix of Pluzhnikov and Donnelly (1996), we suppose
the m loci are nucleotides and write

∆n =
m∑

a=1

(
n

2

)−1∑
i<j

δa
i,j

where δa
i,j = 1 if nucleotide a is different in sequences i and j.

var (∆n) =
m∑

a=1

var

(n
2

)−1∑
i<j

δa
i,j


+
(
n

2

)−2∑
a6=b

∑
i<j

∑
k<`

cov (δa
i,j , δ

b
k,`)

The summand in the first term is the variance of the heterozygosity, which
was computed in (1.15). Plugging in the per locus mutation rate θ/m and
noting that when m is large 2 + θ/m ≈ 2, (1.15) simplifies to

θ

m
· 2
n(n− 1)

[
1 +

2(n− 2)
2

+
(n− 2)(n− 3)

6

]
=

θ

m
· 6 + (6n− 12) + (n2 − 5n+ 6)

3n(n− 1)
=

θ

m
· n+ 1
3(n− 1)

As in the previous calculation,

cov (δa
i,j , δ

b
k,`) =

(
θ

2m

)2

cov (τa
i,j , τ

b
k,`)

where the τ ’s are the tree lengths for the indicated samples of size 2. If we let
z = (b − a)ρ/(m − 1) be the scaled recombination rate between loci a and b
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then by the calculation for (1.16) and the covariance for coalescence times in
Theorem 3.1 (multiplied by 4),(

n

2

)−2∑
i<j

∑
k<`

cov (τa
i,j , τ

b
k,`)

=
(
n

2

)−1 4
z2 + 13z + 18

[
(z + 18) · 1 + 6 · 2(n− 2) + 4 ·

(
n− 2

2

)]
since for each of the

(
n
2

)
values of i < j there is one k < ` with i = k and j = `,

2(n− 2) values with |{i, j} ∩ {k, `}| = 1, and
(
n−2

2

)
with |{i, j} ∩ {k, `}| = 0.

A little algebra now gives

=
(
n

2

)−1 4[z + (2n2 + 2n+ 6)]
z2 + 13z + 18

Using the fact that there are 2(m− k) pairs a, b with |b− a| = k, we have(
n

2

)−2∑
a6=b

∑
i<j

∑
k<`

cov (δa
i,j , δ

b
k,`)

=
(
θ

2

)2 2
n(n− 1)

1
m

m∑
k=1

2(m− k)
m

4[ ρk
m−1 + (2n2 + 2n+ 6)](

ρk
m−1

)2

+ 13 ρk
m−1 + 18

Writing x = k/(m− 1) and letting m→∞ gives the indicated result.

Although the calculus is somewhat unpleasant, one can evaluate the inte-
gral in (3.8) to get a formula first derived by Wakeley (1997).

Theorem 3.6. For the infinite sites model with recombination,

var (∆n) = θ
(n+ 1)
3(n− 1)

+ θ2f(ρ, n) (3.9)

where an = ρ− 2n(n+ 1) + 7, bn = 2n(n+ 1)(13 + 2ρ)− ρ− 55, and

f(ρ, n) =
2

n(n− 1)ρ2
[−2ρ+ anL1 + bnL2]

with L1 = log
(

ρ2+13ρ+18
18

)
and L2 = log

(
(2ρ+13−

√
97)(13+

√
97)

(2ρ+13+
√

97)(13−
√

97)

)
.

Proof. Changing variables y = ρx, and letting un = 2n2 +2n+6, the integral
in (3.8) becomes

2
ρ2

∫ ρ

0

(ρ− y)
y + un

y2 + 13y + 18
dy

The quadratic in the denominator has roots
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r1 > r2 where ri =
−13±

√
97

2

so we write the integrand as

−y2 + (ρ− un)y + unρ

y2 + 13y + 18
= −1 +

(ρ− un + 13)y + (unρ+ 18)
(y − r1)(y − r2)

To evaluate the integral, we note that∫ ρ

0

1
y2 + 13y + 18

dy =
1

r1 − r2

∫ ρ

0

1
y − r1

− 1
y − r2

dy

=
1

r1 − r2
log
(
ρ− r1
−r1

· −r2
ρ− r2

)
= L2∫ ρ

0

y

y2 + 13y + 18
dy =

1
r1 − r2

∫ ρ

0

r1
y − r1

− r2
y − r2

dy

Recalling ri = (−13±
√

97)/2 and r1 − r2 =
√

97, we have

= −13
2
L2 +

1
2

∫ ρ

0

1
y − r1

+
1

y − r2
dy

= −13
2
L2 +

1
2
L1

since L1 = log
(

ρ−r1
−r1

· ρ−r2
−r2

)
. Using these formulas and recalling that un =

2n(n+ 1) + 6, the integral becomes

Jn = −ρ+ (ρ− 2n(n+ 1) + 7)
(
−13

2
L2 +

1
2
L1

)
+([2n(n+ 1) + 6]ρ+ 18) · 2

2
L2

= −ρ+
ρ− 2n(n+ 1) + 7

2
L1 +

2n(n+ 1)(13 + 2ρ)− ρ− 55
2

L2

= −ρ+
an

2
L1 +

bn
2
L2

Remembering the factors of 2/n(n − 1) and 2/ρ2 we have left behind, the
desired result follows.

The reason for interest in (3.9) is that it allows us to construct an estimator
for ρ. Hudson (1987) was the first to do this, but we will follow Wakeley’s
(1997) improvement.

Theorem 3.7. Let k`,m be the number of differences between sequences ` and
m, and let

S2
π =

2
n(n− 1)

∑
`<m

(k`m −∆n)2
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be the variance of the
(
n
2

)
pairwise differences.

E(S2
π) = θ

2(n− 2)
3(n− 1)

+ θ2gπ(ρ, n) (3.10)

where αn = (n+ 1)ρ− (n− 7), βn = (15n− 1)ρ+ (49n− 55), and

gπ(ρ, n) =
(n− 2)

n(n− 1)ρ2
{−2ρ(n+ 1) + αnL1 + βnL2}

and L1 and L2 are as in (3.9).

Proof. S2
π can be rewritten as the second moment of the sample minus the

square of the mean of the sample:

S2
π =

[
2

n(n− 1)

∑
`<m

k2
`m

]
−∆2

n

Since Ek`m = θ = E∆n, we have

E(S2
π) = E(k2

`m)− E(∆2
n) = var (∆2)− var (∆n)

since k`m is the number of pairwise differences between two sequences.
From this and (3.9) it follows that

E(S2
π) = θ − θ

n+ 1
3(n− 1)

+ θ2[f(ρ, 2)− f(ρ, n)]

This gives the θ term in (3.10). To compute n(n− 1)ρ2[f(ρ, 2)− f(ρ, n)], we
write

−n(n− 1)ρ2f(ρ, n) = −2{−2ρ+ (ρ− 2n(n+ 1) + 7)L1

+([4n2 + 4n− 1]ρ+ [26n(n+ 1)− 55])L2}
n(n− 1)ρ2f(ρ, 2) = (n2 − n){−2ρ+ (ρ− 5)L1 + (23ρ+ 101)L2}

in order to prepare for the miracle that every term in the difference has (n−2)
as a factor

−2ρ(n2 − n− 2) = −2ρ(n− 2)(n+ 1)
ρL1(n2 − n− 2) = ρL1(n− 2)(n+ 1)

L1(−5n2 + 5n+ 4n2 + 4n− 14) = −L1(n− 2)(n− 7)
ρL2(23n2 − 23n− 8n2 − 8n+ 2) = ρL2(n− 2)(15n− 1)

L2(101n2 − 101n− 52n2 − 52n+ 110) = L2(n− 2)(49n− 55)

Combining our calculations, we see that the coefficient of θ2 in E(S2
π) is given

by the indicated formula.
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To introduce the estimator now, we follow Wakeley (1997) and write π for
∆n. Since Eπ2 = var (π) + (Eπ)2, (3.9) implies

Eπ2 = θ
(n+ 1)
3(n− 1)

+ θ2[f(ρ, n) + 1]

so the following is an unbiased estimator of θ2:

π2 − [(n+ 1)/3(n− 1)]π
f(ρ, n) + 1

and one can estimate ρ by solving

S2
π = π

2(n− 2)
3(n− 1)

+ gπ(ρ, n)
π2 − [(n+ 1)/3(n− 1)]π

f(ρ, n) + 1

Example 3.1. Wakeley (1997) applied his estimator to a data set of Schaef-
fer and Miller (1993), who sequenced n = 99 individuals in a 3.5 kb region
containing the alcohol dehydrogenase genes Adh and Adh-dup of Drosophila
psuedoobscura. The data set had 359 polymorphic sites with 27 having 3 nu-
cleotides segregating, for a total of 386 mutations. Since

386 · 385
2

· 3500 = 21.23

the large number of double hits is only a few more than we expect. Wakeley
discarded the sites that were hit twice, computing π = 31.7 and a moment
estimator of ρ = 282. Simulations suggested a 95% confidence interval of
[172, 453]. Note that the estimate of ρ is about nine times the estimate of θ,
i.e., in this region of the genome the recombination rate is about nine times
the mutation rate.

3.3 Linkage disequilibirum

Linkage disequilibrium (LD) refers to the nonindependence of alleles at dif-
ferent loci. For example, suppose that allele A at locus 1 and allele B at locus
2 are at frequencies πA and πB , respectively. If the two loci were independent,
then the AB haplotype would have frequency πAB = πAπB . If this is not the
case, then the two loci are in linkage disequilibrium and we let

DAB = πAB − πAπB

If r is the recombination probability between the two loci, then adding a
superscript to indicate the generation number

πt
AB = (1− r)πt−1

AB + rπt−1
A πt−1

B
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so if we ignore fluctuations in gene frequencies,

Dt
AB = (1− r)Dt−1

AB · · · = (1− r)tD0
AB (3.11)

A wide variety of statistics have been proposed to measure LD. For prob-
abilists and statisticians, the most natural is the square of the correlation
coefficient

r2 =
D2

AB

πAπaπBπb
(3.12)

A second commonly used measure, introduced by Lewontin (1964), is

D′ =

{
DAB

min(πAπb,πBπa) if DAB > 0
DAB

min(πAπB ,πaπb)
if DAB < 0

To explain this formula, we will prove

Theorem 3.8. D′ ∈ [−1, 1] with the extremes achieved when one of the four
combinations is absent from the population.

In contrast, r2 = 1 when there are only two combinations in the population:
AB and ab, or Ab and aB.

Proof. Clearly, πAB ≤ min{πA, πB}. This implies

πAB − πAπB ≤ min{πA(1− πB), πB(1− πA)} = min(πAπb, πBπa)

and D′ ≤ 1. To get the bound D′ ≥ −1, note that DAB = −DAb and use the
first result with the roles of B and b interchanged to conclude

DAb ≤ min(πAπB , πbπa)

At this point, we have shown D′ ∈ [−1, 1]. If D′ = 1, then πAB =
min{πA, πB}. If πAB = πA, then πAb = 0. If πAB = πB , then πaB = 0. If
D′ = −1, then we note DAB = −DAb and use the previous argument.

The computation of Er2 is made difficult by the correlation between the
numerator and denominator. Many people believe, see e.g., Hartl and Clark
(2007, page 532), the following:

Mythical result. If ρ = 4Nr then Er2 = 1/(1 + ρ).

An Internet article on LD I found attributes this result to Hill and Robertson
(1968). However, all they have to say about this is that the limiting value of
Er2 appears to approach 1/ρ as Nr increases, see on page 229. Song and Song
(2007) have developed numerical methods to compute Er2 which allow them
to prove that Er2 ∼ 1/ρ as ρ→∞.

Ohta and Kimura (1971) argued that unless one or both of the allele
frequencies took values near 0 or 1,
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Er2 ≈ ED2
AB

E(πAπaπBπb)
≡ σ2

d (3.13)

(where the ≡ indicates the second equality is the definition of σ2
d), and they

used diffusion theory (see Theorem 8.13 at the end of Section 8.2) to show

Theorem 3.9.
σ2

d =
10 + ρ

22 + 13ρ+ ρ2

Note that when ρ is large, σ2
d ≈ 1/ρ. Here we will give McVean’s (2002)

derivation based on coalescent theory. Note that here the genotype frequencies
are those of the population. One can compute the expected value for a sample,
but the result is quite messy; see (10) in McVean (2002).

Proof. To simplify the first calculation, it is useful to consider the general case
where there may be more than two alleles. In this case,

Dα,β = fα,β − pαqβ

where pα and qβ are the frequencies of α and β at the two loci, fα,β is the fre-
quency of the α, β haplotype, and one defines the square of the disequilibrium
by

D2 =
∑
α,β

(fα,β − pαqβ)2

In the case of two alleles, D11 = −D12 = −D21 = D22, so D2 = 4D2
α,β . Note

that
∑

α,β Dα,β = 1− 1 = 0, so for two alleles we have

EDα,β = 0 (3.14)

without any assumption other than a symmetric role for the two alleles.
To compute the second moment, we note that

ED2 =
∑
α,β

(fα,β − pαqβ)2

=
∑
α,β

f2
α,β − 2fα,βpαqβ + p2

αq
2
β (3.15)

= Fij,ij − 2Fij,ik + Fij,k`

where the Fij,k` is the probability that sequences i and j are equal at the first
locus and sequences k and ` are equal at the second locus, and the sequences
i, j, k, and ` are chosen at random. This is (A6) from Hudson (1985), who
attributed the result to Strobeck and Morgan (1978). Since we are doing our
calculation for the entire population, we can suppose that the indices i, j, k,
and ` are distinct.

When there are only two alleles at each locus, the square of the disequi-
librium coefficient is independent of how the alleles are defined, so we can
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consider F ∗ij,k` the probability that the derived mutation occurs in sequences
i and j at the first locus and in sequences k and ` at the second locus. It
follows from (3.15) that we have

ED2
AB = F ∗ij,ij − 2F ∗ij,ik + F ∗ij,k`

Let Ih
ij be the branch length leading from the most recent common ancestor

of i and j to the most recent common ancestor of the sample at locus h = 1, 2,
and τh the total size of the tree for the population at locus h. We assume that
the units for these times are 2N generations. Assuming the mutation rate µ
is the same at the two sites and letting u = 2Nµ, we have

F ∗ij,k` =
E(uI1

ije
−uτ1

uI2
k`e

−uτ2
)

E(uτ1e−uτ1uτ2e−uτ2)

Taking the limit as u→ 0 to eliminate the mutation rate gives

F ∗ij,k` =
E(I1

ijI
2
k`)

E(τ1τ2)

Let thij be the time of the most recent common ancestor of i and j at
locus h, and let Th be the time of the most recent common ancestor of the
population at locus h. Writing Ih

ij = Th−thi,j and using symmetry to conclude
that E(T 1t2ij) does not depend on i, j (assuming they are distinct), we have

E(I1
ijI

2
ij)− 2E(I1

ijI
2
ik) + E(I1

ijI
2
k`)

= (1− 2 + 1)E(T 1T 2)− (1− 2 + 1)E(T 1t2ij + T 2t1ij)

+ E(t1ij , t
2
ij)− 2E(t1ij , t

2
ik) + E(t1ij , t

2
k`)

The means Ethij = 1, so we have

ED2
AB =

cov (t1ij , t
2
ij)− 2 cov (t1ij , t

2
ik) + cov (t1ij , t

2
k`)

E(τ1τ2)

A similar approach can be used on the denominator of σ2
d, which represents

the probability that when two alleles i and j are drawn with replacement at
the first locus and another two k and ` are drawn with replacement at the
second locus, then i and k have the mutant alleles, and j and ` do not.

E(πAπaπBπb) = lim
µ→0

E(ut1ije
−uτ1

ut2k`e
−uτ2

)
E(uτ1e−uτ1uτ2e−uτ2)

=
E(t1ijt

2
k`)

E(τ1τ2)
=

cov (t1ij , t
2
k`) + 1

E(τ1τ2)

Combining this with the formula for ED2
AB , we have
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σ2
d =

cov (t1ij , t
2
ij)− 2 cov (t1ij , t

2
ik) + cov (t1ij , t

2
k`)

cov (t1ij , t
2
k`) + 1

Using (3.1) now, we have

σ2
d =

18 + ρ− 2(6) + 4
4 + 18 + 13ρ+ ρ2

=
10 + ρ

22 + 13ρ+ ρ2

which proves the desired result.

LD in humans

Understanding the extent and distribution of linkage disequilibrium in hu-
mans is an important question because LD plays a fundamental role in the fine
scale mapping of human disease loci, see e.g., Risch and Merikangas (1996)
and Cardon and Bell (2001). The technique known as association mapping
differs from traditional pedigree studies in that marker-disease associations
are sought in populations of unrelated individuals. To explain the idea behind
this approach, imagine that a disease causing mutation has just occurred in a
population. The chromosome on which this mutation occurred contains spe-
cific alleles in neighboring polymorphic loci. At first, the mutation will only be
observed in conjuction with these alleles, so the association (or LD) with these
alleles will be high. Through time these associations will dissipate because of
recombination, but the closest loci will experience the fewest recombinations
and hence retain the highest levels of LD. Thus, by looking for significant cor-
relations between disease state and alleles, we can hope to identify the region
in which the disease causing genetic mutation lies.

One of the surprising patterns revealed by the construction of a dense
genome-wide map of single nucleotide polymorphisms (SNPs) was the slow
decay of LD. Kruglyak’s (1999) simulation study suggested that useful levels
of LD were unlikely to extend beyond an average distance of about 3 kilobases
(kb) in the general population. In contrast, Reich et al. (2001) found in a
study of 19 randomly selected regions in the human genome that LD in a
United States population of northern European descent typically extends 60
kb from common alleles. These findings were confirmed and further quantified
by Dawson et al. (2002), who measured LD along the complete sequence of
human chromosome 22, and Ke et al. (2004), who studied a contiguous 10
megabase segment of chromosome 20. In both cases, see Figure 1 of Dawson
et al. (2002) and Figure 3 of Ke et al. (2004), LD as measured by the square
of the correlation coefficient r2 is about 0.1 at 100 kb. If, as Ardlie, Kruglyak,
and Seielstad (2002) argued, r2 > 1/3 is the limit of useful LD, this occurs at
about 30 kb.

3.4 Ancestral recombination graph

As we have seen in the first two sections of this chapter, analytical results for
genealogies with recombination are difficult and messy. In this section we will
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show that it is reasonably easy to simulate the process. Hudson (1983) was
the first to do this. Here we follow the formulation of Griffiths and Marjoram
(1997). Taking a continuous perspective, we consider a segment of DNA and
rescale it to be the unit interval [0, 1]. If we suppose that the segment is small
enough so that two recombinations in one generation can be ignored, then the
dynamics of a Wright-Fisher model (going forward in time) may be described
as follows. To generate a chromosome in the next generation, with probability
1− r we copy all of the contents from one randomly chosen individual. With
probability r a recombination occurs. We pick a point uniformly along the
chromosome and two individuals at random from the population. We copy
the genetic material to the left of that point from the first individual and
copy the material to the right from the second.

Reversing our perspective leads to a genealogical process, which in the case
of a sample of size 4 can be drawn as in the next figure. Lines merging indicate
coalescence events and are marked with letters. Splits indicate a recombination
at the indicated location, with the convention that at recombination events
the left half comes from the individual on the left and the right half comes
from the individual on the right.

•

.43

.19

.77

.58

0

↑

time

a

b

c

d

e

f

Fig. 3.2. Realization of the ancestral recombination graph for a sample of size 4.

The number of ancestors in the sample 2Nt units back in time Yt is a birth
and death process. When there are k ancestors,
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the death rate due to coalescence of lineages is µk = k(k − 1)/2,

the birth rate due to recombinations is λk = kρ/2, where ρ = 4Nr.

The first rate is by now familiar. To check the second, note that the probability
of no recombination in one generation is

(1− r)k ≈ 1− kr = 1− 1
2N

· kρ
2

Because of the quadratic birth rate compared to the linear birth rate, if
we start with m > 1 sequences then with probability 1, there is a time τm
where the number of ancestors is 1. Griffiths (1991) has calculated

Theorem 3.10.

Eτm =
2
ρ

∫ 1

0

(
1− vm−1

1− v

)
(eρ(1−v) − 1) dv (3.16)

When m = 2, this becomes

Eτ2 =
2
ρ

∫ 1

0

eρ(1−v) − 1 dv =
2
ρ

(
−1
ρ
eρ(1−v) − v

)∣∣∣∣1
0

=
2
ρ

(
−1
ρ
− 1 +

1
ρ
eρ

)
=

2
ρ2
· (eρ − 1− ρ)

Note that as ρ→ 0, Eτ2 → 1, the result for the ordinary coalescent, but Eτ2
grows exponentially fast as ρ increases, which means that it will be very slow
to simulate the ancestral recombination graph for large regions.

Proof. We use the methods of Section 1.5. We begin by computing hitting
probabilities. The number of lineages in the genealogy, Yt, changes

k → k + 1 at rate ρk/2
k → k − 1 at rate k(k − 1)/2

so the embedded jump chain, Xn,

k → k + 1 with prob. pk = ρ/(ρ+ k − 1)
k → k − 1 with prob. qk = (k − 1)/(ρ+ k − 1)

We want to find a function φ so that φ(Xn) is a martingale. For this we need

φ(k) = φ(k + 1)pk + φ(k − 1)qk

or, rearranging,

φ(k + 1)− φ(k) =
qk
pk

(φ(k)− φ(k − 1))
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Xn has state space {1, 2, . . .}. Setting φ(2)− φ(1) = 1 and iterating gives

φ(k)− φ(k − 1) =
k−1∏
j=2

qj
pj

=
(k − 2)!
ρk−2

(By convention,
∏1

j=2 qj/pj = 1 = 0!/ρ0.) Taking φ(1) = 0, we have

φ(m) =
m∑

k=2

(k − 2)!
ρk−2

Let Tk = min{n ≥ 0 : Xn = k} be the time of the first visit to k. Since
φ(Xn) is a martingale and the absorbing state 1 has φ(1) = 0,

Pm(Tk <∞) =

{
1 k ≤ m
φ(m)
φ(k) k > m

Let T+
k = min{n ≥ 1 : Xn = k} be the time of the first return to k. If we

start at k, the only way to avoid returning to k is to go from k → k − 1 on
the first jump and then not come back, so

Pk(T+
k = ∞) =

k − 1
ρ+ k − 1

(
1− φ(k − 1)

φ(k)

)
If the process reaches k, then the number of visits to k, Nk, will have a
geometric distribution with mean 1/Pk(T+

k = ∞), so

EmNk =
Pm(Tk <∞)
Pk(T+

k = ∞)

and it follows that

EmNk =


ρ+k−1

k−1

(
φ(k)

φ(k)−φ(k−1)

)
k ≤ m

φ(m)
φ(k) ·

ρ+k−1
k−1

(
φ(k)

φ(k)−φ(k−1)

)
k > m

Returning to Yt, the continuous-time process that gives the size of the
genealogy, we let Sk be the amount of time Yt spends at k. Since the rate of
jumps out of k is k(ρ+ k − 1)/2, and φ(k)− φ(k − 1) = (k − 2)!/ρk−2,

EmSk =
2

k(ρ+ k − 1)
EmNk =

{
2

k(k−1) · φ(k) · ρk−2

(k−2)! k ≤ m

φ(m) · 2
k(k−1) ·

ρk−2

(k−2)! k > m

Using x ∧ y = min{x, y}, we can combine the two formulas into one:

EmSk = 2φ(k ∧m)
ρk−2

k!
= 2

ρk

k!

k∧m∑
j=2

(j − 2)!
ρj
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where in the last expression we have multiplied the numerator and denomi-
nator by ρ2.

Since T1 =
∑∞

k=2 Sk, we have

EmT1 = 2
∞∑

k=2

ρk

k!

k∧m∑
j=2

(j − 2)!
ρj

Interchanging the order of the summation and letting i = k − j, the above

= 2
m∑

j=2

∞∑
k=j

(j − 2)!
ρk−j

k!
= 2

m∑
j=2

∞∑
i=0

(j − 2)!
ρi

(i+ j)!

To see the first step note that the sum is over k ≥ 2, 2 ≤ j ≤ m, j ≤ k.
To relate the last formula to the answer given above, we note that

2
ρ

∫ 1

0

1− vm−1

1− v

(
eρ(1−v) − 1

)
dv

=
2
ρ

∫ 1

0

m−2∑
k=0

vk
∞∑

`=1

ρ`(1− v)`

`!
dv

Letting ` = i+ 1 and k = j − 2, this becomes

2
m∑

j=2

∞∑
i=0

(j − 2)!ρi

∫ 1

0

vj−2

(j − 2)!
(1− v)i+1

(i+ 1)!
dv

Integrating by parts j − 2 times gives∫ 1

0

vj−2

(j − 2)!
(1− v)i+1

(i+ 1)!
dv =

∫ 1

0

(1− v)i+j−1

(i+ j − 1)!
dv =

1
(i+ j)!

and we have proved the desired result.

The time τm is only an upper bound on the MRCAs for all nucleotides
because (i) some of the ancestors in the genealogy, such as the one marked
by the black dot in the example in Figure 3.2 above, may have no genetic
material that is ancestral to that in the sample, and (ii) different segments of
the chromosome will have MRCAs at different times ≤ τm. In the example,
the four chromosome segments have the following genealogies. Here the letters
correspond to the coalescence events in the ancestral recombination graph,
while × indicates where the recombination occurred to change the tree to the
next one.

3.4.1 Simulation

In simulating the ancestral recombination graph, we do not want to create an-
cestors that have no genetic material in common with the sample. To explain
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Fig. 3.3. Coalescent trees for the four segments in our example.

how to avoid this, we will, for simplicity, consider the two-locus case. Gener-
ation t signifies the population t generations before the present. We consider
a sample of size n from the current population (generation 0). Let g(t) be the
number of chromosomes of generation t that contain genetic material at either
locus that is directly ancestral to genetic material of the sample. Let d(t) be
the number of ancestral chromosomes that contain copies of both loci.

Let tk be the time of the kth event (i.e., recombination or coalescence). If
time is written in units of 2N generations, then tk+1 − tk has an exponential
distribution with rate

λ(tk) = d(tk)ρ/2 + g(tk)(g(tk)− 1)/2

The next event is a recombination with probability

d(tk)ρ/2
λ(tk)

In this case, we pick one of the d(tk) chromosomes that contain copies of both
loci to split. The event is a coalescence with probability

g(tk)(g(tk)− 1)/2
λ(tk)
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In this case, we pick one pair of ancestral chromosomes to coalesce. Of course,
after either of these events, we must compute the new values of g(tk+1) and
d(tk+1). When we finally reach the point at which there is only one chromo-
some, then we can move forward in time assigning mutations to the branches
as in the ordinary coalescent. See Hudson (1991) for more details. The exten-
sion to a chromosomal segment is fairly straightforward. However, we are all
fortunate that Hudson has created and made publicly available a program ms
that will do these simulations.

http://home.uchicago.edu/~rhudson1/source.html

Coalescence trees along the chromosome

Wiuf and Hein (1999) developed a different way of constructing the ances-
tral recombination graph for a sequence. To start, one generates a genealogy
for the endpoint x0 = 0 in the usual way. Let r be the recombination rate
per unit distance and ρ = 4Nr. If τ0 is the total size of the tree (measured
in units of 2N generations), then the distance x1 until we encounter the next
recombination is exponential with rate τ0ρ/2. To generate the genealogy at
x1, pick a point U1 uniformly from the tree. At this point, the portion of
the chromosome to the right of the recombination has a different path, so we
simulate to see where it should rejoin the tree.

The simplest, but unfortunately incorrect, way to do this is to erase the
part of the branch from that point to the next coalescence event, creating
a floating lineage, and then simulate to determine where the lineage should
reattach to the rest of the tree. In the example drawn, from the time U1

marked by the × to T 0
3 the coalescence rate is 3, from time T 0

3 to T 0
1 the rate

is 2, and after T 0
1 at rate 1. Thus, the new time of the most recent common

ancestor may be larger than the old one. The coalescence times in the new tree
are labeled T 1

4 , T 1
3 , T 1

2 , and T 1
1 , i.e., the superscript indicates tree numbers

along the chromosome, and the subscript is the number of lineages just before
the coalescence event.

This recipe is simple, but, unfortunately, it is wrong. If the new lineage
coalesces with the erased one, then until there is another recombination the
new lineage must follow the choices made by the erased lineage until it reat-
taches to the tree. This event will happen with significant probability, since
from the × until time T 0

3 the erased lineage is one of four possible targets for
coalescence, and from T 0

3 to T 0
2 it is one of three. The unfortunate consequence

of this is that one cannot erase the lineage but must keep adding paths to the
diagram, increasing the complexity and the computer storage requirements
of the computation. We refer the reader to Wiuf and Hein (1999) for details
about how to correctly implement the algorithm.

3.4.2 Two approximate algorithms

Given the problems that arise from the ghosts of previous branches, it is
natural to forget them to produce a Markovian process that approximates
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T 0
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Fig. 3.4. The wrong way of moving from one tree to the next.

how the genealogical tree of a sample changes as we move along a chromo-
some. McVean and Cardin (2005) implemented the approximation as it was
described above, and named it the spatial Markovian coalescent (SMC). Mar-
joram and Wall (2006) modified the approximation so the old lineage is not
erased until after the coalescence point of the new one has been determined,
which allows for the possibility that the new lineage coalesces with the one
that was to be erased and no change occurs in the genealogy. In both papers,
simulations show that the improved algorithm produces simulated data that
for many statistics is close to that resulting from simulation of the full coa-
lescent. Marjoram and Wall developed software (FastCoal) for implementing
these approximations, which is available from the authors. The most impor-
tant reason for being interested in the approximation is that the amount of
computation needed for the SMC and the MW algorithms increases linearly
with the length of chromosome simulated, while the ancestral recombination
graph requires an exponentially increasing amount of work.

To obtain some insight into the workings of these approximations, we will
consider n = 2 and for simplicity only the SMC, which is less accurate than
the MW chain, but nicer to compute with. When n = 2, there is only one
coalescence time, so we letHk be the height of the kth tree. The place at which
the recombination occurs, U1 = ξ1H0, where ξ1 is uniform on (0, 1). The new
height H1 = U1+η1 and η1 is exponential with mean 1. Since H1 = ξ1H0+η1,
it is easy to see that if

H0 =d

∞∑
n=1

ηn

n−1∏
m=1

ξm

then H1 also has this distribution, so this is the stationary distribution π for
the discrete-time chain. Since trees of height y stay around for a mean time
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1/2y, the continuous-time stationary distribution has

µ(dy) =
1
c
· 1
2y
π(dy) where c =

∫
1
2y
π(dy)

The first thing to prove is that

Theorem 3.11. The stationary distribution for the height of the SMC tree
for a sample of size 2, µ, is exponential with mean 1, which is the correct
distribution for the coalescent.

Proof 1. To prove this, we begin by taking the expected value

E(H1|H0) =
H0

2
+ 1

to conclude that in equilibrium EH = EH/2 + 1 and EH = 2. We will
now prove by induction that EHk = (k + 1)!. To do this we begin with the
observations that (i) the uniform distribution on (0,1), ξ, has

Eξm =
∫ 1

0

xm dx =
1

m+ 1

and (ii) integration by parts and induction shows that the mean 1 exponential
distribution, η, has

Eηm =
∫ ∞

0

xme−x dx = m

∫ ∞

0

xm−1e−x dx = m!

Now, since H and Hξ + η have the same distribution, if the formula EHm =
(m+ 1)! is correct for all powers m < k, then

EHk =
k∑

m=0

(
k

m

)
E(Hm)E(ξm)E(ηk−m)

= EHk 1
k + 1

+
k−1∑
m=0

k!
m!(k −m)!

(m+ 1)!
1

m+ 1
(k −m)!

Each term in the sum is k!, so we have

k

k + 1
EHk = k · k! and hence EHk = (k + 1)!

From the moments we see that π(dx) = xe−x dx, so c = 1/2 and µ(dy) =
e−y dy.

Proof 2. We begin by computing the transition kernel for the discrete-time
Markov chain H0,H1, . . .. Suppose Hn = x. Breaking things down according
to the value of z = Hnξ, we have
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if y > x K(x, y) =
∫ x

0

dz

x
e−(y−z) =

ex−y − e−y

x

if y < x K(x, y) =
∫ y

0

dz

x
e−(y−z) =

1− e−y

x

We will now show that π(x) = xe−x satisfies the detailed balance condition:
π(x)p(x, y) = π(y)p(y, x), which implies∫

π(x)p(x, y) dx = π(y)
∫
p(y, x) dx = π(y)

To check the detailed balance condition, we can assume that y > x. In this
case, our formulas imply

π(x)K(x, y) = xe−x · (ex−y − e−y)/x
= e−y − e−(x+y)

= ye−y · (1− e−x)/y = π(y)K(y, x)

The detailed balance condition implies not only that the π is a stationary
distribution, but also that the chain is reversible; in equilibrium the chain
looks the same going forwards or backwards. This is natural since a chro-
mosome consists of two complementary strands of DNA and has no inherent
orientation.

As McVean and Cardin (2005) explained, a nice way of thinking about
the SMC is that it is a modification of the ancestral recombination graph in
which coalescence is forbidden if the ancestors do not have genetic material
in common. In the two-locus case, this means that (a)’s may coalesce with
(ab)’s and (b)’s with (ab)’s but (a)’s and (b)’s are forbidden from coalescing.
From this we see that, in a large population, the covariance of the coalescence
times Ta and Tb is ≈ 0 if the initial sampling configuration is (a)(ab)(b) or
(a)(a)(b)(b). Thus, the covariance for the state (ab)(ab) can only be nonzero
if coalescence occurs before recombination, and in this case it is 1, so for the
SMC

Eπ(H0Ht − 1) =
1

1 + t

since ρ/2 = t/2 is the scaled recombination rate for the interval [0, t], and there
are two individuals in the sample subject to recombination. In comparison to
the exact answer given in (3.1),

1
1 + t

<
t+ 18

t2 + 13t+ 18
< 1.2797

1
1 + t

the maximum relative error of 28% occurring when t = 4.24. This is a pretty
large error. However, if we consider the variance of the number of segregating
sites, var (S2), computed exactly in (3.6), the error will be less since we will
integrate Eπ(H0Ht − 1) over a range of t values.
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Using the forbidden coalescence reasoning, one can compute the joint
distribution Pπ(H0 = x,Ht = y). If coalescence occurs before recombina-
tion, an event of probability 1/(1 + t), then the joint distribution (H0,Ht)
is (t + 1)e−(1+t)x1{x=y}. When recombination occurs before coalescence, an
event of probability t/(1+ t), the additional time for the two coalescences are
independent mean 1 exponentials, so if x < y, the joint density is

t

t+ 1

∫ x

0

(1 + t)e−(1+t)ze−(x−z)e−(y−z) dz

= t

∫ x

0

e(1−t)ze−xe−y dz = t
e(1−t)x − 1

1− t
e−(x+y)

By symmetry, the formula for y < x is

t
e(1−t)y − 1

1− t
e−(x+y)

Dividing by Pπ(H0 = x) = e−x, we have the transition probability

P (Ht = y|H0 = x) =


e−txδx x = y

t e(1−t)x−1
1−t e−y x < y

t e(1−t)y−1
1−t e−y x > y

3.5 Counting recombinations

Suppose that there are two alleles, A and a, at site i and two alleles, B and
b, at site j. As we observed in the analysis of the data of Ward et al. (1991)
in Section 1.4, if there is no recombination and each site has been hit only
once by mutation, then at most three of the four gametic types AB, Ab, aB,
and ab can be present. Thus, if we assume that each site has been hit only
once by mutation, then there must have been a recombination in between i
and j. To get a lower bound, RM , on the number of recombinations that have
occurred, Hudson and Kaplan (1985) set d(i, j) = 1 when all four gametes
are present and d(i, j) = 0 otherwise. To compute RM , we represent the (i, j)
with d(i, j) = 1 as an open interval and apply the following algorithm:

• Delete all (m,n) that contain another interval (i, j).
• Let (i1, j1) be the first interval not disjoint from all the others. If (m,n)

has i1 < m < j1, then delete (m,n). Repeat until done.

Following Hudson and Kaplan (1985), we will analyze Kreitman’s (1983)
data on the alcohol dehydrogenase locus of Drosophila melanogaster. In the
data set, F and S indicate the fast and slow alleles that are caused by the
substitution at position 32. The first sequence is a reference sequence, the
other 11 are the data. Here we have ignored the six sites in Kreitman’s data
at which there have been insertions and/or deletions.
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1111111111222222222233333333334444
1234567890123456789012345678901234567890123

ref CCGCAATATGGGCGCTACCCCCGGAATCTCCACTAGACAGCCT
1S ........AT........TT.ACA.TAAC..............
2S ..C...............TT.ACA.TAAC..............
3S ...................................A....T.A
4S ................GT.................A..TA...
5S ...AG...A.TC..AGGT..................C......
6S ..C............G..............T.T.CAC....T.
1F ..C............G.............GTCTCC.C......
2F TGCAG...A.TCG..G.............GTCTCC.CG.....
3F TGCAG...A.TCG..G.............GTCTCC.CG.....
4F TGCAG...A.TCG..G.............GTCTCC.CG.....
5F TGCAGGGGA....T.G....A...G....GTCTCC.C......

It should be clear from the first step in the algorithm that for each i we
only have to locate ji = min{j > i : d(i, j) = 1}, because the other intervals
with left endpoint i will contain (i, ji). An example should help clarify the
procedure. The first stage is to find (i, ji) for 1 ≤ i ≤ 43. In doing this, we
can ignore sites 6, 7, 8, 10, 14, 15, 21, 25, and 39–43, which have only one
mutation since these cannot be part of a pair with d(i, j) = 1. Note that 13,
19–30, 32, 34, 37, and 38 are consistent with all of the rows that followed, so
they do not produce intervals. The remaining (i, ji) pairs are as follows:

(1,11) (2,11) (3,4)
(4,17) (5,17) (9,16)
(11,17) (12,17) (16,17)

(17,36) (18,36) (31,36) (33,36) (35,36)
(36,37)

On each row, the interval at the end in bold-faced type is a subset of the
previous intervals. The five intervals in boldface are disjoint, so RM = 5. This
conflicts with the value RM = 4 reported by Hudson and Kaplan (1985);
however, one can verify the five comparisons in the table above.

By looking at the data more closely, one can infer a larger number of
recombinations. To make this easier to see, we delete sequences 3F and 4F,
which are identical to 2F, and then delete the columns with singletons:

| 11|1|11122222222333333|3|3
123|45912|6|78902346789012345|6|7

1:1S ...|..A..|.|..TTACATAAC......|.|.
2:2S ..C|.....|.|..TTACATAAC......|.|.
3:3S ...|.....|.|.................|A|.
4:4S ...|.....|.|GT...............|A|.
5:5S ...|AGATC|G|GT...............|.|C
6:6S ..C|.....|G|............T.T.C|A|C
7:1F ..C|.....|G|...........GTCTCC|.|C
8:2F TGC|AGATC|G|...........GTCTCC|.|C
9:5F TGC|AGA..|G|...........GTCTCC|.|C
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Myers and Griffiths (2003) improved Hudson’s bound by observing that if
in a set of S columns there are K haplotypes, then there must be at least
K − S − 1 recombinations. (S = 2 and K = 4 gives the four-gamete test.) In
the example above, if we look at columns 3, 9, and 12, we see six haplotypes:

.A. C.. ... .AT CAT CA.

so there must have been at least 6− 3− 1 = 2 recombinations in the interval
(3, 12).

Given some method of computing lower bounds bi,j on the number of
recombinations in the interval (i, j), we can compute a better bound by

Bi,j = max
i<k<j

bi,k +Bk,j

and a lower bound on the number in whole region by B1,Sn , where Sn is the
number of segregating sites. If bi,k = 1 when all four gametes are present, this
reduces to Hudson and Kaplan’s RM . Myers and Griffiths (2003) developed
an estimator Rh where bi,k is computed from the haplotype bound applied to
various subsets of [i, j]. For this data set it turns out that Rh = 6. Bafna and
Bansal (2006) further improved the method and showed that there must be
at least seven recombinations in this data set.

Song and Hein (2005) have a different approach, which in this case shows
that the lower bound of 7 is optimal. The next figure gives trees that are con-
sistent with the mutation patterns in the six regions of the sequence separated
by vertical lines. Black dots indicate where recombinations can be introduced
to move to the next tree in the seqeunce. Circles indicate the locations of
mutations needed in the regions.

While the lower bounds are ingenious, they do not get close to the number
of recombinations. Bafna and Bansal (2006) investigated the mean values of
Hudsons’ RM , Myers and Griffiths’ (2003) program Recmin, and their own
bound Rg in comparison with the actual number of recombinations R for
various values of the scaled recombination rate ρ = 4Nr in a sample of size
100, when the scaled mutation rate θ = 10.

ρ 1 5 20 50
RM 1.02 3.03 6.29 9.39
Recmin 1.23 4.88 13.58 24.86
Rg 1.23 5.09 15.80 31.54
R 5.21 27.19 126.45 388.76

An assessment ofRM was done much earlier by Hudson and Kaplan (1985),
who used simulations to obtain an estimate from their lower bound. In Kre-
itman’s Adh data, the number of segregating sites is S = 43, so θ = 4Nu can
be estimated by

S

/
10∑

i=1

1/i =
43

2.928968
= 14.68
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Fig. 3.5. A seven recombination scenario for the Adh data.

If θ = 15, the average values of RM were 3.7 for R = 10, 5.5 for R = 20, and
8.8 for r = 50. Interpolating suggests R ≈ 18. To get a confidence interval for
R, Hudson and Kaplan (1985) did further simulations with a fixed number of
segregating sites to argue that R should be between 5 and 150, which is not
very informative.

3.6 Estimating recombination rates

Earlier we saw two not very satisfactory methods of estimating the scaled
recombination rate ρ = 4Nr. Hudson and Kaplan’s (1985) RM based on the
four-gamete test, and its more sophisticated relatives, typically detect only
a small fraction of the recombination events that have occurred. Wakeley’s
(1997) estimator based on the variance of the pairwise differences is easy to
calculate but is biased, and not very effective even for samples of size 99.

One of the problems with Wakeley’s estimator is that it describes the
data with a single summary statistic, ignoring most of the available informa-
tion. At the other extreme, likelihood approaches estimate the probability of
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observing a given data set under an assumed population genetic model. Grif-
fiths and Marjoram (1996), Kuhner, Yamata, and Felsenstein (2000), Nielsen
(2000), and Fearnhead and Donnelly (2001) developed estimators of ρ based
on likelihood methods. Each of these methods uses computationally intensive
statistical methods to approximate the likelihood curve, and even the most
efficient of these can accurately estimate this curve only for small data sets.

Given the difficulties of computing the full likelihood, various compromises
have been introduced. Fearnhead and Donnelly (2002) split the region of in-
terest into several subregions. They computed the full likelihood for the data
in each of the subregions and then multiplied to obtain a composite likelihood.
Wall (2000) used simulation to find the parameter values ρH and ρHRM that
maximized the likelihood of (ρ|H) and (ρ|H,RM ), where H is the number of
haplotypes, and RM is Hudson and Kaplan’s (1985) estimator. Hudson (2001)
developed a composite likelihood method by examining pairs of segregating
sites. In this section, we will explain his method, but first we consider

3.6.1 Equations for the two-locus sampling distribution

Suppose we sample n chromosomes and obtain information about two loci
with alleles A0 and A1 and B0 and B1. Let nij be the number of sampled
chromosomes that carry allele Ai at locus a and Bj at locus b. Let q(n; θ, ρ)
be the probability of observing n = (n00, n10, n01, n11) for the indicated pa-
rameters. The first sign of trouble is the large number of probabilities we have
to compute. The number of vectors n with n00+n10+n01+n11 = n and nij ≥ 0
is the same as the number of ways of writing n+ 4 = m00 +m10 +m01 +m11

with mij = nij + 1 ≥ 1, which, by an earlier calculation, is
(
n+3

3

)
. For n = 10

this is
13 · 12 · 11

3!
= 286

For n = 40 it is 12,341.
Golding (1984) was the first to develop a recursive equation for these

probabilities. Here, we will follow the approach of Ethier and Griffiths (1990).
As in the case of the recursion of Pluzhnikov and Donnelly (1996) given in
Theorem 3.2, in order to obtain a closed set of equations we must consider
a larger class of probabilities that allow some members of the sample to be
specified only at one location. Let cij be the number of (Ai, Bj) chromosomes
(sampled at both loci with allele Ai at locus a and Bj at locus b), let ai be
the number of (Ai, ·) chromosomes (sampled only at the a locus with allele
Ai), and let bj be the number of (·, Bj) chromosomes (sampled only at the
b locus with allele Bj). In what follows, we will assume that it is not known
which of the alleles is ancestral.

Despite its enormous size, the recursion is straightforward to write. We use
a subscript · to indicate a variable that has been summed over. Let a· =

∑
i ai,

b· =
∑

j bj , c·j =
∑

i cij , ci· =
∑

j cij and c·· =
∑

ij cij . na = a· + c·· is the
sample size at the a locus, nb = b· + c·· is the sample size at the b locus, and
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n = a· + b· + c·· is the total sample size. If na = 1 or nb = 1, there is only
one locus and probabilities can be computed from the folded site frequency
spectrum.

Jumps happen at total rate

λa,b,c = [n(n− 1) + ρc·· + θA(a· + c··) + θB(b· + c··)]/2

due to coalescence, recombination, and mutation. Letting ei ∈ R2 and eij ∈ R4

be vectors with 1’s in the indicated position and 0 otherwise, the jumps due
to coalescence and recombination occur as follows:

(a− ei, b, c) ai(ai − 1 + 2ci·)/2
(a, b− ej , c) bj(bj − 1 + 2c·j)/2
(a, b, c− eij) cij(cij − 1)/2

(a− ei, b− ej , c+ eij) aibj
(a+ ei, b+ ej , c− eij) ρcij/2

To check these, note that (Ai, ·) chromosomes can only coalesce with (Ai, ·)
or (Ai, Bj) chromosomes. Finally, as in the dual of the Wright-Fisher model
with mutation, mutations can kill lineages. However, since we assume that all
mutants were created by one mutation, jumps can only occur when there is
one of the type left:

(a, b+ ej , c− eij) θA/2 if ai = 0, cij = 1, ci· = 1
(a− ei, b, c) θA/2 if ai = 1, ci· = 0

(a+ ei, b, c− eij) θB/2 if aj = 0, cij = 1, c·j = 1
(a, b− ej , c) θB/2 if ai = 1, ci· = 0

Other mutations kill the chain because they create a configuration not con-
sistent with the pattern we are looking for.

To illustrate the use of these equations, we will consider the simplest pos-
sible situation, n = 2.

Theorem 3.12. Let x1, x2 and y1, y2 be the alleles present in our sample at
the two loci. If we let θ = θA + θB,

q(2) =
2(3 + θ)(6 + θ) + ρ[(2 + θ) + 2(6 + θ)φ] + ρ2φ

2(1 + θ)(3 + θ)(6 + θ) + ρ(2 + θ)(13 + 3θ) + ρ2(2 + θ)

and φ = 1/(1 + θA) + 1/(1 + θB), then

P (x1 = x2, y1 = y2) = q(2)
P (x1 = x2, y1 6= y2) = (1 + θA)−1 − q(2)
P (x1 6= x2, y1 = y2) = (1 + θB)−1 − q(2)
P (x1 6= x2, y1 6= y2) = 1− (1 + θA)−1 − (1 + θB)−1 − q(2)

This agrees with (2.9) in Ethier and Griffiths (1990). As a check, we note that
when ρ = 0 this is 1/(1 + θ), while if we let ρ→∞, the limit is
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φ

2 + θ
=

1
1 + θA + 1 + θB

·
(

1
1 + θA

+
1

1 + θB

)
=

1
1 + θA

· 1
1 + θB

the answer for independent loci.

Proof. One locus results imply P (x1 = x2) = (1 + θA)−1 and P (y1 = y2) =
(1 + θB)−1, so the second and third equations follow from the first one. The
fourth one then follows from the fact that the four probabilities add to 1.
Thus, it is enough to show that P (x1 = x2, y1 = y2) = q(2).

The event x1 = x2, y1 = y2 occurs if and only if there is no mutation
before coalescence, so we use the three states from calculations with Section
3.1: (0,0,2), (1,1,1), and (2,2,0), which we will abbreviate by giving their third
coordinates. When we do this, the total transition rates are

λ2 = 1 + θ + ρ λ1 = 3 + θ +
ρ

2
λ0 = 6 + θ

For states with (na, nb) = (2, 1), (1, 2), or (1, 1), the two-locus homozygosities
are 1/(1 + θA), 1/(1 + θB), and 1, respectively. Using this with the transition
rates, and letting φ = 1/(1 + θA) + 1/(1 + θB), we have

q(2) =
ρ

λ2
q(1) +

1
λ2

q(1) =
1
λ1
q(2) +

ρ/2
λ1

q(0) +
1
λ1
φ (3.17)

q(0) =
4
λ0
q(1) +

1
λ0
φ

Inserting the third equation into the second, we have

q(1) =
1
λ1
q(2) +

2ρ
λ0λ1

q(1) +
ρ+ 2λ0

2λ0λ1
φ

Rearranging, we have

q(2) =
λ0λ1 − 2ρ

λ0
q(1)− ρ+ 2λ0

2λ0
φ

The first equation in (3.17) implies q(1) = (λ2/ρ)q(2)− 1/ρ. Inserting this in
the previous equation, we have

q(2) =
λ0λ1λ2 − 2ρλ2

ρλ0
q(2)− λ0λ1 − 2ρ

ρλ0
− ρ+ 2λ0

2λ0
φ

Rearranging gives

λ0λ1λ2 − ρλ0 − 2ρλ2

ρλ0
q(2) =

λ0λ1 − 2ρ
ρλ0

+
ρ+ 2λ0

2λ0
φ

and hence we have
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q(2) =
2λ0λ1 − 4ρ+ (ρ2 + 2λ0ρ)φ

2[λ0λ1λ2 − ρλ0 − 2ρλ2]
(3.18)

Recalling the definitions of the λk, we see that the denominator is

= 2(1 + θ)(3 + θ)(6 + θ) + ρ(1 + θ)(6 + θ) + 2ρ(3 + θ)(6 + θ) + ρ2(6 + θ)
− 2ρ(6 + θ)− 4ρ(1 + θ + ρ)

The coefficient of ρ2 in the denominator is (6 + θ)− 4 = 2 + θ, while that of
ρ is

(1 + θ + 6 + 2θ − 2)(6 + θ)− 4(1 + θ) = (3θ + 5)(θ + 6)− 4− 4θ
= 3θ2 + 19θ + 26 = (3θ + 13)(θ + 2)

The numerator of the formula for q(2) in (3.18) is

2(3 + θ)(6 + θ) + ρ(6 + θ)− 4ρ+ ρ2φ+ 2(6 + θ)ρφ

Combining our computations gives

q(2) =
2(3 + θ)(6 + θ) + ρ[(2 + θ) + 2(6 + θ)φ] + ρ2φ

2(1 + θ)(3 + θ)(6 + θ) + ρ(2 + θ)(13 + 3θ) + ρ2(2 + θ)

which proves the desired result.

3.6.2 Simulation methods

Given the analytical complications of Golding’s (1984) equation, Hudson
(1985) used a clever simulation technique to estimate the probabilities. He
generated a two-locus genealogy of a sample of n chromosomes, but then in-
stead of generating a single sample from a pair of trees, he calculated the
distribution of n = (n00, n01, n10, n11) conditional on the pair of trees. To
explain this we need some notation. Let E be the sequence of coalescence and
recombination events that define the tree. Given the sequence of events Ei,
the time Ti between Ei−1 and Ei has an exponential distribution with mean
determined by the configuration of ancestral lineages during the interval.

Let τA and τB be the total length of the trees, measured in units of 4N
generations so that the scaled mutation rate is θ. Let I(E ,n, j, k) = 1 if
mutations on the jth branch of the a locus tree and on the kth branch of the
b locus tree would produce the sample configuration n, and 0 otherwise. As
the notation indicates, this depends on the event sequence E and not on the
time sequence T . Letting aj and bk be the length of the two branches, the
probability of the sample configuration n being produced is

I(E ,n, j, k)(1− e−θaj )(1− e−θbk)e−θ(τA−aj)e−θ(τB−bk)

since we need at least one mutation on each of the selected branches and
none on the rest of the trees. Note that the identification of the branches that
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produce the desired mutation pattern depends on whether or not we consider
A0 and B0 to be the ancestral alleles and A1 and B1 to be derived, which
Hudson calls a − d specified samples, but this is otherwise irrelevant to the
details of the procedure.

We will apply this formula when the a and b loci are single nucleotides, so
θ is small and the above is

≈ θ2I(E ,n, j, k)ajbk

Summing over j and k and then taking expected value with respect to the
joint distribution of the E and T sequences, we have

qu(n; θ, ρ) ≈ θ2hu(n; ρ)

where hu(n; ρ) = E
(∑

j,k I(E ,n, j, k)ajbk

)
. The subscript u indicates that

this is the unconditioned version of the probability, i.e., we are not condition-
ing on the event that the two sites are variable.

To estimate hu(n; ρ), we generate a sequence of genealogies with events
Ei, 1 ≤ i ≤ m, and let

ĥu(n; ρ) =
1
m

m∑
i=1

∑
j,k

I(Ei,n, j, k)aj(i)bk(i)

In the case of a constant-size population model, this can be done more effi-
ciently by using

h̃u(n; ρ) =
1
m

m∑
i=1

∑
j,k

I(Ei,n, j, k)E(ajbk|Ei)

In words, we replace the observed times by their conditional expectation given
the event sequence Ei. This reduces the variance of the estimator and elimi-
nates the need to simulate the time sequence.

Most applications of the two-locus sampling distribution will focus on pairs
of sites in which both are polymorphic in the sample. That is, we must consider
the probability

q(n, θ, ρ|two alleles at each locus) =
qu(n; θ, ρ)∑
m qu(m; θ, ρ)

Again, we are interested in

qc(n, ρ) = lim
θ→0

q(n, θ, ρ|two alleles at each locus) =
hu(n; ρ)∑
m hu(m; ρ)

which we can estimate without specifying θ. Hudson has done this for sample
sizes 20, 30, 40, 50, and 100 and a range of ρ values between 0 and 100, and
these are available on his web page.
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Fig. 3.6. Likelihood curves for three sample configurations.

3.6.3 Composite likelihood estimation of ρ

The graph above, which is Figure 2 in Hudson (2001), shows that if we try
to use one pair of sites to estimate ρ, then the likelihood curves are often
monotonic, resulting in estimates of 0 or ∞. Consider, for the moment, the
mythical situation that we have k independent pairs of loci, each with scaled
recombination rate ρ. The overall likelihood is

L(n1,n2, . . .nk; ρ) =
k∏

i=1

qc(ni; ρ)

and this is maximized to produce the estimate ρ̂. To characterize statistical
properties of ρ̂, we consider

Eρ0(log qc(n; z)) =
∑
n

qc(n; ρ0) log qc(n; z)

which is the expected log-likelihood given that the true parameter is ρ0. The
second derivative of this function with respect to z, evaluated at ρ0 is inversely
proportional to the asymptotic variance of the maximum likelihood estimate.
More precisely, for a sample of size k

varρ0,k(ρ̂) ≈ −1
k(∂2/∂z2)Eρ0(log qc(n; z))|z=ρ0

The next graph, which is Figure 5 in Hudson (2001), shows Eρ0(log qc(n; z))
and a quadratic function fitted to several points near ρ0 = 5, which suggests
that this approximation may be accurate when k is not large.

Since it is trivial that smaller values of ρ can be estimated with less abso-
lute error than larger values, it is interesting to look instead at the coefficient
of variation:
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Fig. 3.7. Expected log-likelihood curve and its quadratic approximation.

varρ0,k(ρ̂)
ρ2
0

≈ varρ0,k(log(ρ̂)) ≈ −1
k(∂2/∂(log z)2)Eρ0(log qc(n; z))|z=ρ0

Figure 6 of Hudson (2001), which is given here as Figure 3.8, shows this
quantity as a function of ρ0. It achieves a minimum at ρ0 = 5 and to quote
Hudson, “shows that pairs separated by ρ in the range 2 − 15 are best for
estimating ρ.”

Fig. 3.8. Asymptotic variance of the log of the MLE

In practice, different pairs of polymorphic sites will be different distances
apart and hence will have different recombination rates. Letting ρb be the
recombination probability per base pair and di the distance between the ith
pair, we can write the likelihood as
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L(n1,n2, . . .nk; ρb) =
k∏

i=1

qc(ni; ρbdi)

To define his composite likelihood estimator ρCL, Hudson uses the log-
likelihood: ∑

i<j

log qc(nij ; ρbdij)

where nij is the observed sampling distribution at sites i and j and dij is
the distance between the two sites. Hudson investigated ρCL by simulation
and showed that it and Wall’s estimator ρHRM performed much better than
Wakeley’s moment estimator ρwak and Hey and Wakeley’s (1997) γ.

Example 3.2. Hudson (2001) applied his method to estimating ρ from a survey
of human variation on the X chromosome by Taillon-Miller et al. (2000). In this
study, 39 SNPs were surveyed in three population samples, but Hudson only
considered the sample of 92 CEPH males. The parameter ρb was estimated by
maximizing the composite likelihood for (i) all 39 SNPs, (ii) the 14 SNPs in
Xq25, and (iii) the 10 SNPs in or near Xq28. Here the q refers to the q arm of
the X chromosome, and 25 and 28 refer to chromosome bands, which can be
observed under microscopes, and in the era before whole genome sequencing
was used to describe the locations of genes. For loci on the X chromosome,
the methods described above will result in an estimate of 2Nr since these loci
do not experience recombination in males. Hudson multiplied his computer
output by 2 to give an estimate of 4Nr and reported estimates of (i) 9×10−5,
(ii) 8.8 × 10−5, and (iii) 9 × 10−5. These conclusions contrast with those of
Taillon-Miller et al. (2000), who observed that linkage disequilibrium was high
in Xq25 but almost nonexistent in Xq28.

Fearnhead (2003) investigated the consistency of the composite likelihood
estimators of Fearnhead and Donnelly (2002), and the pairwise likelihood of
Hudson (2001), when one examines an increasing number of segregating sites
for a fixed sample size. He proved that the composite likelihood is consis-
tent and proved the consistency of a truncated pairwise likelihood, which is
based on the product of the likelihoods for all pairs of sites that are less than
some distance R apart. Smith and Fearnhead (2005) compared the accuracy
of these two methods and the pseudolikelihood method of Li and Stephens
(2003) using simulated sequence data. They found that the performance was
similar but that the pairwise likelihood method could be improved by includ-
ing contributions to the log-likelihood only for pairs of sites that are separated
by some prespecified distance.

3.7 Haplotypes and hot spots

Sequencing of the human genome revealed that there are sizable regions over
which there is little evidence of recombination and a small number of SNPs
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is sufficient to describe most of the genetic variation. For example, Patil et
al. (2001) found that 80% of human chromosome 21 variation can be described
by only three SNPs per block. The average observed block length was 7.8 kb,
but the longest block stretched more than 115 kb and contained 114 SNPs.
Results of Daly et al. (2001) on a 500 kb region on chromosome 5q31, im-
plicated as containing a genetic risk factor for Crohn’s disease, showed large
haplotype blocks with limited diversity punctuated by apparent sites of recom-
bination. Gabriel et al. (2002) studied haplotype patterns across 51 autosomal
regions and showed that the human genome could be parsed objectively into
haplotype blocks.

Reich et al. (2002) argued that the simplest explanation for LD is that
the population under study experienced an extreme founder effect or bottle-
neck, and that a severe bottleneck occurring 800-1600 generations ago could
have generated the LD they observed. Frisee et al. (2001) argued that the
higher levels of LD in European populations, when compared to African pop-
ulations, support a contribution from the bottleneck in the founding of non-
African populations. However, Ardlie, Kruglyak, and Seielstad (2002) carried
out simulations of several models of demographic history, including bottle-
necks and expansion, and found that any model with nucleotide diversity in
the empirically observed range had useful levels of LD limited to approxi-
mately 10 kb. In the other direction, Anderson and Slatkin (2004) argued
that rapid population growth could account for the patterns observed in the
data from 5q31. For more on the patterns of LD found in various population
genetics models, see Pritchard and Przeworski (2001).

One possible explanation for the observed haplotype blocks is that re-
combinations are not uniformly spread along a chromosome but preferentially
occur in hot spots. Analysis of recombination breakpoints and crossover events
in sperm typing experiments have demonstrated the presence of recombination
hot spots in several genomic locations. The first work was done by Jeffreys,
Ritchie, Neumann (2000) and Jeffreys, Kauppi, Nuemann (2001). For a survey,
see Kauppi, Jeffreys, and Keeney (2004).

Since experimental confirmation of hot spots is technically challenging
and time consuming, Li and Stephens (2003) introduced statistical procedures
based on a heuristic formula for haplotype probabilities to detect fine scale
variation in recombination rates from population data. Using a method based
on Hudson’s (2001) two-sample distributions, McVean et al. (2004) found
evidence of rate variation spanning four orders of magnitude and suggested
that 50% of all recombinations take place in less than 10% of the sequence.

Myers et al. (2005) followed up on this work applying the method to 1.6
million SNPs genotype in samples from three samples: 24 European Ameri-
cans, 23 African Americans, and 24 Han Chinese from Los Angeles by Per-
legen, see Hinds et al. (2005). They estimated that there is a hotspot every
50 kb or so in the human genome, with approximately 80% of recombinations
occuring in 10 to 20% of the sequence. With more than 25,000 hotspots at
their disposal, Myers et al. (2005) also found the first set of sequence features
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substantially overrepresented in hot spots relative to cold spots. Although
the motifs are neither necessary nor sufficient for hot spot activity, their top
scoring candidate (CCCTCCCT ) played a role in 11% of them.

While recombination hot spots exist and will produce haplotype blocks,
it remains unclear how much rate variation, if any, is needed to account for
observed haplotype blocks. Phillips et al. (2003) found that only about one
third of chromosome 19 was covered in haplotype blocks and that there was
no reason to invoke recombination hot spots in order to explain the observed
blocks. Wang et al. (2002) and Zhang et al. (2003) found through extensive
coalescent simulations that haplotype blocks were observed in models where
recombination crossovers were randomly and uniformly distributed.

A second mystery is that despite 99% identity between human and chim-
panzee DNA sequences, ther is virtually no overlap between these two species
in the locations of their hot spots. Ptak et al. (2005) showed that the well
studied TAP2 hotspot in humans was absent in chimpanzees. Winckler et
al. (2005) found that 18 recombination hot spots covering 1.5 megabases in
humans were absent in chimpanzees and observed no correlation between es-
timates of fine scale recombination rates.
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Population Complications

“Mathematics is not a careful march down a well-cleared highway, but
a journey into a strange wilderness, where explorers get lost. Rigour
should be a signal to the historian that maps have been made, and
the real explorers have gone elsewhere.” W. S. Anglin

4.1 Large family sizes

In the Wright-Fisher model the ith individual in the population in generation
t has νi = m descendants in generation t+ 1 with a probability given by the
binomial distribution (

2N
m

)(
1

2N

)m(
1− 1

2N

)2N−m

Expanding out the binomial coefficient, and letting N →∞

2N(2N − 1) · · · (2N −m+ 1)
m!

(
1

2N

)m(
1− 1

2N

)2N−m

=
2N(2N − 1) · · · (2N −m+ 1)

(2N)m

1m

m!

(
1− 1

2N

)2N−m

→ 1 · 1m

m!
e−1

since (1− 1/2N)2N−m → e−1. In words, the binomial(2N, 1/2N) distribution
is approximately Poisson with mean 1 when N is large.

If one is concerned that family sizes in a population don’t follow a Poisson
distribution then one can instead use Cannings’ model. Suppose that the
2N members of the generation t have ν1, ν2, . . . ν2N offspring. By symmetry
the νi are exchangeable, i.e., the joint distribution of any subset of size k,
(νi(1), . . . νi(k)) where the i(j) are distinct, does not depend on the indices,
and ν1 + ν2 + · · · ν2N = 2N . The distribution of the νi will depend on N but
we will not record the dependence in the notation.
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Note that by exchangeability all of the νi have the same mean, which
must be 1 since the sum is 2N . Given the family sizes, the probability that
two individuals chosen at random in generation t+1 have a common ancestor
in generation t is

π2 =
2N∑
i=1

νi(νi − 1)
2N(2N − 1)

Eνi(νi − 1) = Eν2
i − Eνi = Eν2

i − 12 = var (νi). For a sample of size 2, the
probability of coalescence per generation is constant. This suggests that if we
let

cN =
var (νi)
2N − 1

then as N →∞, cNT2 will have an exponential distribution.
Kingman (1982b) showed that if supN Eνk

1 <∞ for all k then the geneal-
ogy on time scale t/cN converges to the coalescent. If var (νi) → σ2 then the
time scale is 2Nt/σ2. Möhle (2000) has shown, see (16) on page 989,

Theorem 4.1. Convergence to Kingman’s coalescent occurs if and only if

E[ν1(ν1 − 1)(ν1 − 2)]/N2

E[ν1(ν1 − 1)]/N
→ 0

The condition says that mergers of three lineages occur at a slower rate than
mergers of two.

Seeing the result above, it is natural to ask if there are limits when the
variances tend to ∞. Sagitov (1999) and Möhle and Sagitov (2001) obtained
a definitive solution to this problem. We begin by describing the limit for the
corresponding coalescent process. To do this we assume, as we did in Section
1.2, that the state of the coalescent at time t is described by a partition
ξ = {A1, . . . , Ak} of {1, 2, . . . n} where n is the sample size, and i and j are
in the same set if the ith and jth individuals have a common ancestor t
generations back in time.

A pair (ξ, η) of partitions is said to be a k merger if all but one of the
sets in η are inherited from ξ without change, and the exceptional set in η is
the union of k sets of ξ. Writing |ξ| for the number of sets in the partition,
|η| = |ξ| − k + 1. The limit process is characterized by an arbitrary finite
measure Λ on [0, 1], and is called the Λ-coalescent. If (ξ, η) is a k-merger then
the rate of jumps from ξ to η is

qξ,η =
∫ 1

0

xk−2(1− x)|ξ|−kΛ(dx) (4.1)

Note that Kingman’s coalescent corresponds to the special case in which Λ is
a point mass at 0, i.e., each 2-merger occurs at rate 1.

The transition rates may look odd, but Pitman (1999) proved that they
are natural. Let λb,k be rate at which a specific k-merger occurs when the
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partition ξ has b blocks. Pitman (1999) showed that if the transition rates
satisfy the consistency condition:

λb,k = λb+1,k + λb+1,k+1

then we must have

λb,k =
∫ 1

0

xk−2(1− x)b−kΛ(dx)

for some finite measure Λ on [0, 1].

Example 4.1. p-merger. At times of a rate λ Poisson process we toss coins
with probability p of heads and coalesce all of the lineages for which a heads
occurs. In this case each k-merger occurs at rate

λpk(1− p)b−k for k ≥ 2

so Λ({p}) = λp2. A Λ-coalescent with λ =
∫
x−2Λ(dx) <∞ can be thought of

as a p-merger with a randomly distributed p, chosen according to x−2Λ(dx)/λ.

The total rate at which mergers occur when there are b blocks is

λb =
b∑

k=2

(
b

k

)
λb,k =

∫ 1

0

b∑
k=2

(
b

k

)
xk−2(1− x)b−kΛ(dx)

=
∫ 1

0

(1− (1− x)k − bx(1− x)k−1)x−2Λ(dx) (4.2)

When b = 2, 1− (1− x)2 − 2x(1− x) = x2, so λ2 = Λ([0, 1]).
Sagitov (1999) found necessary and sufficient conditions for the genealo-

gies of a sequence of Cannings’ models to converge to a Λ-coalescent. For
convenience we formulate the result using his notation, which in particular
replaces 2N by N

Theorem 4.2. Suppose that the family sizes ν1, . . . νN are exchangeable with
fixed sum ν1 + · · · + νN = N . Let σ2(N) = E(ν1 − 1)2, which we suppose is
o(N) and let TN = Nσ−2(N). If NTNP (ν1 > x) →

∫ 1

x
y−2Λ(dy) at all points

where the limit function is continuous and

N−aTNE(ν1 − 1)2(ν2 − 1)2 → 0

then, when time is scaled by TN , the genealogical process converges to the
Λ-coalescent.

Sketch of proof. The key to the proof is the observation that if we condition
on the family sizes (ν1, . . . νN ) and write (N)c = N(N−1) · · · (N−c+1) then
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pξ,η(N) =
(N)a

(N)b
E[(ν1)b(1) · · · (νa)b(a)]

when |η| = a and the ith set of η is the union of b(i) sets of η. From this
we see that the second condition in the theorem excludes two mergers from
happening simultaneously. The first condition allows us to conclude that in
the limit qξ,η satisfies (4.1). We refer the reader to Sagitov’s paper for further
details.

Eldon and Wakeley (2006) have argued that Λ-coalescents are appropriate
for modeling genealogies of some marine species. They considered a model in
which at each discrete time step, exactly one individual reproduces and is the
parent of U−1 new individuals. The parent persists while its offspring replace
U − 1 individuals who die. Mutations can occur to any of the U − 1 offspring
but the other N −U individuals persist without change. To have large family
sizes they let 0 < ψ < 1 be a fixed constant and suppose that

P (U = u) =


1−N−γ u = 2
N−γ u = ψN

0 otherwise

To use the Λ-coalescent for modeling, one needs to restrict attention to
a subfamily of measures Λ. However, “beta coalescents,” which we will now
describe, seem to be a more attractive choice of model. Schweinsberg (2003)
considered a population model in which the number of offspring of each indi-
vidual Xi is chosen independently according to some distribution on {0, 1, . . .}
with mean > 1, and then N of the offspring are chosen to make up the next
generation. For a mental picture, consider annual plants. Each plant produces
many seeds, but the total population size remains roughly constant since the
environment can support a limited number of plants per acre.

Let ν1, . . . νN be the family sizes after the N offspring have been chosen
and define

cN =
E[ν1(ν1 − 1)]

N − 1

Part (c) of Theorem 4 in Schweinsberg (2003) shows

Theorem 4.3. Suppose EXi = µ > 1 and P (Xi ≥ k) ∼ Ck−α with 1 < α <
2. Then, when time is run at rate 1/cN , the genealogical process converges to
a Λ-coalescent where Λ is the beta(2− α, α) distribution, i.e.,

Λ(dx) =
x1−α(1− x)α−1

B(2− α, α)

where B(a, b) = Γ (a)Γ (b)/Γ (a + b), and Γ (a) =
∫∞
0
xa−1e−x dx is the usual

gamma function.
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Parts (a) and (b) of his result show that when α ≥ 2 the limit is Kingman’s
coalescent, while part (d) shows that when α < 1 the limit has simultaneous
mergers. In the borderline case α = 1 the conclusion of Theorem 4.3 also
holds. We have excluded this case from our consideration so that we can use
Lemma 13 in Schweinsberg (2003) to conclude:

lim
N→∞

Nα−1cN = CαB(2− α, α) (4.3)

Note that time is run at rate O(Nα−1) compared to time O(N) in Kingman’s
coalescent or in Cannings’ model with finite variance. To explain the rate we
note that if the only effect of the subsampling was to truncate the distribution
at N then

Eν2
1 ∼

∫ N

0

2xP (Xi > x) dx = 2C
∫ N

0

x1−α dx = O(N2−α)

so cN = O(N1−α).
The limit processes that appear in Theorem 4.3 are commonly referred

to as beta coalescents. They are convenient for modeling because they are
a two parameter family described by (i) the index α determined by the size
of the tail of the distribution and (ii) the constant A which appears in the
time change: ANα−1. Of course, we cannot estimate A, only the composite
parameter θ = ANα−1µ.

A second reason for using these processes is that many of their proper-
ties have been studied mathematically. Birkner et al. (2005) have shown that
these coalescents arise as genealogical processes of continuous state branching
processes that arise from stable branching mechanisms. However, for the de-
velopments here the work of J. Berestycki, N. Berestycki, and Schweinsberg
(2006a,b), which we now describe, is more relevant.

Theorem 4.4. Suppose we introduce mutations into the beta coalescent at
rate θ, and let Sn be the number of segregating sites observed in a sample of
size n. If 1 < α < 2 then

Sn

n2−α
→ θα(α− 1)Γ (α)

2− α

in probability as n→∞.

In contrast, as Theorem 1.23 shows, in Kingman’s coalescent

Sn

log n
→ θ

However, in comparing the two results one must remember that θ = 2Nµ in
Kingman’s coalescent compared with θ = AµNα−1 in the beta coalescent.

One can also compute the site frequency spectrum.
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Theorem 4.5. Suppose we introduce mutations into the beta coalescent at
rate θ, and let Mn,k be the number of mutations affecting k individuals in a
sample of size n. Then

Mn,k

Sn
→ ak =

(2− α)Γ (α+ k − 2)
Γ (α− 1)k!

in probability as n→∞.

Using the fact that Γ (n+ a)/Γ (n) → na as n→∞

ak ∼ Cαk
α−3 as k →∞

When α = 2 this reduces to the 1/k behavior found in Kingman’s coalescent.
When k = 1, ak = 2 − α so one can, in principle, use the fraction of

singletons in a large sample to estimate 2− α.

Example 4.2. Boom, Boulding, and Beckenbach (1994) did a restriction en-
zyme digest of mtDNA on a sample of 159 Pacific Oysters from British
Columbia and Washington. They found 51 segregating sites and 30 single-
ton mutations, resulting in an estimate of

α = 2− 30
51

= 1.41

However, this estimate is biased. If the underlying data was generated by
Kingman’s coalescent, we would expect a fraction 1/ ln(159) = 0.2 of single-
tons, resulting in an estimate of α = 1.8. Since there are no formulas for
the expected site frequency spectrum for fixed n, this quantity needs to be
computed by simulation in order to correct the estimate.

A second data set to which these methods can be applied is Arnason’s
(2004) sequencing of 250 bp of the mitochondrial cytochrome b gene in 1278
Atlantic cod Gadus morhua. However, the analysis of this data is made prob-
lematic by the fact that 39 mutations define 59 haplotypes, so there have been
at least 19 repeat mutations. Birkner and Blath (2007a,b) have analyzed this
data set by extending methods of Ethier and Griffiths (1987) and Griffiths and
Tavaré (1994a) to compute likelihoods for data from nonrecombining regions.

4.2 Population growth

In some cases, e.g., humans, it is clear that the population size has not stayed
constant in time. This motivates the consideration of a version of the Wright-
Fisher model in which the number of diploid individuals in generation t is
given by a function N(t), but the rest of the details of the model stay the
same. That is, in the case of no mutation, generation t is built up by choosing
with replacement from generation t − 1. Reversing time leads as before to a
coalescent.
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4.2.1 Exponential growth

Let N(s) = N0e
ρs for 0 ≥ s ≥ s0, where s0 = −ρ−1 ln(N0) is defined so that

N(s0) = 1. A concrete example of this can be found in the work of Harding
et al. (1997), who used N0 = 18, 807 and ρ = 0.7/2N0 = 1.861 × 10−5 as a
best fit model for data from the β-globin locus in the human population.

The probability that the lineages of two chromosomes sampled at time 0
do not coalesce before generation t < 0 is (using 1− x ≈ e−x)

−1∏
s=t

(
1− 1

2N(s)

)
≈ exp

(
−

−1∑
s=t

1
2N(s)

)
(4.4)

≈ exp
(
−
∫ 0

s=t

e−ρs

2N0
ds

)
= exp

(
−e

−ρt − 1
2ρN0

)
The right-hand side is shown in the following diagram:
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Fig. 4.1. Distribution of coalescence times in the example of Harding et al (1997).

To check the graph, we note that 2ρN0 = 0.7 so the right-hand side is e−1 =
0.3678 when t = −ρ−1 ln(1 + 2ρN0) = −28, 500. Note that the time s0 at
which N(s0) = 1 is s0 − ρ−1 ln(N0) = −528, 850, but as the graph shows,
almost all of the coalescence has occurred by time −80, 000.

The shape of the coalescence curve may surprise readers who have heard
the phrase that genealogies in exponentially growing populations will tend to
be star-shaped. That is, all of the coalescence tends to occur at the same time.
Results of Slatkin and Hudson (1991) show that this is true provided 2N0ρ is
large, while in our first example 2N0ρ = 0.7.

Consider now a situation in which N0 = 100, 000 and ρ = 5 × 10−5 so
2N0ρ = 10. The distribution is now a little more concentrated, but there still
is a considerable amount of variability in the distribution drawn in the next
figure. To check the graph, note that the curve crosses e−1/10 = 0.905 when



132 4 Population Complications

e−ρt − 1
10

=
1
10

or t = − ln 2/ρ ≈ −14, 000

and crosses e−2.3 = 0.1 when t = − ln(24)/ρ ≈ −63, 500.
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1

Fig. 4.2. Distribution of coalescence times when N0 = 100, 000 and ρ = 5× 10−5.

To further understand the nature of the phylogenies in a population of
variable size, we note that when there are k lineages at time s+1 a coalescence
will occur at time s with probability(

k
2

)
2N(s)

+O

(
1

N(s)2

)
From this it follows that

Theorem 4.6. If we represent the time interval [s, s+1] as a segment of length
1/2N(s), then on the new time scale our process is almost the continuous
time coalescent in which k lineages coalesce after an exponentially distributed
amount of time with mean 1/

(
k
2

)
.

This idea, which is due to Kingman (1982b), allows us to reduce our com-
putations for a population of variable size at times t ≤ s ≤ 0 to one for the
ordinary coalescent run for an amount of time

τ =
−1∑
s=t

1
2N(s)

(4.5)

Example 4.3. Kruglyak’s (1999) model of the human population expansion.
Humans expanded out of Africa about 100,000 years ago. Assuming a gen-
eration time of 20 years, this translates into T = 5,000 generations. If we
assume that the population had size 10,000 before expansion and use a figure
of 6 billion for the population size today, then the rate of expansion found by
solving the equation
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e5000ρ = (6× 109)/(10, 000)

is ρ = (ln(6× 105))/5000 = 0.00266.

0 T = 5000

N = 10, 000 exp. growth

Using (4.5), we see that genealogies in [0, T ] correspond to the coalescent run
for time

τ =
T−1∑
t=0

1
20, 000eρt

≈ 1
20, 000

∫ T

0

e−ρt dt =
1− e−ρT

20, 000ρ
.

Recalling that T = 5000 and e−ρT = 1/(6× 105) ≈ 0, we see that the above

≈ 1
20, 000ρ

=
1

52.2
= 0.01916.

Let Tk be the number of generations we have to go back in time until
there are only k lineages ancestral to the sample. If we consider two lineages,
then the probability of no coalescence before time 0 as we work back from the
present time T is

P (T1 > 0.01916) = e−0.01916 = 0.9810.

When the two lineages do not coalesce before time 0, they are then two lineages
in a population of constant size 10,000 and hence require an additional amount
of time with mean 20,000 to coalesce. Ignoring the possibility of coalescence
before time 0, which will introduce only a small error, we conclude that the
expected coalescence time of two lineages is 25,000.

If we now consider three lineages, then there are three pairs potentially
coalescing, so the probability of no coalescence before time 0 is

P (T2 > 0.01916) = e−3(0.01916) = 0.9441.

When none of the three lineages coalesces before time 0, the time to the first
coalescence will require an average of 2N/3 = 13, 000 generations and then the
final coalescence will require another 20,000 generations on the average. From
this we can see that to a good first approximation, the effect of population
expansion has been simply to add 5,000 generations to the end of each lineage
in the ordinary coalescent.

Durrett and Limic (2001) investigated properties of Kruglyak’s model in
order to predict the number of SNPs in the human genome and to show that
most of them date to the time before the population expansion. A key part of
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their investigation is a result of Griffiths and Pakes (1988) which shows that
the genealogical structure of the population during the growth phase can be
well approximated by the lineages in a supercritical branching process that
have offspring alive at the end of the expansion.

The lengthening of the tips of the genealogical tree in Kruglyak’s model
results in an excess of mutations that have one representative. This should re-
mind the reader of the Aquadro and Greenberg data set discussed in Example
1.5 in Section 1.4. Before we tackle the thorny question: “Do the patterns of
variation in human mitochondrial DNA show signs of the human population
expansion?”, we will introduce another demographic scenario.

4.2.2 Sudden population expansion

Let N(t) = N1 for −t1 < t ≤ 0, N(t) = N2 for t ≤ −t1, where N1 is much
larger than N2.

N1

N2

0−t1

Example 4.4. DiRienzo et al. (1994) used a sudden expansion model with t1
= 5,000 generations, N1 = 107 and N2 = 103, to model the Sardinian pop-
ulation. As the authors say “This model represents a drastic bottleneck in
the population’s size that results in a starlike gene genealogy.” To check this
for their sample of size 46, note that the initial probability of coalescence per
generation is

46 · 45
2

· 1
2 · 107

= 5.175× 10−5

so the expected number of coalescence events in 5000 generations is ≤ 0.25875,
and the actual number will be roughly Poisson with this mean. Of course,
once the 46 (or 45) lineages reach time −5000 and the population size drops
to 1,000, the remainder of the coalescence will take an average of

2000 ·
(

2− 1
46

)
= 3956 generations

Since this number is almost as large as the original 5000, we see that even
in this extreme scenario the genealogies are not quite star-shaped. There is,
of course, quite a bit of coalescence right after the population decrease. The
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number of lineages will reduce to 10 in an average of (2/10)1000 = 200 gen-
erations.

Fig. 4.3. Parsimony tree for mtDNA data of Cann et al. (1987).

Example 4.5. Human mitochondrial DNA. Cann, Stoneking, and Wilson (1987)
collected mtDNA from 147 people drawn from five geographic populations
and analyzed them using 12 restriction enyzmes, finding 398 mutations. Their
analysis found 133 different mutation patterns. Adding in the pattern asso-
ciated with the reference sequence of human mtDNA from Anderson (1981),
they built a parsimony tree using the computer program PAUP designed by
Swofford. Noting that one of the two primary branches leads exclusively to
African mtDNA types, while the second primary branch also leads to African
mtDNA types, they suggested that Africa was the likely source of the mtDNA
gene pool.

To assign a time scale to the tree, they first used their data and previous
sources to argue that the mean rate of mtDNA divergence for humans lies
between 2 and 4 percent per million years; see Stoneking, Bhatia, and Wilson
(1986). Using their tree, they concluded that the average divergence between
the African group and the rest of the sample was 0.57%, giving an estimate of
140,000 to 290,000 years for the date of the common ancestor. Similar results
were obtained in two other studies by Vigilant et al. (1989) and Horai and
Hayasaka (1990).

The next figure shows the distribution of the number of differences when
all possible pairs of the 147 data points are compared. The x-axis gives the
number of differences, while the y-axis gives the number of pairwise compar-
isons with that number of differences. The circles show the best fitting Poisson
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Fig. 4.4. Distribution of pairwise differences, compared to the best fitting Poisson
(circles), and a more exact calculation of Rogers and Harpending (black dots).

distribution, which has mean 9.2. The idea behind fitting the Poisson distribu-
tion is that if there is rapid population growth then the genealogy tends to be
star-shaped, and if the genealogy were exactly star-shaped then the number
of pairwise differences between two individuals would have exactly a Poisson
distribution.

Rogers and Harpending (1992) took a more sophisticated approach to
fitting the data on pairwise differences, resulting in the fit given by the black
dots. Their starting point was a result of Li (1977), which we will now derive.
Shifting the time of the expansion to 0 for convenience we suppose N(s) = N0

for s < 0, N(s) = N1 for s ≥ 0. Consider the situation 2N1t units of time
after the population expansion, use the infinite sites model for the mutation
process, and let Fi(t) be the probability that two randomly chosen individuals
differ at i sites. Breaking things down according to the time to coalescence
of two lineages, which in a population of constant size N1 has an exponential
distribution with mean 1, and recalling that mutations occur on each lineage
at rate 2N1u = θ1/2, we have

Fi(t) =
∫ t

0

e−se−θ1s (θ1s)i

i!
ds+ e−t

i∑
j=0

e−θ1t (θ1t)
j

j!
Fi−j(0),
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where Fk(0) = θk
0/(1 + θ0)k+1 is the probability that two individuals at time

0 differ at k sites.
To convert this into the form given in Li’s paper, we note that the equi-

librium probability of i differences is

F̂i =
∫ ∞

0

e−se−θ1s (θ1s)i

i!
ds =

θi
1

(1 + θ1)i+1
,

where the second equality follows by recalling the formula for the ith moment
of the exponential distribution or by integrating by parts i times. Noticing
that in a population of constant size N1 if the two lineages do not coalesce
before time t then the number of mutations that occur after time t before
coalescence has distribution F̂k, we have

F̂i =
∫ t

0

e−se−θ1s (θ1s)i

i!
ds+ e−t

i∑
j=0

e−θ1t (θ1t)
j

j!
F̂i−j .

Subtracting this from the corresponding formula for Fi(t) we have

Fi(t) = F̂i + e−t
i∑

j=0

e−θ1t (θ1t)
j

j!
(Fi−j(0)− F̂i−j)

Introducing the scaled time variable τ = θ1t, Rogers and Harpending found
the best parameters to fit the data of Cann, Stoneking, and Wilson (1987)
were as follows: θ0 = 2.44, θ1 = 410.69, τ = 7.18. The predicted values given
by the black dots in the figure give a much better fit to the data than the
Poisson distribution. Of course, the Rogers and Harpending model has three
parameters compared to one for the Poisson distribution.

To relate the fitted parameters to data, we must estimate u, which is the
mutation rate in the region under study. Using the data of Cann, Stonek-
ing, and Wilson (1987), Rogers and Harpending calculated that u is between
7.5 × 10−4 and 1.5 × 10−3. The estimate τ̂ = 7.18 implies that the popula-
tion expansion began some 2N1t = τ/2u, or 2400 to 4800 generations ago.
Assuming a generation time of 25 years, this translates into 60,000 to 120,000
years. The estimate of θ0 puts the initial population at θ0/4u, or 400to 800
females, and that of θ1 puts the population after expansion at θ1/4u or 68,500
to 137,000 females. The first prediction conflicts with the widely held belief,
see Takahata (1995), that an effective population size of 10,000 individuals
has been maintained for at least the last half million years.

Example 4.6. Harding et al. (1997) have studied a 3 kb region on chromosome
11 encompassing the β-globin gene in nine populations from Africa, Asia, and
Europe. Eliminating sequences that showed evidence of recombination they
used methods of Griffiths and Tavaré (1994a,b) to give a maximum-likelihood
estimate of the genealogical tree, which has a most recent common ancestor
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800,000 years ago. At first this may seem to disagree with the estimate of
200,000 years for mitochondrial eve, but mtDNA is haploid and maternally
inherited, so the effective population size (and hence coalescence time) for
nuclear genes is four times as large.

Maximum-likelihood estimates of the scaled mutation rate θ were made
with a model of exponential growth for comparison with a constant-size
model. The best fitting population model had θ = 4.5 and a population size
18, 087e−0.7t at 2N0t generations into the past. An improved fit compared
with the constant population size model must occur because of the addition
of a parameter to the model, but this improvement was not judged to be
significant by a log-likelihood test ratio. Harding et al. (1997) concluded that
any population size expansion has been too recent to be detectable in the
surveyed patterns of β-globin diversity.

4.3 Founding effects and bottlenecks

Bottlenecks are a sudden reduction in the size of a population. For an extreme
example, suppose that a single inseminated female from a large population mi-
grates into an unoccupied geographical location and establishes a new colony
followed by a rapid population growth in the new environment. This process is
believed to have occurred repeatedly in the evolution of Hawaiian Drosophila
species. We being by discussing work of Nei, Maruyama, and Chakraborty
(1975), who did computations for a very general model.

Example 4.7. Founding effects. To study the effect of bottlenecks on genetic
variability in populations, we will consider Jt = the expected homozygosity
in generation t.

Theorem 4.7. Letting u denote the mutation rate per locus per generation
and assuming that each mutation produces a new genetic type

Jt ≈
∫ t

0

1
2Ns

exp
(
−2u(t− s)−

∫ t

s

1
2Nr

dr

)
ds

+ J0 exp
(
−2ut−

∫ t

0

1
2Ns

ds

)
(4.6)

Proof. In order for two individuals to have the same genotype at time t, neither
can be a new mutant, an event of probability (1− u)2. If neither is a mutant
and their parents in generation t − 1 are the same, an event of probability
1/2Nt−1 they will be the same with probability 1; if not they will be the same
with probability Jt−1, so we have

Jt = (1− u)2
[

1
2Nt−1

+
(

1− 1
2Nt−1

)
Jt−1

]
(4.7)
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Using the formula in (4.7) for Jt−1 we have

Jt = (1− u)2
1

2Nt−1
+ (1− u)4

(
1− 1

2Nt−1

)
1

2Nt−2

+(1− u)4
(

1− 1
2Nt−1

)(
1− 1

2Nt−2

)
Jt−2

Iterating this relationship, we find

Jt =
t∑

j=1

(1− u)2j

2Nt−j

j−1∏
i=1

(
1− 1

2Nt−i

)

+ J0(1− u)2t
t∏

i=1

(
1− 1

2Nt−i

)

where
∏0

i=1 zi = 1 by convention. This formula can be derived directly by
breaking things down according to the generation t− j on which coalescence
occurs, with the last term giving the probability of no coalescence. When v is
small and the Nt−i’s are large, this can be approximated by

Jt =
t∑

j=1

1
2Nt−j

exp

(
−2uj −

j−1∑
i=1

1
2Nt−i

)

+ J0 exp

(
−2ut−

t∑
i=1

1
2Nt−i

)

Changing variables k = t− j and ` = t− i, which in the inner sum will range
from ` = t− (j − 1) = k + 1 up to t− 1, we have

Jt =
t−1∑
k=0

1
2Nk

exp

(
−2u(t− k)−

t−1∑
`=k+1

1
2N`

)

+ J0 exp

(
−2ut−

t−1∑
`=0

1
2N`

)

Converting the sums into integrals gives the desired result.

For a concrete example of the use of our formula (4.6), consider

Example 4.8. Logisitic population growth. In many situations it is natural to
assume that the size of a population grows according to the logistic growth
model

dNt

dt
= rNt(K −Nt)
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Here r is the intrinsic growth rate, which gives the exponential rate of growth
when the population is small, and K = limt→∞Nt is the equilibrium popula-
tion size, the maximum number of individuals that the habitat can support.
The solution to this equation for initial condition N0 is

Nt = K/(1 + Ce−rt) where C = (K −N0)/N0.

With the Hawaiian Drosophila example in mind, Nei, Maruyama, and
Chakraborty took N0 = 2 to indicate the founding of the population by
one female that has been inseminated by one male. Thinking of the locus as
a single nucleotide, they set the mutation rate u = 10−8. The equilibrium
population size K = 4× 106 was then chosen so that the heterozygosity

H0 =
4Ku

4Ku+ 1
=

0.16
1.16

= 0.138

matches that observed in nature. They did not have much information about
the intrinsic growth rate r, so they considered several values of r ranging from
0.1 to 1.

N0 = 2 << K so C = (K −N0)/N0 ≈ K/2 and Nt ≈ K/(1 + (K/2)e−rt).
When r = 0.1 it takes t = 10 ln(K/2) = 145 generations for the population to
reach size K/2 and t = 10 ln(5K) = 161 generations to reach size K/1.1. To
begin to evaluate (4.6), we note that

1
Nt

=
1
K

+
1
2
e−rt

Inserting this into (4.6) leads to an ugly expression with two levels of expo-
nentials. Because of this and the fact that the approximations that led to (4.6)
are not valid when N(s) is small, we use the recursion (4.7) to evaluate Jt for
small t. Since u = 10−8, we can write

Jt ≈
1

2Nt−1
+
(

1− 1
2Nt−1

)
Jt−1

or the heterozygosity Ht = 1− Jt satsifies

Ht ≈
(

1− 1
2Nt−1

)
Jt−1

The initial heterozygosity H0 = 0.138, so using the recursion we can com-
pute the values of Jt for 0 ≤ t ≤ 50 and r = 1.0, 0.5, 0.2, 0.1.

If we continue to iterate up to time 300 then the values change very little.

r = 1.0 r = 0.5 r = 0.2 r = 0.1
50 0.089022 0.069016 0.031176 0.008346
100 0.089022 0.069015 0.031174 0.008201
150 0.089021 0.069015 0.031174 0.008200
200 0.089021 0.069015 0.031174 0.008200
250 0.089020 0.069014 0.031174 0.008200
300 0.089020 0.069014 0.031173 0.008199
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Fig. 4.5. Values of Jt for 0 ≤ t ≤ 50.

At time 300, we have Nt = 3, 999, 999.17 when r = 0.1. Since Nt increases
with r or with t we see that for t ≥ 300, Nt ≈ K = 4, 000, 000. Using this in
(4.6), we see that for t ≥ 300

Jt ≈
∫ t

300

1
2K

exp
(
−
(

2u+
1

2K

)
(t− s)

)
ds

+J300 exp
(
−
(

2u+
1

2K

)
(t− 300)

)
Evaluating the integral and letting γ = 2u+ 1/2K = 1.45× 10−7 we have

Jt ≈
1

4Ku+ 1

(
1− exp−γ(t−300)

)
+ J300 exp−γ(t−300)

This shows that Jt eventually returns to the equilibrium value 1/(4Ku+1) =
0.862. However, the time required is a multiple of 1/γ = 6, 896, 551 genera-
tions. This is not quite as large as it sounds, since if we assume Drosophila
have 10 generations a year this is about 700,000 years.

Bottlenecks

The use of the logisitic growth model in the previous example is somewhat
unusual. In studying bottlenecks, it is much more common to suppose that
the population sizes are piecewise constant. As drawn in the picture below,
we assume that the current population size is N1, at some point in the past
it is reduced to fN1 for an amount of time tB , measured in units of 2N1

generations, and then returns to an ancestral population size of N0.
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N0

fN1

N1

0

tB

Suppose for the moment that N0 = N1. During the bottleneck the probability
of coalescence is increased. The probability that a pair of chromosomes does
not coalesce during the bottleneck is 1 − exp(−tB/f), so the strength of the
bottleneck is mainly determined by the product of its length (tB) and its
severity (1/f).

The effect of a bottleneck on a sample depends on the strength of the
bottleneck and how long ago it occurred. During a recent severe bottleneck,
all lineages coalesce leading to a star-shaped genealogy, and to an excess of
rare alleles. In contrast, more moderate bottlenecks allow several lineages to
survive the crash, leading to genealogies with long internal branches and re-
sulting in an excess of alleles of intermediate frequency. Tajima’s D is negative
in the first case and positive in the second. Fay and Wu (1999) used simu-
lations to show that Tajima’s D becomes positive during the bottleneck and
then decays to negative values after the bottleneck is over.

Example 4.9. One situation that leads to a bottleneck is the domestication
of crop species. Eyre-Walker et al. (1998) studied the domestication of maize
(Zea mays subspecies mays), which is thought to have occurred somewhere in
southern or central Mexico about 7,500 years ago. To begin they determined
the DNA sequence of a 1400 bp region of the Adh1 locus from 24 individuals
representing maize, its presumed progenitor (Z. mays subspecies parviglumis),
and a more distant relative (Z. luxurians).

The data is given in the following table. There, n is the number of seqe-
unces, m the number of silent sites, S, the number of segregating silent sites
(with the number of segregating replacement sites in parentheses), Watter-
sons’ estimate of θ = 4Neµ, and Tajima’s D based on silent sites.

Taxa n m S θ D
parviglumis 8 993 63(1) 24.3 - 0.241
maize 9 997 49(1) 18.03 0.785
luxurians 7 998 26(0) 10.61 0.258

The effective population size, NA before the bottleneck can be estimated
by using the value of θ = 0.0245 for parviglumis. Using a mutation rate of
µ = 6.5×10−9 per generation for the approximately 1000 silent sites sequenced
in this annual plant, we find
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NA =
θ

4 · 1000 · µ
=

24.3
26× 10−6

≈ 940, 000

Using coalescent simulations they estimated the number of plants NB during
the bottleneck. If the duration of bottleneck was tB = 10 generations then
they found NB = 23, while for a bottleneck of tB = 500 generations they
found NB = 1, 157. Note that in each case the probability of coalescence
during the bottleneck tB/NB ≈ 1/2.3 = 0.434. This means that the nine
sampled lineages are unlikely to coalesce to 1 during the bottleneck, which by
remarks above is consistent with the observed positive value of Tajima’s D.

4.4 Effective population size

In some cases when the population is subdivided or its size changes in time,
measures of genetic variability are the same as in a homogeneously mixing
population of effective size Ne. In Section 1.4, we mentioned the effective
population size in our discussion of the nucleotide diversity. SpecificallyNe was
the population size needed to make π = 4Nµ match the observed frequency
of pairwise differences. Since π is 2µ times the expected coalescence time T2

for two lineages, we can define

• the nucleotide diversity effective population size

Nπ
e = ET2/2

In general, one can define an effective population size by considering a con-
venient statistic. In a homogeneously mixing population, the probability, π2,
that two genes picked at random are descendants of the same parent gene
= 1/2N , so we can let

• the inbreeding effective population size

N i
e = (2π2)−1

The largest eigenvalue smaller than 1 for the Wright-Fisher model is λmax =
1− 1/2N so

• the eigenvalue effective population size

Ne
e =

1
2
(1− λmax)−1

If xt = the fraction of A alleles then var (xt+1|xt) = xt(1− xt)/2N , so

• the variance effective population size

Nv
e =

xt(1− xt)
var (xt+1|xt)
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This notion is not easy to work with and does not make sense in some settings,
e.g., subdivided populations, so we will ignore it here. The eigenvalue effective
population size is difficult to compute and is covered in detail in Section 3.7 of
Ewens (2004) book, so here we will concentrate on Nπ

e , N i
e, and a new notion

introduced by Sjödin et al. (2005).

• If, when time is run at rate 2L, genealogies follow Kingman’s coalescent
then we define the coalescent effective population size N c

e = L.

This is the strongest and most satisfactory notion, since when in this case ALL
of the statistics associated with the model are the same as in a homogeneously
mixing population of size N c

e .
To illustrate the use of these definitions, we will consider

Example 4.10. Periodically varying population.

Theorem 4.8. Suppose that the population size N(s) cyclically assumes the
values N1, N2, . . . Nm. The coalescent effective population size is

N c
e = m

/
m∑

s=1

1
N(s)

which is the harmonic mean of the population sizes.

Since 1/x is convex, Jensen’s inequality implies

1
m

m∑
s=1

1
N(s)

≥ 1
(1/m)

∑m
s=1N(s)

That is, Ne ≤ (1/m)
∑m

s=1N(s), the average population size.

Proof. The probability of no coalescence in one cycle is:

m∏
s=1

(
1− 1

2N(s)

)
≈ 1−

k∑
s=1

1
2N(s)

Let Ne = m/
∑m

s=1 1/N(s). Assuming all of the N(s) are large the probability
that two lineages will not coalesce in 2Net generations is approximately(

1−
m∑

s=1

1
2N(s)

)2Net/m

≈ e−t

A similar calculation shows that if there are k lineages and we scale time in
units of 2Ne generations then coalescence occurs at rate

(
k
2

)
, i.e., the genealogy

is given by Kingman’s coalescent.
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For a concrete example, if the population size alternates between 1,000
and 100,000 then it has effective population size

2
/(

1
1, 000

+
1

100, 000

)
=

200, 000
101

= 1980

We would get the same result if, thinking of Drosophila, there were 10 gener-
ations a year, five when the population was small (1000) and five when it was
large (100,000). Note that the size of Ne is dictated primarily by the small
population size. If we replace 100,000 by 10,000,000 then Ne ≈ 2000.

One has similar results when the population size experiences random fluc-
tuations, e.g., the population sizes are independent or are given by a finite
state Markov chain. In this case if πk = P (N(s) = k) then

Ne = 1

/∑
k

πk

k

See Kaj and Krone (2003) and Sano, Shimizu, and Iizuka (2004).

Example 4.11. Two-sex model. Suppose that in any generation there are N1

diploid males and N2 diploid females with N1 +N2 = N and that each diploid
offspring gets one chromosome chosen at random from the male population
and one chosen at random from the female population.

Theorem 4.9. For the two-sex model, the coalescent effective population size
is

N c
e =

4N1N2

N1 +N2
(4.8)

Proof. To compute the inbreeding effective population size we note that two
chromosomes taken at random from the population will have identical parent
chromosomes if both are descended from the same male chromosome or both
from the same female chromosome. Since there are N(N − 1) pairs of male
chromosomes and N(N − 1) pairs of female chromosomes out of 2N(2N − 1)
pairs in the population, the probability of identical parentage is thus

π2 =
N(N − 1)

2N(2N − 1)
{
(2N1)−1 + (2N2)−1

}
From this it follows that

N i
e = (2π2)−1 ≈ 2

(2N1)−1 + (2N2)−1
=

4N1N2

N1 +N2

Again, since the probability of coalescence per generation is constant, T2/2N i
e

will have approximately an exponential distribution and N c
e = N i

e. It is
straightforward to extend the last conclusion to k lineages and show that
rescaling time by 2N i

et produces Kingman’s coalescent in the limit, so N c
e =

N i
e.
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For a concrete example, consider a herd of cattle where each generation
has 10 bulls and 1000 cows. In this case

Ne
i =

4 · 10 · 1000
1010

= 39.6

In general, if N1 << N2 then Ne
i ≈ 4N1.

4.5 Matrix migration models

Bodmer and Cavalli-Sforza (1968) introduced a model in which there are a
finite number of subpopulations with migrations between them described by
a transition matrix. In this section, we will study the model in general. In
the next, we will restrict our attention to the symmetric case in which all of
populations have the same size and the migration rates are equal. To motivate
the ideas we will consider the following data collected by Modiano et al. (1965)
for four villages on the Lecce province. Let ai,j be the number of parents of
individuals in village i who were from village j.

aij =

1 2 3 4
1 344 6 22 6 378
2 4 214 4 4 226
3 11 1 326 7 346
4 1 3 7 356 368

360 224 360 374 1318

If we normalize the columns to sum to 1, then we get the forward migration
matrix fi,j which gives the fraction of parents from village j who sent their
offspring to village i.

fij =

1 2 3 4
1 0.955556 0.026786 0.061111 0.016043
2 0.011111 0.955357 0.011111 0.010695
3 0.030556 0.004464 0.905556 0.021390
4 0.002778 0.013393 0.022222 0.951872

1.0 1.0 1.0 1.0

If we normalize the rows to sum to 1, then we get the backward migration
matrix mi,j which gives the fraction of offspring from village i whose parents
are from village i.

mij =

1 2 3 4
1 0.910053 0.015873 0.058201 0.015873 1.0
2 0.017699 0.946903 0.017699 0.017699 1.0
3 0.031792 0.002890 0.942197 0.023121 1.0
4 0.002717 0.008152 0.021739 0.967391 1.0
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If we let n0 = (378, 226, 346, 368) be the column vector that gives the
initial distribution of parents, then n1(i) =

∑
j fi,jn0(j) gives distribution of

offspring, which can be found on the bottom row of the table that gives ai,j .
The evolution of the village sizes over time can be computed by

nt(i) =
∑

i

fijn0(j)

The proportions of the individuals in the four villages in the 0th generation
are 0.2867, 0.1714, 0.2625, 0.2792. In the 1st generation they change to 0.2731,
0.1699, 0.2731, and 0.2837. If we raise f to the 200th power we see

f200
i,j =

1 2 3 4
1 0.442521 0.442505 0.442517 0.442507
2 0.198028 0.198038 0.198028 0.198027
3 0.190741 0.190735 0.190740 0.190739
4 0.168710 0.168722 0.168715 0.168727

so the current distribution is far from the equilibrium that will be attained
through migration.

In order to predict the evolution of allele frequencies, the backwards matrix
is used. If we let pt(j) be the frequencies in generation t then

pt+1(i) =
∑

j

mijpt(j)

The next figure gives a concrete example of the use of this formula.
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Fig. 4.6. Frequencies in our example when we start with (0.5, 0.4, 0.3, 0.2).
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Abstracting from the example, suppose that there are n subpopulations
that have reached equilibrium sizes N1, . . . Nn and let mij be the probability
that an individual in subpopulation i is a descendant of an individual in
subpopulation j. That is, to build up subpopulation i in generation t + 1,
we sample Ni times with replacement from generation t, picking at random
from subpopulation j with probability mij . Note that with the definition of
the coalescent in mind, these are the backward migration probabilities. If we
think of annual plants and a fraction fij of seeds of an individual in population
i are sent to j then

mij =
Njfji∑
k Nkfki

(4.9)

For a concrete example consider the two sex model. In this case mij = 1/2
while fij = Nj/(N1 +N2).

To define a genealogical process introduced by Notohara (1990) and called
the structured coalescent, we choose let choose a real number N and run time
at rate 2N . The state of the process at time t is k = (k1, . . . , kn) where ki is
the number of lineages in subpopulation i. Writing ei for a vector with 1 in
the ith place and 0 otherwise transitions occur

to at rate
k− ei + ej 2N · kimij

k− ei 2N · ki(ki−1)
2 · 1

2Ni

The 2N ’s in front come from speeding up time. The first transition rate comes
from one of the ki lineages migrating from i to j with probability mij . The
second transition comes from one of the

(
ki

2

)
pairs of lineages coalescing in

subpopulation i, an event of probability 1/2Ni. We assume that all of the mij

are small so there is no factor of the form 1 −
∑

j 6=imij for the lineages not
migrating. As usual, we ignore the possibility that two events occur at one
time. For more on the structured coalescent, see Wilkinson-Herbots (1998).

4.5.1 Strobeck’s theorem

Let Ti be the coalescence time of two lineages sampled from colony i. Strobeck
(1987) found general conditions that imply that ETi = 2Nn and hence do not
depend on the migration rate. To state his result we need two assumptions:

• mij is irreducible, i.e., it is possible to get from any colony to any other
by a sequence of migrations

• mij is aperiodic, i.e., for some i the greatest common divisor of {k : mk
ii >

0} is 1.

A sufficient condition for aperiodicity is mii > 0 for some i. A result from
Markov chain theory implies that if mij is irreducible and aperiodic, then
there is a stationary distribution πi so that

∑
i πimij = πj , and mt

ij → πj as
t→∞.
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Theorem 4.10. Suppose that all subpopulations have the same size, Ni =
N , and that the irreducible aperiodic migration probabilities are symmetric
mij = mji or, more generally, are doubly stochastic:

∑
imij = 1. Let Ti be

the coalescence time of two lineages sampled from subpopulation i.

ETi = 2Nn.

Proof. When both lineages are in the same colony, they have probability 1/2N
per generation to coalesce, so ETi = 2NERi, where Ri is the first time t ≥ 1
that the two lineages are in the same colony. The fact that the transition
probability is doubly stochastic implies∑

i

1
n
mij =

1
n

so stationary distribution for the migration process is uniform, πi = 1/n. A
well-known result in Markov chain theory implies πi = 1/ERi and the desired
result follows.

4.5.2 Fast migration limit

We will now describe results of Nagylaki (1980) and Notohara (1993), which
show that in the presence of fast migration, the structured coalescent reduces
to the ordinary coalescent.

Theorem 4.11. Consider a matrix migration model with an irreducible ape-
riodic migration matrix mij having stationary distribution πi. Let NT =
N1 + · · · + Nn be the total population size and suppose that NT → ∞ with
Ni/NT → κi. If NT is large then the model has coalescent effective population
size

N c
e = βNT where β =

(∑
i

π2
i

1
κi

)−1

Sketch of proof. As noted earlier, since mij is irreducible and aperiodic, mt
ij →

πj as t → ∞. The amount of time we need for the Markov chain mij to
reach equilibrium may be large, but it is a fixed number independent of the
population size NT . If we start the coalescent with two lineages and run it
at rate 2NT then the locations of the two lineages converge to equilibrium
more rapidly than coalescence occurs. Thus, at all times their locations are
independent and have the equilibrium distribution, so coalescence occurs at
rate

∑
i π

2
i /κi.

In the special case Ni = N for 1 ≤ i ≤ n and πi = 1/n, we have κi = 1/n,
β = 1, and N i

e = NT . This conclusion also holds if migration is conservative,
i.e.,

∑
k 6=j Nkmk,j = (1 −mjj)Nj , or, in words, if the rate of migration into

each colony is the same as the rate of migration out. Dividing each side by NT
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we have πi = κi, and hence β = (
∑

i κi)−1 = 1. Expressing β as a harmonic
mean, which cannot exceed the corresponding arithmetic mean, we see that
in general

β =

(∑
i

πi(κ1/πi)−1

)−1

≤
∑

i

πi(κ1/πi) = 1

so N c
e ≤ NT . That is, with fast migration, population subdivision makes

the effective population size smaller than the total population size. Nordborg
and Krone (2002) generalized these results to migration rates of the form
mij = bij/N

α where 0 ≤ α < 1.

4.6 Symmetric island model

The simplest and the most commonly studied matrix migration model is the
symmetric island model. In this case Ni = N for all i, mii = 1 − m and
mij = m/(n − 1) for j 6= i. Let u be the per locus mutation rate and define
the rescaled mutation and migration rates by θ = 4Nu, and M = 4Nm. To
explain the last two definitions, note that two lineages:

coalesce at rate 1 when they are in the same population
migrate at rate 2m · 2N = M

experience mutations at rate 2u · 2N = θ.

4.6.1 Identity by descent

Let ps(θ) and pd(θ) be the probabilities that two lineages are identical by
descent when they are picked from the same or different populations.

Theorem 4.12. If we let γ = M/(n− 1) and D = θ2 + θ(1 +nγ) + γ then in
the symmetric island model we have

ps(θ) =
θ + γ

D
pd(θ) =

γ

D
(4.10)

Note that in the limit of fast migration, γ →∞

ps(θ) = pd(θ) =
1

nθ + 1

This may look different from the usual result for a homogeneously mixing
population but since nθ = (4Nn)u this is the, by now familiar, formula for a
population with total size Nn.
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Proof. By considering what happens at the first event, which is a coalescence
with probability 1/(1 + θ +M), migration with probability M/(1 + θ +M),
and mutation with probability θ/(1 + θ +M):

ps(θ) =
1

1 + θ +M
· 1 +

M

1 + θ +M
· pd(θ)

pd(θ) =
M/(n− 1)
θ +M

· ps(θ) +
M(n− 2)/(n− 1)

θ +M
· pd(θ)

The second equation implies that

θ +M/(n− 1)
θ +M

· pd(θ) =
M/(n− 1)
θ +M

· ps(θ)

so cross multiplying gives:

pd(θ) =
M/(n− 1)

θ +M/(n− 1)
· ps(θ) =

M

(n− 1)θ +M
· ps(θ) (4.11)

Using this in the first equation, we have

ps(θ) =
1

1 + θ +M
+

M

1 + θ +M
· M

(n− 1)θ +M
· ps(θ)

A little algebra gives

(1 + θ +M)((n− 1)θ +M)−M2

= θ(n− 1) + θ2(n− 1) +Mθ(n− 1) +M +Mθ

= θ2(n− 1) + θ(n− 1 +Mn) +M

so we have

θ2(n− 1) + θ(n− 1 +Mn) +M

(1 + θ +M)((n− 1)θ +M)
· ps =

1
1 + θ +M

and it follows that

ps(θ) =
θ(n− 1) +M

θ2(n− 1) + θ(n− 1 +Mn) +M

Using this in (4.11) we have

pd(θ) =
M

θ2(n− 1) + θ(n− 1 +Mn) +M

Dividing the numerator and denominator of each fraction by n−1 and chang-
ing notation gives the formulas in the theorem.
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4.6.2 Mean and variance of coalescence times

Let Ts be the coalescence time for two (distinct) individuals chosen from the
same population and ts = Ts/2N . Here and throughout this section, capital
letter times are big times O(N), while lower case letter times are small, i.e.,
have been divided by 2N .

Theorem 4.13. Writing γ = M/(n − 1) we have in the symmetric island
model that

Ets = n Etd = n+ 1/γ (4.12)

Proof. The second result follows easily from the first: two lineages that start
in different populations will require an average of (n − 1)/M = 1/γ units of
time to enter the same population so Etd = (1/γ) +Ets. To compute Ets we
note that if θ = 4Nu

ps(θ) = Ee−2uTs = Ee−θts

In words, ps(θ) is the Laplace transform of ts. Differentiating the last formula,
we see that −p′s(θ) = E(tse−θts) so −p′s(0) = Ets. To use this formula, we
note that D′ = 2θ + (1 + nγ) so

−p′s(θ) = −
{

1
D
− (θ + γ)D′

D2

}
(4.13)

Setting θ = 0, which implies D = γ and D′ = 1 + nγ, we have

Ets = −p′s(0) = −
{

1
γ
− γ(1 + nγ)

γ2

}
= n

which completes the proof.

Continuing the analysis above we can compute the variances of ts and td.

Theorem 4.14. Writing γ = M/(n − 1) we have in the symmetric island
model that

var (ts) =
2(n− 1)

γ
+ n2 var (td) = var (ts) + 1/γ2 (4.14)

Proof. Again the second result follows from the first. Two lineages that start
in different populations take an exponentially distributed amount of time with
mean 1/γ (and hence variance 1/γ2) to come to the same population. The
time to get to the same population is independent of the additional time
needed to coalesce, so

var (td) =
1
γ2

+ var (ts)

To begin to compute var (ts), we note that p′′s (0) = Et2s and using (4.13)
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p′′s (θ) =
−D′

D2
− D′

D2
− (θ + γ)D′′

D2
+ 2

(θ + γ)(D′)2

D3

Since D = θ2 + θ(1 + nγ) + γ, D′ = 2θ + 1 + nγ, and D′′ = 2 we have

E(t2s) = p′′s (0) = −2(1 + nγ)
γ2

− 2γ
γ2

+
2(1 + nγ)2

γ2

=
2
γ2

((n− 1)γ + (nγ)2) =
2(n− 1)

γ
+ 2n2

Since Ets = n, and var (ts) = Et22 − (Ets)2 the desired result follows.

4.6.3 Effective population sizes

Following Nei and Takahata (1993), we will now try to make sense of our
collection of formulas by computing some of the effective population sizes
introduced in Section 4.4. Let Tr be the (unscaled) coalescence time of two
individuals sampled at random from the entire population. Using (4.12)

ETr = 2N
[

1
n
· n+

n− 1
n

·
(
n+

1
γ

)]
= 2Nn

[
1 +

(n− 1)
n2γ

]
Recalling γ = M/(n− 1), we have

ETr = 2Nn
[
1 +

(n− 1)2

Mn2

]
(4.15)

Since in a homogeneously mixing population of effective size Ne we have
ETr = 2Ne, this shows that

• a symmetric island model has nucleotide diversity effective population size

Nπ
e = Nn

[
1 +

(n− 1)2

Mn2

]
≈ Nn

[
1 +

1
M

]
(4.16)

when n is large. Note that Nπ
e is always larger than the actual population size

Nn and can be much greater when M = 4Nm is small.
To compute the inbreeding effective population size, N i

e, we suppose that
the migration rate is small enough so that we can ignore two migration events,
and that the subpopulation size N is large enough so that sampling with or
without replacement is the same. In this case chromosomes chosen at random
have probability 1/n to be chosen from the same subpopulation and (n−1)/n
to be chosen from different subpopulations. If they are chosen from the same
subpopulation and exactly one of them migrates coalescence is impossible. On
the other hand if they are chosen from different subpopulations, coalescence
is only possible if one migrates and lands in the subpopulation of the other.
Thus the probability of coalescence in one generation is
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π2 =
1
n
· (1− 2m) · 1

2N
+
n− 1
n

· 2m
n− 1

· 1
2N

=
1

2Nn
and we have shown

• a symmetric island model has inbreeding effective population size

N i
e = Nn (4.17)

To try to resolve the conflict between the two values for the effective pop-
ulation size, we will consider the homozygosity, F , which is the probability
that two individuals chosen at random are identical by descent. Using (4.10)
and γ = M/(n− 1), we have

F =
1
n
ps(θ) +

n− 1
n

pd(θ) =
M/(n− 1) + θ/n

D

Recalling that D = θ2 + θ(1 + nγ) + γ, we have

1
F

=
θ2 + θ

(
1 + nM

n−1

)
+ M

n−1

θ
n + M

n−1

Breaking the numerator up as θ2 + θnM/(n− 1) plus M/(n− 1) + θ/n plus
θ − θ/n, we can write the above as

θn+ 1 +
n−1

n θ
θ
n + M

n−1

= 1 + 4Nun+
(n− 1)24Nu
θ(n− 1) +Mn

Thus if we define an effective population size based on the heterozygosity by
1/F = 1 + 4Nh

e u, we have

• a symmetric island model has heterozygosity effective population size:

Nh
e =

1
F − 1
4u

= Nn

[
1 +

(n− 1)2

θn(n− 1) +Mn2

]
(4.18)

This definition has the unfortunate property that it depends on the mutation
rate. However, when M >> θ, the formula for Nh

e in (4.18) reduces to the one
for Nπ

e given in (4.16).

4.6.4 Large n limit

Wakeley (1998) showed that the island model simplifies considerably when
the number of subpopulations is large.

Theorem 4.15. If we sample at most one individual from each subpopulation
in a symmetric island model then in the limit as the number of subpopulations
n → ∞, the genealogy of the sample converges to that of a homogeneously
mixing population of size

N c
e = Nn

(
1 +

1
M

)
where M = 4Nm.



4.6 Symmetric island model 155

Note that this is the same as the formula for Nπ
e given in (4.16), except that

in the large n limit, scaling by the nucleotide diversity effective population
size gives Kingman’s coalescent.

Proof. Let T (k1, k2, . . . k`) be the total size of the tree (measured in units
of 2Nn generations) for a sample in which ki colonies are sampled i times,
and the total sample size is ` =

∑
i iki. When all ` lineages are in different

colonies, migration occurs at rate 2Nn · m` and a migration results in two
individuals in the same colony with probability (` − 1)/(n − 1). Thus the
time until we see two lineages in the same population is exponential with
rate 2Mmn`(`− 1)/(n− 1). Since there are ` lineages initially, the total time
satisfies

ET (`, 0, . . . , 0) = ` · n− 1
2Nnm`(`− 1)

+ ET (`− 2, 1, 0, . . . 0) (4.19)

To shorten formulas we will drop the ending zeros, so that the variables
above become T (`) and T (`− 2, 1) When the configuration is (`− 2, 1), there
are several possible transitions depending on which lineage migrates or if a
coalescence occurs. Here R is the total rate of events that change the config-
uration. We will compute R once we have written down the individual rates
but for the moment we get it out of the way by moving them to the left side
of the equation.

R · ET (`− 2, 1) = `+ 2Nn · (`− 2)m
1

n− 1
ET (`− 3, 0, 1)

+ 2Nn · (`− 2)m · `− 3
n− 1

ET (`− 4, 2)

+ 2Nn · 2m ·
(

1− `− 1
n− 1

)
ET (`)

+ 2Nn · 1
2N

· ET (`− 1)

On the right-hand side, the first term in the four products, 2Nn, is the
rate at which time is run. In the first three cases, the second term is km where
k is the number of lineages that can move to make the desired transition, and
the third term j/(n − 1) is the fraction of moves that result in the desired
transition. The final term corresponds to coalescence of the two lineages in
the same colony.

The third rate ∼ Mn where M = 4Nm. The fourth is n. The first and
second are smaller, so we have

R ∼ n(M + 1)

and the equation simplifies to
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ET (`− 2, 1) =
M

M + 1
ET (`) +

1
M + 1

ET (`− 1) (4.20)

Using the new notation and (n− 1)/n→ 1 we can write (4.19) as

ET (`) =
2

M(`− 1)
+ ET (`− 2, 1)

Adding this to (4.20), and doing some cancellation, we have

1
M + 1

ET (`) =
2

M(`− 1)
+

1
M + 1

ET (`− 1)

Solving gives

ET (`) =
2

(`− 1)
· M + 1

M
+ ET (`− 1)

and iterating we have

ET (`) =
(

1 +
1
M

) `−1∑
i=1

2
i

Since our M is Wakeley’s 2M this agrees with his formula (26) on page 169.

At the other extreme from sampling at most one individual from each
subpopulation is sampling from only one subpopulation.

Theorem 4.16. If we sample ` individuals from one subpopulation in a sym-
metric island model then in the limit as the number of subpopulations n→∞,
the total time in the tree has the same distribution as when we sample one
lineage from each of K` subpopulations, where K` is the distribution of the
number of alleles in an infinite alleles model with θ = 4Nm.

Proof. If we run time at rate 2N and let θ = 4Nm then the initial rate of
migration is θ/2 and the initial rate of coalescence is `(`− 1)/2, exactly as in
the coalescent with killing described in Section 1.3.1. In that model mutations
create a new type. Here, migrations take a lineage to a new population, which,
when n is large, will all be distinct. At the time when the number of lineages
in the original population reaches 1, the scattering phase, as Wakeley calls
it, is over and the lineages are all in the different populations. The number
of surviving lineages K` has the distribution of the number of alleles in an
infinite alleles model with θ = 4Nm. To complete the proof we note that the
scattering phase lasts for time O(2N), while the subsequent coalescence of the
surviving lineages, called the collection phase, will take time O(2Nn), which
is much larger.
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Wakeley has used the large n limit to simplify other population genet-
ics problems. In Wakeley (1999), he explored the consequences of a sudden
change in the population size. In Wakeley (2000), he investigated various two
population models in which each population is a modeled as an island model
with a large number of subpopulations. Wakeley and Aliacar (2001) studied
metapopulation models, in which the populations are subject to extinction
and recolonization. Wakeley and Lessard (2003) and Lessard and Wakeley
(2004) investigated the limiting behavior of two loci with recombination when
the number of subpopulations n→∞.

4.7 Fixation indices

To quantify the impact of population structure on genetic differentiation,
Wright (1951) introduced a quantity called FST that can be defined as follows,
see Nei (1975) page 151,

FST =
f0 − f̄

1− f̄
(4.21)

where f0 is the probability that two individuals sampled from the same sub-
population are identical by descent and f̄ is that probability for two individ-
uals sampled at random from the entire population.

The probability of identity by descent is the probability that no mutation
occurred before their coalescence time T so

f =
∞∑

t=1

(1− µ)2tP (T = t) ≈
∞∑

t=1

(1− 2tµ)P (T = t) = 1− 2µET

the middle approximation being valid if µET << 1. Using this with the pre-
vious formula gives a simplification due to Slatkin (1991):

FST ≈ T̄ − T̄0

T̄
(4.22)

where T̄0 is the average coalescence time of two individuals drawn from the
same population and T̄ is the the average coalescence time for two genes
sampled at random from the entire population. An advantage of (4.22) over
(4.21) is that it does not depend on the mutation rate.

In the case of the finite island model, T̄ = ETr, and T̄0 = 2NEts, so using
(4.15) and (4.12) we have

FST =
(n− 1)2

4Nmn2

/(
1 +

(n− 1)2

4Nmn2

)
and it follows that

FST =
(

1 + 4Nm · n2

(n− 1)2

)−1

(4.23)
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a formula first derived by Takahata (1983); see also (5) in Takahata and
Nei (1984). Changing our previous convention, we will now follow the usage
in a different part of the literature by defining the rescaled migration rate
M1 = Nm to be the number of migrating gametes per colony per generation.
To help remember the definition note that M1 has a 1 where M = 4Nm has
a 4. When the number of colonies is large we can replace n2/(n − 1)2 by 1
and we have

M1 =
1
4

(
1

FST
− 1
)

(4.24)

Example 4.12. Seielstad, Minch, and Cavalli-Sforza (1998) have made an in-
teresting application of FST estimates to human history. They collected data
on Y chromsome single nucleotide polymorphisms and compared them with
published studies of autosomal and mitochondrial DNA variation. Equating
FST with 1 minus the fraction of the variation within population they found
the following:

within within between
populations continents continents FST M1

mtDNA 0.814 0.061 0.125 0.186 4.38
autosomes 0.856 0.057 0.088 0.144 1.49
Y chromosome 0.355 0.118 0.527 0.645 0.55

To infer migration rates from this, we can use (4.24) for autosomes, but
mtDNA and the Y chromosome are haploid and exist in only one of the
two sexes so their effective population size is 1/4 as large and we must use
FST = (1 +M1)−1 instead of (4.24).

The results are given in the table. Comparing the inferred migration rate
from mtDNA, which resides only in females, with that from the Y chromosome
in males, we conclude that females migrate about eight times as often as
males. At first, this may seem surprising since men travel more than women
in many societies. However, the most important parameter from a genetic
perspective is the distance between the birthplace of the parents and of the
children. Marriages in agricultural economies where land is inherited by sons,
and probably in early foraging economies as well, tend to be patrilocal; that
is, the wife moves to join the husband. Thus women tend to be more mobile
than men as far as transgenerational movements are concerned.

We turn now to the problem of estimating FST from data. When there are
only two populations, T̄ = (Ets + Etd)/2 and T̄0 = Ets, (4.22) becomes

FST ≈ Etd − Ets
Ets + Etd

Using (4.24) we have

M1 =
1
4

(
Ets + Etd
Etd − Ets

− 1
)

=
Ets

2(Etd − Ets)
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Let∆s and∆d be the average number of pairwise difference for two individuals
sampled from the same colony or form different colonies. Since E∆i = θEti,
we can estimate M by

M̂1 =
∆s

2(∆d −∆s)
. (4.25)

This estimator is closely related to but slightly different than others that
have been introduced. Weir and Cockerham’s (1984) θ̂ and Lynch and Crease’s
(1990) NST estimate (Etd − Ets)/Ets so one has

M̂ =
1
2
·
(

1

θ̂
− 1
)

Hudson, Slatkin, and Maddison (1992) estimate FST by F̂ = 1 − ∆s/∆d so
they again have

M̂ =
1
2
·
(

1
F̂
− 1
)

(4.26)

Example 4.13. To illustrate the estimation of FST and inferences about spatial
structure, we will use data from Hamblin and Veuille (1999), who sequenced
809 bp of the vermillion locus in four African populations of D. simulans.
Values of FST as computed by the formula of Hudson, Slatkin, and Maddison
(1992) are given above the diagonal in the following table. Note that FST ≥ 0
by definition but the comparison of Kenya and Tanzania produced a negative
estimate.

Kenya Tanzania Zimbabwe Cameroon
Kenya −0.033 0.178 0.107

(0.854) (0.001) (0.006)
Tanzania ∞ 0.122 0.077

(0.007) (0.014)
Zimbabwe 4.6 7.2 0.159

(0.014)
Cameroon 8.3 12 5.3

To determine the significance of these values, Hamblin and Veuille (1999)
used the method of Hudson, Boos, and Kaplan (1992). To explain the method,
we consider the comparison of the 13 sequences from Kenya and the 10 from
Zimbabwe. If the two populations were part of a homogeneously mixing whole,
then the distribution of the computed value of FST does not change if we pick
13 of the 23 sequences at random (without replacement) to be the Kenya
sample and call the remaining 10 the Zimbabwe sample. They repeated this
procedure 1000 times. The number in parentheses below the estimate F̂ , 0.001
in this case, indicates the fraction of times the randomized data set gave a
larger value of FST . In all cases except the Kenya and Tanzania comparison
we can reject with confidence the assumption of homogeneous mixing. Us-
ing (4.26) now we can estimate the number of migrants per generation M̂ .
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The results are given below the diagonal. In the case of the Kenya-Tanzania
comparison, the estimated M̂ is negative, so we write ∞.

Here we have followed the authors in converting FST into an estimate of the
number of migrants Nm. However, Felsenstein (1982) argued that estimates
of FST based on genetic markers reflect the cumulative effects of genetic drift
and gene flow for groups of populations. Because of this averaging, they are
not appropriate for estimates of gene flow between specific pairs within a
network of populations or for instantaneous rates of gene flow. Whitlock and
McCauley (1999) also made this point – while FST is an excellent measure of
the extent of population structure, it is rare that FST can be translated into
an accurate estimate of Nm.



5

Stepping Stone Model

“Since the mathematicians have invaded the theory of relativity, I do
not understand it myself anymore.” Albert Einstein

In the island model, migration occurs to all subpopulations with equal
probability. However, in natural populations dispersal preferentially occurs
between geographically close subpopulations. In this chapter, we will study a
more realistic model of a spatially distributed population, the stepping stone
model, which has what Wright (1943) called “isolation by distance.” Much
has been written about this model, but we will only cite the sources we use,
so we should complete the picture by mentioning three historically important
papers: Kimura (1953), Kimura and Weiss (1964), and Weiss and Kimura
(1965).

In the discrete-time stepping stone model, the population is divided into
groups that we will call colonies. Generation n + 1 is obtained from gener-
ation n in the following way. Consider a given individual in colony x. With
probability µ, this individual mutates to a new type and, with probability
(1− µ)p(x, y), assumes the type of an individual chosen at random from the
colony y (in generation n). All such mutations and choices are assumed to be
independent for all individuals at all colonies.

5.1 d = 1, Exact results

We will first consider the case of an infinite sequence of colonies indexed
by the integers, and we will further simplify by supposing that migration is
symmetric and only occurs to the nearest neighbors:

p(x, x) = 1− ν p(x, x+ 1) = p(x, x− 1) = ν/2

Let ψ(x, y) be the probability that two individuals, one chosen from colony
x and one from colony y, are identical by descent in equilibrium. (When
x = y we suppose that two distinct individuals are chosen.) In the case we
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are considering, the probability ψ(x, y) depends only on the difference y − x,
so we consider instead φ(x) = ψ(0, x).

Theorem 5.1. In the symmetric nearest neighbor stepping stone model on Z,
the probability of identity by descent for two lineages sampled from colonies
that differ by x is

φ(x) =
λ
|x|
2

1 + 4Nµ+ 4Nν(1− λ2)
(5.1)

where λ2 =
(

2 + 2µ
ν −

√
8µ
ν + 4µ2

ν2

)/
2.

If µ << ν, i.e., the mutation probability is much smaller than the migration
probability, then the 4µ2/ν2 under the square root in the definition of λ2 can
be ignored, as can the 2µ/ν on the outside, so λ2 ≈ 1−

√
2µ/ν. In addition,

µ <<
√

2µν ≈ ν(1− λ2) so

φ(0) ≈ 1
1 + 4N

√
2µν

(5.2)

φ(x) ≈ φ(0)(1−
√

2µ/ν)|x| (5.3)

which agrees with formulas on page 89 of Malécot (1969).

Proof. Considering what happens in one generation and supposing that µ
and ν are small enough so that we can ignore the probability of two events
affecting the two individuals we are considering, we have that

φ(x) = νφ(x− 1) + (1− 2µ− 2ν)φ(x) + νφ(x+ 1) for x 6= 0 (5.4)

Rearranging, we have

0 = φ(x− 1)−
(

2 +
2µ
ν

)
φ(x) + φ(x+ 1) for x 6= 0

Restricting our attention to x ≥ 1 in the last equation, we have a second-order
difference equation whose general solution is Aλx

1 + Bλx
2 , where λ1 > λ2 are

the roots of

0 = 1−
(

2 +
2µ
ν

)
λ+ λ2

The quadratic formula tells us that the roots are

λi =
2 + 2µ

ν ±
√(

2 + 2µ
ν

)2 − 4

2
=

2 + 2µ
ν ±

√
8µ
ν + 4µ2

ν2

2

Noting that (λ − a)(λ − b) = λ2 − (a + b)λ + ab, we see that λ1λ2 = 1
and we have λ1 > 1 > λ2. From this we see that for x ≥ 0, φ(x) = Bλx

2 , for
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otherwise the probability φ(x) would become unbounded as x → ∞. Using
the symmetry φ(−x) = φ(x), it follows that

φ(x) = Bλ
|x|
2 (5.5)

To determine the constant B we use the equation analogous to (5.4) for x = 0.
Now φ(1) = φ(−1) and the probability of coalescence of two lineages in the
same colony on one step is 1/2N , so if we ignore the occurrence of two events
in one generation

φ(0) = 2νφ(1) + (1− 2µ− 2ν − 1/2N)φ(0) + 1/2N

Rearranging gives

(2µ+ 2ν + 1/2N)φ(0)− 2νφ(1) = 1/2N (5.6)

Substituting in φ(x) = Bλ
|x|
2 we have

B

[
2µ+ 2ν +

1
2N

− 2νλ2

]
=

1
2N

Solving gives

B =
1/2N

2µ+ 2ν(1− λ2) + 1/2N

Combining this with (5.5) we have proved (5.1).

Ring of colonies

We are now ready to tackle the more complicated case of a ring of L
colonies, which we think of as the integers modulo L. As for an infinite se-
quence of colonies, we consider symmetric nearest neighbor migration:

p(x, x) = 1− ν p(x, x+ 1) = p(x, x− 1) = ν/2

but now the addition is done modulo L so p(L− 1, 0) = ν/2 and p(0, L− 1) =
ν/2. Again we let φ(x) = ψ(0, x).

Theorem 5.2. In the symmetric nearest neighbor stepping stone model with
a ring of L colonies, the probability of identity by descent for two lineages
sampled from colonies that differ by x modulo L is

φ(x) = C(λx−L/2
1 + λ

x−L/2
2 ) (5.7)

where λ1 > λ2 are
(

2 + 2µ
ν ±

√
8µ
ν + 4µ2

ν2

)/
2 and

1/C = (1 + 4Nµ)(λ−L/2
1 + λ

−L/2
2 ) (5.8)

+ 4Nν[(1− λ1)λ
−L/2
1 + (1− λ2)λ

−L/2
2 ]



164 5 Stepping Stone Model

Proof. If we define φ(L) = φ(0), then by the reasoning that led to (5.4)

φ(x) = νφ(x− 1) + (1− 2µ− 2ν)φ(x) + νφ(x+ 1) for 0 < x < L (5.9)

This is the same second order difference equation, so it has solutionsAλx
1+Bλx

2

for the same values of λ1 and λ2. The solution of interest has the symmetry
property φ(x) = φ(L− x), so recalling λ2 = λ−1

1 we write

φ(x) = C(λx−L/2
1 + λ

x−L/2
2 )

To check this guess, we note that λ2 = 1/λ1 so

φ(L− x) = C(λL/2−x
1 + λ

L/2−x
2 ) = C(λx−L/2

2 + λ
x−L/2
1 ) = φ(x)

To compute C we note that (5.6) implies(
2µ+ 2ν +

1
2N

)
· C(λ−L/2

1 + λ
−L/2
2 )− 2ν · C(λ1−L/2

1 + λ
1−L/2
2 ) =

1
2N

Multiplying by 2N/C on both sides

(1 + 4Nµ+ 4Nν) · (λ−L/2
1 + λ

−L/2
2 )− 4Nν · (λ1−L/2

1 + λ
1−L/2
2 ) =

1
C

which is equal to the formula for 1/C in (5.8).

Two extreme situations

Suppose µ << ν, i.e., the mutation rate is much smaller than the migration
rate. As a consequence of Theorem 5.2 we get the following qualitative result.

Theorem 5.3. In the symmetric nearest neighbor stepping stone model with
a ring of L colonies,

• when L2/ν >> 1/µ there will be very little difference between the ring and
the line.

• when L2/ν << 1/µ the stepping stone model behaves like a homogeneously
mixing population.

To interpret the last result, we note that the displacement kernel p has
variance ν, so by the central limit theorem, it takes about L2/ν steps to go
a distance L. On the right-hand side, 1/µ is the average amount of time it
takes for a lineage to encounter a mutation, so when L2/ν >> 1/µ it is very
likely that a mutation will occur before the lineage has moved a distance L.
In the other direction, when L2/ν << 1/µ it is very unlikely that a mutation
will occur before the lineage has moved a distance that is a large multiple
of L and hence traveled around the circle many times, forgetting its starting
point.
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Proof. Recalling that λ1 ≈ 1 +
√

2µ/ν, we see that λL
1 is large when L

√
µ/ν

is large or equivalently when L2/ν >> 1/µ. If λL
1 is large (and hence λL

2 is
small) then for x/L ≤ 1/2− ε, λx−L/2

2 >> λ
x−L/2
1 , so we can drop the smaller

term from (5.7). Using the formula for C from (5.8) and multiplying top and
bottom by λL/2

2 = λ
−L/2
1 we have

φ(x) ≈ λx
2

(1 + 4Nµ)(λ−L
1 + 1) + 4Nν[(1− λ1)λ−L

1 + (1− λ2)]

≈ λx
2

1 + 4N
√

2µν

since λ−L
1 ≈ 0, λ2 ≈ 1−

√
2µ/ν, and µ <<

√
µν. This agrees with our previous

result for the stepping stone model on an infinite linear grid given in (5.2) and
(5.3).

When L2/ν << 1/µ, L
√
µ/ν ≈ 0 and λx

1 ≈ 1 ≈ λx
2 for all −L ≤ x ≤ L, so

using (5.7) and (5.8) we have

φ(x) ≈ 2
(1 + 4Nµ) · 2 + 4Nν · 0

=
1

1 + 4Nµ

the result for a homogeneously mixing population.

5.2 d = 1 and 2, Fourier methods

The analysis in the previous section, which is based on difference equations,
only works in the one-dimensional nearest neighbor case. In this section, we
will use a more sophisticated approach based on Fourier series that will al-
low us to get results in one and two dimensions for fairly general dispersal
distributions. Our starting point is a result Malécot (1969) . Let ψ(x, y) be
the probability that two individuals, one chosen from colony x and one from
colony y, are identical by descent in equilibrium. (When x = y we suppose
that two distinct individuals are chosen.)

To state the result we let pk(x, y) be the probability of going from x to y
in k steps. Intuitively, pk is just the kth power of the matrix p(x, y). Formally,
it can be defined inductively by p1(x, y) = p(x, y) and for k ≥ 2

pk(x, y) =
∑

z

p(x, z)pk−1(z, y)

Theorem 5.4. In a stepping stone model with a general symmetric transition
probability p(x, y) = p(y, x) the probability of identity by descent satsifies

ψ(x, y) =
1− ψ(0, 0)

2N

∞∑
n=1

(1− µ)2np2n(x, y) (5.10)
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Proof. Let ψn(x, y) be the probability that two individuals, one chosen from x
and one from y are identical by descent in generation n. Again when x = y we
suppose that two distinct individuals are chosen. By definition, p(x, y) is the
probability that an individual in colony x in generation n+ 1 is the offspring
of one at y in generation n. Recalling that the number of individuals in a
colony is 2N and considering what happens on one step, we see that

ψn+1(x, y) = (1− µ)2
∑
x′,y′

ψn(x′, y′)p(x, x′)p(y, y′)

+(1− µ)2
∑

z

1− ψn(z, z)
2N

p(x, z)p(y, z)

The second term compensates for the two individuals choosing the same par-
ent. When this event of probability 1/2N occurs the probability of iden-
tity by descent is 1, rather than ψn(z, z) so this needs to be added to the
ψn(z, z)p(x, z)p(y, z) in the first term.

Setting ψn+1 = ψn = ψ to compute the equilibrium and iterating once,
we have

ψ(x, y) = (1− µ)2
∑

z

1− ψ(z, z)
2N

p(x, z) p(y, z)

+ (1− µ)2
∑
x′,y′

p(x, x′)p(y, y′){
(1− µ)2

∑
z

1− ψ(z, z)
2N

p(x′, z)p(y′, z)

+ (1− µ)2
∑

x′′,y′′

ψ(x′′, y′′)p(x′, x′′)p(y′, y′′)
}

Noting
∑

x′ p(x, x
′)p(x′, z) = p2(x, z), the above becomes

ψ(x, y) = (1− µ)2
∑

z

1− ψ(z, z)
2N

p(x, z)p(y, z)

+ (1− µ)4
∑

z

1− ψ(z, z)
2N

p2(x, z)p2(y, z)

+ (1− µ)4
∑

x′′,y′′

ψ(x′′, y′′)p2(x, x′′)p2(y, y′′)

Iterating n times, letting n → ∞ and noting that the last term tends to 0
when µ > 0, we have

ψ(x, y) =
∞∑

n=1

(1− µ)2n
∑

z

1− ψ(z, z)
2N

pn(x, z)pn(y, z)

=
1− ψ(0, 0)

2N

∞∑
n=1

(1− µ)2np2n(x, y)
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where in the last step we have used ψ(z, z) = ψ(0, 0) and pn(y, z) = pn(z, y),
which follows from the assumed symmetry.

Fourier analysis

We restrict attention now to Zd. The identity by descent probability
ψ(x, y) depends only on y − x, so it is enough to consider φ(x) = ψ(0, x).
To compute φ, we introduce the Fourier transforms

φ̂(θ) =
∑

x

eiθ·xφ(x) and p̂(θ) =
∑

x

eiθ·xp(0, x)

where the sums are over x ∈ Zd and θ · x =
∑

i θixi is the dot product of the
two vectors. We will assume

p is irreducible, i.e., it is possible to get from any colony to any other
p(0, x) = 1− ν and p(0, x) = νq(x) with q(0) = 0
q has the same symmetries as Zd (5.11)
q has finite third moment

Finite variance should be sufficient for the results. However, having a third
moment allows us to more easily estimate some error terms.

Transforming Malécot’s formula (5.10) and summing the geometric series,
we have

φ̂(θ) =
1− φ(0)

2N

∞∑
n=1

(1− µ)2np̂2n(θ) =
1− φ(0)

2N
(1− µ)2p̂2(θ)

1− (1− µ)2p̂2(θ)
(5.12)

d=1, line

In this subsection, we will derive and generalize results from Section 3 of
Maruyama (1970b) and Section 6 of Maruyama (1970c), which he obtained
by diagonalizing matrices. Sawyer (1977) has obtained similar results.

Theorem 5.5. Consider a stepping stone model on Z satisfying (5.11), and
define the characteristic length scale by ` = (νσ2/2µ)1/2. The identity by
descent satisfies

φ(0) ≈ 1
1 + 4N(2µνσ2)1/2

(5.13)

φ(x) ≈ φ(0) exp(−|x|/`) (5.14)

The first conclusion generalizes the result in (5.2). Since y = 2µ/νσ2 is small,
exp(−y|x|) ≈ (1 − y)|x| and in the nearest neighbor case, the second result
reduces to (5.3). We call ` the characteristic length scale because it gives the
scale on which exponential decay of φ occurs.
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Proof. Using the inversion formula for Fourier transforms on Z gives

φ(x) =
∫ π

−π

φ̂(θ)e−iθx dθ

2π

=
1− φ(0)

2N

∫ π

−π

(1− µ)2p̂2(θ)e−iθx

1− (1− µ)2p̂2(θ)
dθ

2π
(5.15)

At first, it may look odd that the unknown 1−φ(0) is on the right-hand side.
This problem is easily remedied. Setting x = 0 in (5.15), we have φ(0) =
A(1− φ(0)) where

A =
1

2N

∫ π

−π

(1− µ)2p̂2(θ)
1− (1− µ)2p̂2(θ)

dθ

2π

and solving we have φ(0) = (1 + 1/A)−1. In the nearest neighbor case with
p(0) = 1− ν, p(1) = p(−1) = ν/2 we have

p̂(θ) = 1− ν(1− cos θ)

since (eiθ +e−iθ)/2 = cos θ. However, there is no need to restrict our attention
to the nearest neighbor case. Our assumptions imply

p̂(θ) = (1− ν) + νq̂(θ) = 1− ν[1− q̂(θ)]

so we can write

4NA = π−1

∫ π

−π

(1− µ)2(1− ν[1− q̂(θ)])2

1− (1− µ)2(1− ν[1− q̂(θ)])2
dθ

Since q has mean 0, variance σ2, and finite third moment

1− q̂(θ) = σ2θ2/2 +O(θ3).

Thus if µ and θ are small, the denominator should be well approximated by

1− (1− 2µ)(1− νθ2σ2) = 2µ+ νθ2σ2

The numerator ≈ 1, so changing variables θ = (2µ/νσ2)1/2t we have

4NA ∼ π−1

∫ ∞

0

1
2µ+ 2µt2

(
2µ
νσ2

)1/2

dx

=
1

(2µνσ2)1/2

∫ ∞

−∞

1
π(1 + t2)

dt =
1

(2µνσ2)1/2

where to evaluate the integral we have used the fact that the Cauchy dis-
tribution integrates to 1 (see e.g., p. 43 of Durrett (2005)). Combining our
calculations gives
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φ(0) ≈ 1
1 + 4N(2µνσ2)1/2

To compute φ(x) we let

I =
∫ π

−π

(1− µ)2p̂2(θ)e−iθx

1− (1− µ)2p̂2(θ)
dθ

π

Repeating the calculation of A and again changing variables θ = (2µ/νσ2)1/2t
we have

I =
1

(2µνσ2)1/2

∫ ∞

−∞

1
π(1 + t2)

exp(−i(2µ/νσ2)1/2xt) dt

=
1

(2µνσ2)1/2
exp(−(2µ/νσ2)1/2|x|)

by the formula for the Fourier transform of the Cauchy distribution. Now
(5.15) implies

φ(x) =
1− φ(0)

4N
I =

1
1 + 4N(2µνσ2)1/2

exp(−(2µ/νσ2)1/2|x|)

so we have
φ(x) ≈ φ(0) exp(−(2µ/νσ2)1/2|x|)

and using ` = (νσ2/2µ)1/2 we have the second conclusion.

The results for identity by descent give us information about hitting times.
Now, in order for the two lineages to coalesce, they must first come to the
same colony at time T0 and then coalesce at time t0.

Theorem 5.6. In the one dimensional stepping stone model on Z, if the mi-
gration rate ν and variance σ2 are fixed, then as |x| → ∞, 2νσ2T0/|x|2 con-
verges to the hitting time of 1 for a standard Brownian motion.

Proof. Since T0 and t0 − T0 are independent.

φ(x) = Ex(1− µ)2T0 · E0(1− µ)2t0

Since the second term is φ(0), comparing with (5.14) and recalling ` =
(νσ2/2µ)1/2 shows

Ex(1− µ)2T0 ≈ exp(−(2µ/νσ2)1/2|x|)

Now if µ is small (1 − µ)2T0 ≈ exp(−µ[2t0]), so letting µ = λνσ2/|x|2 and
|x| → ∞ we have

Ex(exp(−λ[2νσ2t0/|x|2]) → exp(−
√

2λ)

Consulting (4.4) on page 391 of Durrett (2005) we see that the right-hand
side is the Laplace transform of the hitting time of 1 for Brownian motion,
and the proof is complete.
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d = 2, plane

We will use our Fourier methods to derive asymptotics that are a mixture
of Nagylaki (1974), Sawyer (1977), and Slatkin and Barton (1989).

Theorem 5.7. Consider a stepping stone model on Z2 satisfying (5.11), and
define the characteristic length scale by ` = (νσ2/2µ)1/2. The identity by
descent satisfies

φ(0) ≈
[
1 +

2πνσ2 · 2N
ln(`)

]−1

(5.16)

φ(x) ≈ φ(0)
ln(`)

[K0(|x|/`)−K0(|x|)] (5.17)

where K0 is the modified Bessel function of the second kind of order 0.

The Bessel function is defined by

K0(x) =
∫ ∞

0

cos(tx)/
√
t2 + 1 dt

However, for our purposes, it is more useful to know that

K0(x) ≈

{
ln(1/x) when x is small
e−x

√
π/2x when x is large

(5.18)

Formula (5.17) is often given without the second factor −K0(|x|) (see, e.g.,
Slatkin and Barton 1989, page 1353), but that term is very important when
|x| is small. To see this, let |x| → 0 in (5.17) and use the first formula in (5.18)
to see that if we ignore the second term then we get the nonsensical result
φ(x) →∞. (Recall that φ(x) is a probability and hence must always be ≤ 1.)
With the second term present

K0(|x|/`)−K0(|x|) → ln(`)

as |x| → 0, and we have φ(x) → φ(0).

Proof. Using the inversion formula for Fourier transforms on Z2 gives

φ(x) =
∫

[−π,π]2
e−iθ·xφ̂(θ)

dθ

4π2

Using this on (5.12), and letting R(θ) = p̂2(θ), we have

φ(x) =
1− φ(0)

2N

∫
[−π,π]2

(1− µ)2R(θ)e−iθ·x

1− (1− µ)2R(θ)
d2θ

4π2
(5.19)
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Noting that R(θ) is the Fourier transform of a distribution with mean 0 and
covariance 2νσ2I, leads to (see, e.g., (3.8) on page 103 of Durrett 2005)

R(θ) = 1− νσ2|`|2 +O(|`|3)

Here, we are using the finite third moment to control the error term. Arguing
as in d = 1, we define

A ≡ 1
2N

∫
[−π,π]2

R(θ)
1− (1− µ)2R(θ)

d2θ

4π2

≈ 1
2N

∫
[−π,π]2

1
2µ+ νσ2|θ|2

d2θ

4π2

Changing variables θ = t/` where ` = (νσ2/2µ)1/2, we have

=
1

2N · 2µ
· 2µ
νσ2

∫
[−π`,π`]2

1
1 + |t|2

d2t

4π2

Shifting to polar coordinates the above

≈ 1
2N · 2µ

· 2µ
νσ2

∫ π`

0

r

1 + r2
dr

2π

Since the integrand ∼ 1/r for large r, it follows that

A ≈ 1
2πνσ2 · 2N

ln(`)

(5.16) now follows from the fact that φ(0) = (1 + 1/A)−1.
To compute φ(x), we let

I =
∫

[−π,π]2

(1− µ)2R(θ)e−iθ·x

1− (1− µ)2R(θ)
dθ

4π2

Repeating the calculation of A, and again changing variables θ = t/` with
` = (νσ2/2µ)1/2 we have

I ≈ 1
νσ2

∫
[−π`,π`]2

1
1 + |t|2

exp(−ix · t/`) d
2t

4π2

If we integrate over the whole space we get ∞, so inspired by Nagylaki (1974),
we write the above as

≈ 1
2πνσ2

∫ ∫ (
1

1 + |t|2
− 1
`2 + |t|2

)
exp(−ix · t/`) d

2t

2π

The reason for introducing the second term is that when |t| ≥ ` the difference
is ≤ `2/|t|4 so it gets rid of the divergence. The new term is ≤ 1/`2 so it
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reduces the integral over [−π`, π`]2 by at most 2π when x = 0. The quantity
above is

=
1

2πνσ2
[K0(|x|/`)−K0(|x|)]

the last bit of calculus coming from page 323 of Malécot (1967). In words,
“the bidimensional Fourier transform of (m2 + x2)−1 is K0(m|ξ|).” To finish
up we note that

φ(x) =
1− φ(0)

2N
I =

φ(0)
2NA

I ≈ φ(0)
ln(`)

[K0(|x|/`)−K0(|x|)]

which proves (5.17).

5.3 d = 2, Coalescence times

In this section we will prove results for the coalescence time of a sam-
ple of size 2 from the two dimensional stepping stone model on the torus
Λ(L) = (Z mod L)2 due to Cox and Durrett (2002). In contrast to the anlyt-
ical methods in the previous section, the tools will be probabilistic and will
give a more intuitive picture of the coalescence time.

We will consider the Moran model in which each individual is replaced at
rate 1. Ignoring mutations for the moment, with probability 1−ν an individual
is replaced by a copy of an individual in the colony in which it resides. With
probability ν it is replaced by a copy of one chosen at random from a nearby
colony y 6= x with colony y being chosen with probability q(y− x), where the
difference is computed componentwise modulo L.

• Throughout this section, we assume that q satisfies the symmetry and
irreducibility assumptions stated in (5.11), but we strengthen the finite
third moment assumption to finite range.

To study the behavior of the stepping stone model, we will work backwards
in time using a special case of the structured coalescent introduced in Section
4.5. Lineages in colony x jump at rate 1− ν to a randomly chosen individual
within the colony and at rate νq(x, y) to a randomly chosen individual in
colony y. Consider first the genealogy of a sample of size 2 chosen at random
from the population. As we work backwards, let T0 be the amount of time
required until the two lineages first reside in the same colony, and let t0 be
the total amount of time needed for the two lineages to coalesce to one.

5.3.1 Random walk results

We begin by considering T0. Let Xt be the difference in the colony numbers
of the two lineages (computed modulo L) at time t. Since the two sampled
individuals were chosen randomly from the population, the distribution of X0
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is the uniform distribution on the torus Λ(L), which we denote by π. Let Pπ

denote the distribution of the process {Xt, t ≥ 0} when X0 has distribution π.
The first thing to observe is that while the migration rate ν is very important
for properties of the stepping stone model, it is a harmless time change for
the torus random walk, Xt. Jumps occur at rate 2ν, so scaling time by 2ν we
reduce to the case in which jumps occur at rate 1.

If Xt were a random walk on Z2, its distance from X0 at time t would
be O(

√
2νt). Here O, read as “of order,” means we are giving the order of

magnitude ignoring constants. This result on the movement of the random
walk implies that random walkers starting from two randomly chosen locations
on the torus will take at least O(L2/2ν) units of time to hit. The next result
shows that the amount of time required for T0 is actually O(L2 logL/2ν).

Theorem 5.8. For any t > 0, as L→∞,

Pπ

(
T0 >

L2 logL
2πνσ2

t
)
→ e−t

Proof. The proofs of this and the other results in this section are too technical
to give the details, so we will only describe the intuition behind the results. To
begin to explain the answer, note that Pπ(Xt = 0) = 1/L2, so the expected
amount of time the two lineages chosen at random are in the same colony up
to time L2 is ∫ L2

0

Pπ(Xt = 0) dt = 1

The next step is to note that since jumps have variance σ2 and occur at
rate 2ν the local central limit theorem implies that for large t

P0(Xt = 0) ∼ 1
2πσ2(2νt)

where a(t) ∼ b(t) means a(t)/b(t) → 1. Thus the expected amount of time the
two lineages chosen from the colony at 0 are in the same colony up to time
L2 is ∫ L2

0

dt P0(Xt = 0) ∼ log(L2)
2π(2νσ2)

≡ I

where ≡ indicates that the last equality defines I. At first the reader might
worry that we get ∞ from the lower limit. This is not a problem since P0(Xt =
0) ≤ 1. A second issue is that the asymptotic formula for P0(Xt = 0) does
not hold for small t. However, the right-hand side → ∞, so these values do
not matter in the limit.

At this point we have shown:

• the expected amount of time the two lineages chosen at random are in the
same colony up to time L2 is 1
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• if the two lineages are in the same colony then the expected amount of
time they are in the same colony in the next L2 units of time is I

As we will now explain, it follows from this that

Pπ(T0 ≤ L2) ≈ 1
I

=
2πνσ2

logL
(5.20)

To argue this formally, we note that by breaking things down according to
the value of T0

1 =
∫ L2

0

Pπ(Xt = 0) dt

=
∫ L2

0

dsPπ(T0 = s)
∫ L2−s

0

dt P0(Xt = 0)

Replacing L2−s by L2 in the upper limit of the integral (which can be justified
mathematically) the above implies

1 ≈ Pπ(T0 ≤ L2)
∫ L2

0

dt P0(Xt = 0) ≈ IPπ(T0 ≤ L2)

To prove that the limit is exponential, Cox and Durrett (2002) show that
Xt comes to equilibrium in time o(L2 logL/ν), so the limit distribution of
τ = T0/(L2 logL/ν) must have the lack of memory property

P (τ > s+ t|τ > s) = P (τ > t)

that characterizes the exponential.

Sampling at random from the entire population is mathematically con-
venient. However, in many genetic studies, samples are not taken from the
population as a whole. For example, one of the samples in Sabeti et al. (2002)
consists of 73 Beni individuals who are civil servants in Benin City, Nigeria. To
model this type of local sample in our context, we assume that the n chromo-
somes are sampled at random from a Lβ×Lβ region. To begin to analyze this
situation, let Px denote the law of the difference of two walks when one starts
in colony 0 and one in colony x. (If x = 0, we pick two distinct individuals
from colony 0.)

Theorem 5.9. If limL→∞(log+ |xL|)/ logL = β ∈ [0, 1], then

PxL

(
T0 >

L2γ

4πνσ2

)
→ β

γ
for β ≤ γ ≤ 1

PxL

(
T0 >

L2 logL
2πνσ2

t

)
→ βe−t
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The positive part z+ = max{z, 0} is here in the formula so that log+ 0 = 0 not
−∞. The second result shows that the probability that a coalescence occurs at
a time << L2 logL is ≈ 1− β and that when this does not occurs the limiting
time is exponential as in Theorem 5.8. To explain the first result, we note that
(i) by our explanation of the second result, we must get β when γ = 1, and
(ii) since the random walk takes time O(L2β/σ2ν) to move a distance Lβ , it is
natural that the probability of a coalescence after this time tends to 1, which
is the value for γ = β. The scaling in the first result is a little different from
the one in Zähle, Cox, and Durrett (2005), but as we will see at the end of
the next section, it makes things work a little better.

Proof. To derive the first result, we note that since the standard deviation of
Xt−X0 is

√
2νσ2t, hitting 0 before time L2β/(4πνσ2) is unlikely, so the local

central limit theorem implies that∫ L2γ/(4πνσ2)

0

PxL
(Xt = 0) dt ≈

∫ L2γ/(4πνσ2)

L2β/(4πνσ2)

1
2π(2νσ2t)

dt

=
2(γ − β) logL

4πνσ2

The local central limit theorem implies that if Xt hits 0 by time L2γ/(4πνσ2)
it will spend an average of

≈
∫ L2γ/(4πνσ2)

0

1
2πσ2(2νt)

dt =
2γ logL
4πνσ2

time units at 0, so by the computation in the proof of (5.20),

2γ logL
4πνσ2

PxL

(
T0 ≤

L2γ

4πνσ2

)
≈ 2(γ − β) logL

4πνσ2

and it follows that

PxL

(
T0 ≤

L2γ

4πνσ2

)
≈ 1− β

γ

To derive the second result from the first with γ = 1, we use the local
central limit theorem to show that when T0 > L2/(4πνσ2), it is also likely
that T0 > L2

√
logL/νσ2, at which time the distribution of Xt has become

uniform over the torus, and the longer time behavior is as in Theorem 5.8.

5.3.2 Samples of size 2

Getting the two lineages to the same colony at time T0 is only the first part
of the coalescence time t0. Since the two lineages are in the same colony at
time T0, to study t0 − T0, we need only be concerned with the distribution of
t0 under P0. Since the stepping stone model is a special case of the general
matrix migration model in which the colony size is constant and the migration
symmetric, the next result follows from Theorem 4.10, and the fact that the
difference of the two lineages jumps twice as fast in the Moran model.
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Theorem 5.10. E0t0 = NL2.

This result, like the others in this section, is for the stepping stone model
on the two dimensional torus Λ(L) with dispersal distribution satisfying the
conditions announced at the beginning of the section.

Comparing Theorems 5.8 and 5.10, we see that there are two extreme
possibilities:

ET0 = O(L2 logL/ν) << O(NL2) = Et0 or ET0 >> Et0

In the first case, the two lineages will come to the same colony in o(NL2)
so the actual starting positions of the particles don’t matter, and the limit
distribution will have the lack of memory property. This next result is the
strong migration limit for the stepping stone model.

Theorem 5.11. If limL→∞Nν/ logL = ∞, then for any t > 0, as L→∞,

sup
x∈Λ(L)

|Px(t0 > NL2t)− e−t| → 0

Conventional wisdom, see pages 125–126 of Kimura and Maruyama (1971),
says that “marked local differentiation of gene frequencies can occur if Nν < 1
where N is the effective size of each colony and ν is the rate at which each
colony exchanges individuals with the four surrounding colonies.” In the other
direction, “if Nν > 1 local differentiation is less pronounced and especially
if Nν ≥ 4, the whole population tends to behave as a panmictic unit.” As
Theorem 5.11 and the next result show, Nν must be much larger than logL
in order for the system to behave as if it were homogeneously mixing.

Theorem 5.12. Suppose limL→∞ 2Nνπσ2/ logL = α ∈ [0,∞). If xL satisfies
limL→∞(log+ |xL|)/ logL = β ∈ [0, 1] then, as L→∞,

PxL

(
t0 > (1 + α)

L2 logL
2πνσ2

t

)
→
(
β + (1− β)

α

1 + α

)
e−t

If we pick X0 at random according to π, the assumption holds with β = 1 so

Pπ

(
t0 > (1 + α)

L2 logL
2πνσ2

t

)
→ e−t

Proof. By the reasoning for Theorem 5.9, the probability that two lineages will
enter the same colony before time L2/4πνσ2 is ≈ 1−β. Using the computation
in Theorem 5.8 one can show that when they do, they will be in the same
colony a geometrically distributed number of times with mean (logL)/πνσ2

before time L2/4πνσ2 and hence the probability of coalescence before time
L2/4πνσ2 is approximately

1/2N
1/(2N) + πνσ2/ logL

→ 1
1 + α

which gives the desired result.
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Effective population size

If α > 0 we can use the fact that logL/(2Nνπσ2) → 1/α to write the
second conclusion in Theorem 5.12 as

Pπ

(
t0 > NL2

(
1 + α

α

)
t

)
→ e−t (5.21)

Recalling that we are considering the Moran model in which time is scaled by
the population size (without a factor of 2),

Theorem 5.13. For the two dimensional stepping stone models on Λ(L) con-
sidered in this section, the nucleotide diversity effective population size,

Nπ
e = NL2

(
1 +

1
α

)
This has the same form as Nπ

e in the island model when the number of
colonies n = L2 is large and the scaled migration rate M = α, see (4.16). Note
that the stepping stone scaled migration rate

α = 2Nνσ2 · π

logL

combines N , ν, and σ2 into one composite parameter, compared to M = 4Nm
for the Wright-Fisher version of the island model.

Example 5.1. To illustrate the use of the formula for the effective population
size, consider L = 10 with migration to the four nearest neighbors with equal
probability so σ2 = 0.5. If the local population size N = 25 and we choose
ν = 0.1 so that 4Nν = 1 then

α =
π(0.25)
log 10

= 0.341 and Nπ
e =

2500(1.341)
0.341

= 9829

versus the actual population size of 2500.

5.3.3 Fixation indices FST

Using Theorems 5.10 and 5.12 with Slatkin’s approximation given in (4.22),
FST ≈ (T̄ − T̄0)/T̄ , it follows that if 2πσ2Nν/ logL→ α ∈ (0,∞) then

FST ≈
L2 log L
2πνσ2

L2 log L
2πνσ2 +NL2

≈ 1
1 + α

(5.22)

This says that FST is close to 0 if and only if Nν >> logL, the condi-
tion in (5.11) for the system to be homogeneously mixing. Crow and Aoki
(1984) did a numerical study of FST for the nearest neighbor stepping stone
model and found (see their page 6075) that FST is roughly proportional to
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log n, where n = L2 is the number of colonies. In the cases they considered,
logL/(2πνσ2) << N , so the first term in the denominator of (5.22) can be
ignored, and we have

FST ≈ logL
2Nπνσ2

=
1

4Nπνσ2
log(L2)

confirming their prediction.
As noted in (4.24) one can estimate the scaled migration rate M = Nν in

the island model by

M̂ =
1
4

(
1

FST
− 1
)

Suppose the population being sampled has a stepping stone structure, but
one uses the island model formula. Using (5.22) and 2Nπσ2ν/ logL ≈ α, we
find that

M̂ ≈ α

4
≈ Nνσ2 · π

2 logL
(5.23)

so the resulting estimate M̂ has a bias that depends on the size of the system.
However, this result has no impact on the work of Seielstad et al. (1998)
discussed in Section 4.5 since they used the ratio of estimates from mtDNA
and Y chromosome data and when this is done the extra factor π/2 logL
cancels out.

Decay of FST with distance

If we compare two colonies that are separated by a displacement of x in
the stepping stone model then, as in Section 4.7, we define

FST (x) =
T̄x − T̄0

T̄x + T̄0

where T̄x is the average coalescence time of two lineages sampled from colonies
separated by a displacement of x. As in Rousset (1997) it is convenient to
consider

FST (x)
1− FST (x)

=
T̄x − T̄0

2T̄0
(5.24)

Slatkin (1991) considers 1 over this quantity because of its relationship to the
migration estimate M̂ given in (4.24), but as the reader will see, (5.24) is more
convenient.

If we have a ring of L colonies with nearest neighbor migration at rate ν
then by Theorem 4.10 we have T̄0 = NL in the Moran model. The numerator
in (5.24) is the amount of time that it takes for two lineages to come to the
same colony. In Section 7.6 we will compute that T̄x − T̄0 = (L− x)x/2ν, so

FST (x)
1− FST (x)

=
x(L− x)
4NLν
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When x << L this is linear in agreement with Figure 1 in Rousset (1997). Re-
membering the factor of 2 difference in the Moran and stepping stone models,
this agrees with formula (17) in Slatkin (1991).

If we have an L × L torus with migration at rate ν that has variance σ2

then in the Moran model T̄0 = NL2. Using Theorem 5.9 we see that

T̄x − T̄0 ∼ (log+ |x|)L2 logL/(2πνσ2)

so we have
FST (x)

1− FST (x)
=

log+ |x| logL
4πνσ2N

This is linear in log+ |x| in agreement with Figure 2 in Rousset (1997) and
is considerably simpler than the formula in (19b) of Slatkin (1991). Slatkin
(1993) has done extensive simulations. Unfortunately he chose to plot log(M̂)
versus log |x|.

5.4 d = 2, Genealogies

It is not hard to extend the argument for (5.21) to show that if we sample n
individuals at random from the population, then when time is written in units
of 2Nπ

e generations, the genealogy is that of Kingman’s coalescent. Hence, for
a random sample N c

e = Nπ
e .

The main result of Zähle, Cox, and Durrett (2005) shows that for a random
sample from an Lβ × Lβ subregion after a nonlinear change of time scale the
coalescent in the stepping stone model reduces to Kingman’s coalescent. We
begin with a result for the small time behavior of the coalescence time in the
stepping stone model on the torus. We continue using the assumptions made
at the beginning of the previous section.

Theorem 5.14. If limL→∞(log+ |xL|)/ logL = β ∈ [0, 1] then for β ≤ γ < 1
we have

PxL

(
t0 >

L2γ

4πνσ2

)
→ β + α

γ + α

To make the connection with Theorem 5.12 note that

β + (1− β)
α

1 + α
=
β + βα+ α− αβ

1 + α
=
β + α

1 + α

which is the answer for γ = 1.

Proof. The first result in Theorem 5.9 implies that

Px

(
T0 >

L2γ

4πνσ2

)
→ β

γ
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Generalizing the computation in the proof of Theorem 5.12 one can show that
when T0 ≤ L2γ/4πνσ2, the probability of coalescence before time L2γ/4πνσ2

is approximately
1/2N

1/(2N) + πνσ2/ log(Lγ)
→ γ

γ + α

A little algebra gives

β

γ
+
(

1− β

γ

)
α

γ + α
=
β(γ + α) + (γ − β)α

γ(γ + α)
=
β + α

γ + α

Let hL = (1+α)(L2 logL)/(2πνσ2) be the effective population size, which
gives the time scale at large times.

Theorem 5.15. If we change time so that

L2γ

4πνσ2
→ log

(
γ + α

β + α

)
for β ≤ γ ≤ 1

L2

4πνσ2
+ hLt→ log

(
1 + α

β + α

)
+ t

then the genealogy of a sample of size n chosen at random from an Lβ ×
Lβ region in stepping stone model on the two dimensional torus reduces to
Kingman’s coalescent.

Proof. It is straightforward to generalize an argument of Cox and Griffeath
(1986) to show that when there are k lineages, the

(
k
2

)
possible coalescences

are essentially independent events, see pages 692–693 in Zähle, Cox, and Dur-
rett (2005). The result then follows from the results for samples of size 2 in
Theorems 5.12 and 5.14.

To get a feel for the time change note that if s = L2γ/(4πνσ2) then

γ =
log(4πνσ2) + log(s)

2 logL

Since dγ/ds = 1/(2s logL), the rate of coalescence at time s is

d

ds
log
(
γ + α

β + α

)
=

1
γ + α

· 1
2s logL

(5.25)

To see why we divide by 4πνσ2 in the small time regime, note that when
s = L2/(4πνσ2), γ = 1 and the coalescence rate becomes

2πνσ2

(1 + α)(L2 logL)
=

1
hL

the coalescence rate at large times, and the overall coalescent rate is continu-
ous.
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Fig. 5.1. 1 over the coalescence rate in Example 5.1, a 10×10 stepping stone model
with colony size 25 and nearest neighbor migration, which has Ne = 9829.

Note that the coalescence rate given in (5.25) is decreasing in the first
phase and occurs much more rapidly in the beginning. Inspired by Figure 4
of Wilkins (2004), we have graphed 1 over the coalescence rate versus time in
our figure to show that 1 over the rate is roughly linear in time. This can be
seen intuitively by noting that at time s the central limit theorem says that
lineages will be spread over a region with radius

√
s and hence area s, so the

effective population size is of order s.

5.4.1 Simulation results

While Theorem 5.15 gives the limiting behavior of genealogies in the stepping
stone model, it is not easy to use that result to compute quantities of interest
for the limiting process. Thus to get numerical results we must turn to simula-
tion. De and Durrett (2007) have done this. We begin with results for the site
frequency spectrum. Because the coalescence rate is faster initially and then
slows down to the usual rate, we should expect a reduction in the number of
rare alleles. The graph on the left in figure 5.2 shows results from 350,000 sim-
ulations of a sample of size 40 taken from one subpopulation in (i) an island
model with 100 colonies of size N = 50 (×’s) and (ii) a 10×10 stepping stone
model with colonies of size N = 25 (+’s) with scaled migration rate 4Nν = 1.
The values are chosen to make the effective population size computed from
(4.16) for the island model or from (5.13) for the stepping stone model close
to 10,000. One can see that the island model and the stepping stone model
both show the predicted skew compared to the prediction of 1/x for a ho-
mogeneously mixing population. In contrast, simulations in De and Durrett
(2007) show that if we sample at random from the whole grid using the same
parameters then the three site frequency spectra are almost identical. For the
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stepping stone model this confirms the result mentioned at the beginning of
this section. For the island model this is predicted by Wakeley’s many demes
limit, Theorem 4.15.

0 5 10 15 20 25 30 35 40
0
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0.1

0.15

0.2

0.25

Fig. 5.2. Site frequency spectrum in the stepping stone (×’s) and island (+’s)
models, compared with the homogeneously mixing case for a sample from one colony.
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Fig. 5.3. Decay of r2 in the stepping stone (×’s) and island (+’s) models for samples
from one subpopulation or at random compared with the homogeneously mixing
case. The x-axis gives the distance in kilobases.
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In the stepping stone model and the island model, the fact that the co-
alescence rate is faster initially makes the decay of the linkage disequilib-
rium slower along a chromosome. The graph in Figure 5.3 shows results from
350,000 simulations of a sample of size 40 taken from (i) an island model with
100 colonies of size N = 91 (×’s) and (ii) a 10×10 stepping stone model with
colonies of size N = 77 (+’s) with scaled migration rate 4Nν = 10. Again the
values are chosen to make the effective population sizes roughly 10,000. In the
top two curves the sampled individuals are all from one subpopulation. Even
though the migration rate is large, the decay of r2 is much slower than in a
homogeneously mixing population (solid line). The two other curves are for
random samples and give results similar to the homogeneously mixing case.

5.5 d = 1, Continuous models

The title of this section is a little misleading since, as the reader will see, space
is not continuous, but is instead a fine lattice. The word “continuous” refers to
the fact that individuals are no longer organized into subpopulations. Wilkins
and Wakeley (2002) considered a one dimensional stepping stone model in
which there is one haploid individual at 0, 1/n, 2/n, . . . 1. Each individual pro-
duces a large number of offspring that are distributed according to a normal
distribution with variance σ2

m (m is for migration) centered at the location of
the individual and reflecting boundaries at the ends of the habitat. At each
site one of these offspring is selected at random to become the adult at that
location at the next generation.

The motivation for this research came from Bowen and Grant (1997) who
collected data from the mitochondrial control region in five different sardine
populations in five temperate upwelling zones off the coasts of Japan, Cal-
ifornia, Chile, Australia, and South Africa. Their one dimensional universe
consists of temperate waters that connect the five regions. Rather than divide
the ocean artificially into local populations they introduced the continuous
model described above.

Wilkins and Wakeley (2002) obtained some analytic results that we will
discuss later, and presented simulation results for n = 100 with σ2

m = 0.0001,
0.001 and 0.01. Seeing the three examples brings up the question: what re-
lationship between n and σ2

m leads to interesting behavior? To address this
question we will consider the one dimensional stepping stone model on the
circle Z mod n. To be able to use Malecot’s result given in (5.10), we will
suppose that there is N = 1 diploid individual at each integer, for otherwise
it would be impossible to define ψ(0, 0).

Theorem 5.16. Consider the Wright-Fisher stepping stone model on Z mod
n with dispersal distribution p(0, x) a normal with mean 0 and variance σ2

(rounded to the nearest integer). If σ/
√
n→∞ and σ/n→ 0 then the popula-

tion behaves as if it is homogeneously mixing. That is, if t0 is the coalescence
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time of two lineages sampled from colonies with a displacement of x, then
t0/2n converges in distribution to a mean 1 exponential.

We have assumed a normal distribution only to simplify the proof. As the
next theorem will show, the exact form of the distribution is not important.
The assumption σ/n → 0 is a technicality needed for our proof. Matsen and
Wakeley (2006) have shown that the conclusion holds if dispersal distance is
uniform over (−σ, σ) with σ/n→ c > 0.

Proof. Using the inversion formula on Z mod n with (5.12) gives

φ(x) =
1− φ(0)

2n

n−1∑
m=0

(1− µ)2p̂2(2πm/n)e−i·2πmx/n

1− (1− µ)2p̂2(2πm/n)
(5.26)

which in the nearest neighbor case is (6.6) of Maruyama (1970c). To obtain
the desired conclusion about the coalescence time we will take µ = λ/2n.
Since p̂(0) = 1 the m = 0 in the term is

(1− µ)2

2µ+ µ2
≈ 1

2µ

If we can show that the other terms can be ignored, then we will have φ(x) ≈
A(1− φ(0), with A ≈ 4Nµ, so using the result first for x = 0 and then for a
general x we have

φ(x) ≈ 1
1 + 4nµ

=
1

1 + 2λ

To obtain the desired conclusion we note that

φ(x) = Ex

(
1− λ

2n

)2t0

so we have shown
Ex exp(−2λ(t0/2n)) → 1

1 + 2λ
which is the desired conclusion written in terms of Laplace transforms.

The normal distribution has p̂2(θ) = e−θ2σ2
. Here we are ignoring the

effect of rounding, which is valid if σ is large, and that dispersal occurs on
the circle, which is valid by our assumption σ/n → 0. If θσ is small then
1 − e−θ2σ2 ≈ θ2σ2 so the denominator in the fraction in the sum can be
approximated by

2µ+ σ2

(
2πm
n

)2

when m ≤ εn/σ

Since σ2/n → ∞ and µ = λ/2n, the 2µ can be discarded for all m ≥ 1, and
we have
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εn/σ∑
m=1

≈ n2

(2π)2σ2

εn/σ∑
m=1

1
m2

≤ C
n2

σ2
<<

1
µ

By symmetry it suffices to now consider the sum from εn/σ to n/2. Over
this range 1− (1− µ)2(1− e−(2πm)2σ2/n2

) ≥ δ > 0 so

n/2∑
m=εn/σ

≤ 1
δ

n/2∑
m=εn/σ

e−(2πm)2σ2/n2

Changing variables x = σm/n gives a sequence of values with spacing σ/n,
so comparing the sum with an integral gives that it is

≈ 1
δ
· n
σ

∫ ∞

ε

e−(2πx)2 dx

The integral is convergent, so we have

n/2∑
m=εn/σ

≤ C
n

σ
<<

1
µ

since σ2 →∞, which completes the proof.

Our next goal is to show that the conclusion of Theorem 5.16 fails if σ/
√
n

has a finite limit. This implies that the interesting behavior happens when the
range of the dispersal distribution isO(

√
n). In Wilkins and Wakeley’s context,

where the lattice spacing is 1/n, this translates into a standard deviation
σm = O(1/

√
n) or σ2

m = O(1/n). In the three concrete examples mentioned
above n = 100 so our nσ2

m is 0.01, 0.1 or 1.
For simplicity, Durrett and Restrepo (2007) considered the corresponding

problem for haploid individuals on the integers Z, with one individual sampled
at 0 and one at Ln = O(n). They used the Moran version of the stepping stone
model in which each individual is replaced at rate 1, and when a replacement
occurs at x, the new individual is a copy of the one at y with probability qn(y−
x). They made the following assumptions about the dispersal distributions qn:

1. symmetry: qn(z) = qn(−z)
2. the variance

∑
z∈Z z

2qn(z) = v2
nn with vn → v ∈ (0,∞)

3. there is an h > 0, independent of n, so that qn(z) ≥ h/
√
n for |z| ≤ n1/2

4. exponential tails: qn(z) ≤ C exp(−c|z|/
√
n)

These assumptions contain uniform, bilateral exponential, and normal distri-
butions as special cases.

Theorem 5.17. Let t0 be the coalescence time of the individual at 0 and the
one at Ln. If the positive numbers Ln have Ln/vn → x0 ≥ 0 then 2t0/n
converges in distribution to `−1

0 (vξ/2), where `0 is the local time at 0 of a
standard Brownian motion started from x0 and ξ is independent with a mean
1 exponential distribution.
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It will take some time to explain what this result means. To begin, we note
that if X0

t is the genealogy of the individual at 0 then X0(nt)/vn converges
to a Brownian motion Bt. To explain the unusual scaling, note that X0(nt)
has variance nt · v2

nn, so the variance of X0(nt)/vn converges to t. Let X1
t

be the genealogy of the individual at Ln. Until the two lineages coalesce the
difference (X1(nt)−X0(nt))/vn behaves like a Brownian motion starting at
x0 and run at rate 2. If δ > 0 is fixed then in the limit n→∞ coalescence is
not possible when |X1(nt) −X0(nt)|/vn > δ, so it will only occur when the
two lineages have spent enough time close to each other.

The local time of a Brownian motion at 0 is a measure of the amount of
time Bt spends at 0. The mathematically simplest definition is that `0(t) is
the increasing process that makes |Bt| − `0(t) a martingale. To see why this
measures the time spent at 0, note that |Bt|, being a convex function of a
martingale, is a submartingale. However |x| is linear on (−∞, 0) and (0,∞)
so |Bt| is a martingale except on {t : Bt = 0}. This is a set of Lebesgue
measure 0 but `0(t) provides a measure of the size of this set. Indeed, it is
possible to define a family of local times `a(t) that measures the occupation
time of a in such a way that for nice functions f (e.g., continuous and with
compact support) ∫ t

0

f(Bt) dt =
∫
f(a)`a(t) da

A more concrete answer

To get a more explicit description of the distribution of the limits in The-
orem 5.17 we would like to compute

Px(`−1
0 (ξ/λ) > t) = Px(`0(t) < ξ/λ) = Ex exp(−λ`0(t))

Formula 1.3.7 in Borodin and Salaminen’s (1996) tells us that

Ex(e−λ`0(t);Wt ∈ dz) =
1√
2πt

e−(z−x)2/2t dz

− λ

2
exp((|z|+ |x|)λ+ λ2t/2)Erfc

(
λ2
√
t√

2
+
|z|+ |x|√

2t

)
dz (5.27)

where Erfc is the error function, i.e., the upper tail of the normal distribution.
Although this formula is explicit it is not easy to understand. Another

approach to computing u(t, x) = Ex exp(−λ`0(t)), due to Maruyama (1971),
see his (2.3), is to write a differential equation.

Lemma 5.1. u(t, x) satisfies the heat equation

∂u

∂t
=

1
2
∂2u

∂x2

with the boundary condition ∂u
∂x (t, 0+) = λu(t, 0).
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Proof. When Bt 6= 0, u(t, Bt) is a martingale so u(t, x) satisfies the heat equa-
tion for x 6= 0. To determine the boundary condition at 0, we run Brownian
motion until τh = inf{t : Bt 6∈ (−h, h)} and use symmetry u(t, x) = u(t,−x)
to conclude that

u(t, 0) = E0(e−λ`0(τh)u(t− τh, h); τh ≤ t) +O(P0(τh > t))

The strong Markov property implies that `0(τh) is exponentially distributed.
Let Dε(τh) be the number of downcrossings of (0, ε) by reflecting Brownian
motion before it hits h. Dε(τh) is geometrically distributed with mean h/ε
and limε→0 εDε(t) = `0(t), see e.g., page 48 of Itô and McKean (1974), so
E0`0(τh) = h and

E0(e−λ`0(τh)) =
1/h

λ+ 1/h
=

1
1 + λh

Using the explicit formula in (5.27) or the fact that u(t, x) satisfies the heat
equation with a bounded boundary condition on [0,∞)×{0} shows u(t, x) is
Lipschitz continuous on [0, T ] × [−K,K]. Since τh has the same distribution
as h2τ1, |u(t − τh, h) − u(t, h)| = O(h2). Using this with P0(τh > t) = o(h),
we have

∂u

∂x
(t, 0+) = lim

h→0

u(t, h)− u(t, 0)
h

= u(t, 0) lim
h→0

1− E0(e−λ`0(τh))
h

= λu(t, 0)

which completes the proof.

Wilkins and Wakeley (2002) also take an approach using differential equa-
tions. They work on an interval [0, 1] with reflecting boundary conditions at
the ends. Suppose two lineages are sampled at z1(0) and z2(0). They are in-
terested in computing the joint distribution (z1(t), z2(t)) on the event of no
coalescence. They have the clever idea to change variables

x = 1− |z1 − z2| y = z1 + z2 − 1

to map the problem into the triangle on the right side of the following square.
x = y corresponds to z1 = 1 or z2 = 1 while x = −y corresponds to z1 = 0
or z2 = 0, so these boundaries have reflecting boundary conditions, and they
can be removed by reflecting the function across the boundary lines to extend
it to a function U(x, y, t) defined on the square. To help explain this, we have
indicated four points in the picture where the function will have the same
value.

x = 1 corresponds to z1 = z2 the coalescing event, so Wilkins and Wakeley
(2002) used the boundary condition:

−2σ2 ∂U

∂x
(1, y, t) =

1
N

1√
2π(2σ2)

∫ 1

0

U(1− z, y, t)e−z2/2(2σ2) dz
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Fig. 5.4. Wilkins and Wakeley’s change of variables.

To quote the authors: “In this equation, the flux across the boundary is set
equal to the average probability over the next generation that the separation
between the two lineages is < 1/2N .” If we set σ = c/

√
N then in the limit

as N →∞ we have
−2c2

∂U

∂x
= U

another version of our boundary condition. Wilkins and Wakeley (2002) solved
their equations numerically with an infinite sum of exponentially decaying
sines and cosines and found good agreement with simulations.

5.6 d = 2, Continuous models

Wilkins (2004) has studied what he calls “isolation by distance in a continuous,
two-dimensional habitat,” i.e., using a two dimensional version of the model
of Wilkins and Wakeley (2002) considered in the previous section. The results
are similar to ones obtained earlier by Slatkin and Barton (1989), so we refer
the treader to his paper for details.

Intuitively, if dispersal is uniform over an L × L square in the torus (Z
mod n)2 then the situation should be similar to a stepping stone model with
colony size L2 and migration probability ν = 1. Matsen and Wakeley (2006)
have considered the case in which L/n → c > 0 and used results of Aldous
(1989) and Diaconis and Stroock (1989) to show that the system behaves as
if it is homogeneously mixing. Based on the analogy in the previous sentence,
we should expect the result to be true under the much weaker assumption
l/
√

log n→∞. The next result proves this in a special case.
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Theorem 5.18. Consider the Wright-Fisher stepping stone model on (Z mod
n)2 with dispersal distribution p(0, x) a normal with mean 0 and covariance
σ2I (rounded to the nearest point on the lattice). If σ/

√
log n→∞ and σ/n→

0 then the population behaves as if it is homogeneously mixing. That is, if t0 is
the coalescence time of two lineages sampled from colonies with a displacement
of x, then t0/2n converges in distribution to a mean 1 exponential.

Proof. Using the inversion formula on (Z mod n)2 with (5.12) gives

φ(x) =
1− φ(0)

2n2

n−1∑
m1=0

n−1∑
m2=0

(1− µ)2p̂2(2πm/n)e−i·2πm·x/n

1− (1− µ)2p̂2(2πm/n)
(5.28)

where m = (m1,m2) and m · x = m1x1 +m2x2. In the nearest neighbor case
with K = ∞ alleles this is (3.7) of Maruyama (1970d). To obtain the desired
conclusion about the coalescence time we will take µ = λ/2n2. Since p̂(0) = 1
the m = 0 in the term is

(1− µ)2

2µ+ µ2
≈ 1

2µ
.

If we can show that the other terms can be ignored, then we will have φ(x) ≈
A(1 − φ(0)), with A ≈ 4n2µ, so using the result first for x = 0, and then for
a general x we have

φ(x) ≈ 1
1 + 4n2µ

=
1

1 + 2λ
.

To obtain the desired conclusion we note that

φ(x) = Ex

(
1− λ

2n2

)2t0

so we have shown
Ex exp(−2λ(t0/2n2)) → 1

1 + 2λ
which is the desired conclusion written in terms of Laplace transforms.

The normal distribution has p̂2(θ) = e−|θ|
2σ2

, where θ = (θ1, θ2) and
|θ|2 = θ21 +θ22. Here we are ignoring the effect of rounding, which is valid if σ is
large, and that dispersal occurs on the torus, which is valid by our assumption
σ/n→ 0. If |θ|σ is small then 1− e−|θ|2σ2 ≈ |θ|2σ2 so the denominator in the
fraction in the sum can be approximated by

2µ+ σ2

(
2π|m|
n

)2

when |m| ≤ εn/σ

Since σ2 →∞ and µ = λ/2n2, the 2µ can be discarded for all m ≥ 1, and we
have ∑

1≤|m|≤εn/σ

≈ n2

(2π)2σ2

∑
1≤|m|≤εn/σ

1
|m|2
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Comparing with an integral and changing to polar coordinates∑
1≤|m|≤εn/σ

1
|m|2

≤ C

∫
1≤|x|≤εn/σ

1
x2

dx

= C

∫ εn/σ

1

1
r2

(2πr) dr ≤ C ′ log n

so we have ∑
1≤|m|≤εn/σ

≤ C ′
n2 log n
σ2

<<
1
µ

It suffices now to consider the sum over εn/σ ≤ |m| ≤ n/2. Over this range
1− (1− µ)2(1− e−(2π|m|)2σ2/n2

) ≥ δ > 0 so

n/2∑
εn/σ

≤ 1
δ

∑
εn/σ≤|m|≤n/2

e−(2πm)2σ2/n2

Changing variables x = σm/n gives a grid of values with spacing σ/n, so
comparing the sum with an integral gives that the right-hand side is

≈ 1
δ
· n

2

σ2

∫
ε≤|x|<∞

e−(2πx)2 dx

The integral is convergent, so we have

n/2∑
εn≤|m|≤σ

≤ C
n2

σ2
<<

1
µ

since σ2 →∞, which completes the proof.



6

Natural Selection

“It is not the strongest of the species that survives, nor the most
intelligent, but rather the most responsive to change.” Charles Darwin

In this chapter, we will consider various forms of natural selection and
investigate their effects on the genealogy of a sample and observed patterns
of genetic variability.

6.1 Directional selection

In this section, we will introduce selection into the Moran model considered
in Section 1.5. As we said there, when we write the population size as 2N
we are thinking of N diploid individuals, but the dynamics, which replace
one copy of the locus at a time are more appropriate for 2N haploids. The
haploid viewpoint is even more clear here, since we let 1 and 1 − s be the
relative fitnesses of the two alleles, A and a. However, as the story unfolds
in this chapter and the next, we will see that this situation is the same as a
diploid model in which the relative fitnesses of A, Aa and aa are 1, 1− s, and
(1− s)2 ≈ 1− 2s.

Let Xt be the number of A’s at time t. Thinking of the fitnesses as the
probability that an offspring of that type is viable, we can formulate the
transition rates of the Moran model with selection as

i→ i+ 1 at rate bi = 2N − i · i

2N

i→ i− 1 at rate di = i · 2N − i

2N
· (1− s)

In words, a’s are selected for possible replacement at total rate 2N − i. The
number of A’s will increase if an A is chosen to be the parent of the new
individual, an event of probability i/2N . The reasoning is similar for the
second rate, but in this case the replacement only occurs with probability
1− s.
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6.1.1 Fixation probability

Since there is no mutation in our model, the A allele will either be lost or
become fixed in the population. Let Ty = min{t : Xt = y} be the first hitting
time of y. Let h(i) = Pi(T2N < T0) be the probability that the A allele
becomes fixed when there are initially i copies. In the neutral case h(i) = i/2N
by (1.2).

Theorem 6.1. In the Moran model with selection s > 0

Pi(T2N < T0) =
1− (1− s)i

1− (1− s)2N
(6.1)

When i = 1, the numerator is just s. If selection is strong, i.e., 2Ns is
large, then (1 − s)2N ≈ 0 and the probability of fixation of a new mutant is
just s. When s is small, (1− s) ≈ e−s, so (6.1) can be written as

Pi(T2N < T0) ≈
1− e−is

1− e−2Ns
(6.2)

The genealogical process for the Moran model is that of the Wright-Fisher
model, but run twice as fast. If we replace s by 2s to compensate for this and
let p = i/2N the proportion in the population, we get the classic result of
Kimura (1962) that the probability of fixation for the Wright-Fisher model is

P2Np(T2N < T0) ≈
1− e−4Nsp

1− e−4Ns
(6.3)

Proof. Births happen at rate bi and deaths at rate di, so the probability a
birth occurs before a death is bi/(bi + di) and we have

h(i) =
bi

bi + di
h(i+ 1) +

di

bi + di
h(i− 1)

Multiplying on each side by bi + di and rearranging, we have

h(i+ 1)− h(i) =
di

bi
(h(i)− h(i− 1)) = (1− s)(h(i)− h(i− 1))

Now h(0) = 0, so if we let c = h(1) and iterate, it follows that

(?) h(i+ 1)− h(i) = c(1− s)i

Summing we have

h(j) =
j−1∑
i=0

c(1− s)i = c
1− (1− s)j

s

We must have h(2N) = 1 so c = s/(1 − (1 − s)2N ) and the desired result
follows.
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For some calculations in this section, and later on, it is useful to give

Another derivation of (6.1). To motivate the computation, we begin by re-
calling the proof of (1.2). Let τ = T0 ∧ T2N . When s = 0, EXt is constant in
time, so we have

i = 2N · Pi(Xτ = 2N) + 0 · Pi(Xτ = 0)

Solving, we have Pi(Xτ = 2N) = i/2N . When s > 0, bi/(bi + di) = 1/(2− s).
A little calculation shows that

(1− s)i+1 1
2− s

+ (1− s)i−1 1− s

2− s

= (1− s)i 1− s

2− s
+ (1− s)i 1

2− s
= (1− s)i

so, in this case, the value of E(1− s)Xt stays constant in time. Reasoning as
before,

(1− s)i = (1− s)2NPi(Xτ = 2N) + 1 · [1− Pi(Xτ = 2N)]

Solving we have

Pi(Xτ = 2N) =
1− (1− s)i

1− (1− s)2N

in agreement with (6.1).

Subdivided populations

Maruyama (1970a, 1974) noticed that in some cases, the fixation proba-
bility in the Moran model version of the matrix migration models described
in Section 4.5, is the same as in a homogeneously mixing population. In the
model under consideration here, there are n populations with haploid popula-
tion sizes 2N1, . . . 2Nn, and there are two alleles A and a with relative fitnesses
1 and 1− s.

• Each individual is subject to replacement at rate 1.
• An individual from population i is replaced by one chosen at random from

population j with probability pij , where
∑

j pij = 1.
• The proposed new individual is accepted with probability equal to its

fitness.

Theorem 6.2. If the migration process satisfies the detailed balance condi-
tion, i.e., Nipij = Njpji, then the fixation probability is the same as in a
homogeneously mixing population with the same number of individuals.

Proof. Let ni be the number of A’s in population i. If we consider only events
that cause an a from population i to be replaced by an A from population j
or vice versa, then changes in the number of A’s occur at the following rates.
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+1 (2Ni − ni)pij
nj

2Nj

−1 njpji
2Ni − ni

2Ni
(1− s)

Our condition Nipij = Njpji implies that the second rate is (1 − s) times
the first. Since this holds for all pairs i, j the overall rate of increase of A’s is
(1− s) times the rate of decrease and the desired result follows.

This result has recently been rediscovered by Lieberman, Hauert, and Nowak
(2005).

6.1.2 Time to fixation

Our next goal is to compute the expected time to fixation, given that fixation
occurs. Kimura and Ohta (1969a) did this using the diffusion approximation.
However, as in Section 1.5, it is possible to do their computation without
leaving the discrete setting, so we will take that approach here. Let τ =
T0 ∧ T2N be the fixation time.

Theorem 6.3. In the Moran model with selection s > 0, as N →∞,

E1(τ |T2N < T0) ∼
2
s

logN (6.4)

where aN ∼ bN means aN/bN → 1 as N →∞.

Proof. The proof begins in the same way as the proof for the neutral case
given in Section 1.5. Let Sj be the amount of time spent at j before time τ
and note that

Eiτ =
2N−1∑
j=1

EiSj (6.5)

Let Nj be the number of visits to j. Let q(j) = (2 − s)j(2N − j)/2N be the
rate at which the chain leaves j. Since each visit to j lasts for an exponential
amount of time with mean 1/q(j) we have

EiSj =
1
q(j)

EiNj (6.6)

If we let Tj = min{t : Xt = j} be the first hitting time of j and Rj =
min{t : Xt = j and Xs 6= j for some s < t} be the time of the first return to
j, then the reasoning for (1.36) gives

EiNj =
Pi(Tj <∞)
Pj(Rj = ∞)

(6.7)
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To compute the quantities that enter into the last formula, we note that
the average value of (1− s)Xt stays constant in time, so if 0 ≤ i ≤ j

(1− s)i = (1− s)jPi(Tj < T0) + 1 · [1− Pi(Tj < T0)]

and solving gives that for 0 ≤ i ≤ j

Pi(Tj < T0) =
1− (1− s)i

1− (1− s)j
Pi(T0 < Tj) =

(1− s)i − (1− s)j

1− (1− s)j
(6.8)

Likewise, if j ≤ i ≤ 2N

(1− s)i = (1− s)jPi(Tj < T2N ) + (1− s)2N · [1− Pi(Tj < T2N )]

and solving gives that if j ≤ i ≤ 2N then

Pi(Tj < T2N ) =
(1− s)i − (1− s)2N

(1− s)j − (1− s)2N

Pi(T2N < Tj) =
(1− s)j − (1− s)i

(1− s)j − (1− s)2N
(6.9)

From (6.8) and (6.9), it follows that

Pj(Rj = ∞) =
1

2− s
Pj+1(T2N < Tj) +

1− s

2− s
Pj−1(T0 < Tj)

=
1

2− s
· (1− s)j − (1− s)j+1

(1− s)j − (1− s)2N

+
1− s

2− s
· (1− s)j−1 − (1− s)j

1− (1− s)j
(6.10)

If s > 0 is fixed and N is large, (1− s)2N ≈ 0, so using (6.10)

Pj(Rj = ∞) ≈ s

2− s
+

1− s

2− s
· s(1− s)j−1

1− (1− s)j

It will turn out that most of the answer will come from large values of j. In
this case, the last formula simplifies to

Pj(Rj = ∞) ≈ s

2− s
(6.11)

If we take i = 1, then there is only one case to consider, so using (6.7) and
(6.8) with the last formula, we have for large j

E1Nj =
P1(Tj <∞)
Pj(Rj = ∞)

≈ 1− (1− s)1

1− (1− s)j
· 2− s

s
≈ 2− s

Using q(j) = (2− s)(2N − j)j/2N with (6.6) now we have
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E1Sj ≈
2N

j(2N − j)

Turning now to properties of the conditioned process, we let

Ēi = Ei(·|T2N < T0)

h(x) = Px(T2N < T0) = (1− (1− s)x)/(1− (1− s)2N ) so using (1.40)

Ē1Sj =
h(j)
h(1)

≈ 2N
sj(2N − j)

(6.11) and hence the last three formulas are only valid for large j. As the first
part of the next computation will show, we can ignore the contribution from
small j.

To evaluate the asymptotic behavior of
∑2N−1

j=1 Ē1Sj we will divide the
sum into three parts. Letting M = 2N/(logN) and omitting the factor 1/s.

M∑
j=1

2N
j(2N − j)

≈
M∑

j=1

1
j
≈ log(2N/ logN) = log(2N)− log logN ≈ logN

Note that since logN →∞, we can ignore the contribution from small values
of j. At the other end, changing variables k = 2N − j shows

2N−1∑
j=2N−M

2N
j(2N − j)

=
M∑

k=1

2N
k(2N − k)

≈ logN

In the middle, we have

2N−M−1∑
j=M+1

2N
j(2N − j)

=
2N−M−1∑
j=M+1

1
j

2N

(
1− j

2N

) · 1
2N

≈
∫ 1−1/ log N

1/ log N

1
u(1− u)

du

To evaluate the integral, we note 1/u(1− u) = 1/u+ 1/(1− u) so it is

= 2
∫ 1−1/ log N

1/ log N

1
u
du = 2[log(1− 1/ logN) + log logN ]

The first term tends to 0 as N →∞. The second is much smaller than logN ,
so combining our computations, we have

Ē1τ =
2N−1∑
j=1

Ē1Sj ≈
2
s

logN

which proves (6.4).
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6.1.3 Three phases of the fixation process

To obtain more insight into what is happening during the fixation of a favor-
able allele, we will now give a second derivation of (6.4). As in the proof just
completed, we divide the values into three regimes.

1. While the advantageous A allele is rare, the number of A’s can be approx-
imated by a supercritical branching process.

2. While the frequency of A’s is ∈ [ε, 1 − ε] there is very little randomness
and it follows the solution of the logistic differential equation.

3. While the disadvantageous a allele is rare, the number of a’s can be ap-
proximated by a subcritical branching process.

Kaplan, Hudson, and Langley (1989) incorporated these three phases into
their simulation study of the effects of hitchhiking.

Phase 1. Let i be the number of A’s. If i/2N is small, then

i→ i+ 1 at rate bi ≈ i

i→ i− 1 at rate di ≈ (1− s)i

This is a continuous time branching process in which each of the i individuals
gives birth at rate 1 and dies at rate 1 − s. Letting Zt be the number of
individuals at time t, it is easy to see from the description that

d

dt
EZt = sEZt

so EZt = Z0e
st. A result from the theory of branching processes, see Athreya

and Ney 1972), shows that as t→∞

e−stZt →W (6.12)

The limit W may be 0, and will be if the branching process dies out, that is,
Zt = 0 for some t. However, on the event that the process does not die out
{Zt > 0 for all t}, we have W > 0.

Let T1 be the first time that there are M = 2N/ logN A alleles. We want
M/2N → 0 slowly, but there is nothing special about this precise value. Using
(6.12), we see that Zt ≈ estW so when the mutation survives

2N
logN

≈ exp(sT1)W

and solving gives

T1 ≈
1
s

log
(

2N
W logN

)
≈ 1
s

log(2N)

Phase 2. Let T2 be the first time that there are 2N −M A alleles, where
M = 2N/ logN . As we will now show, during the second phase from T1 to T2
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the process behaves like the solution of the logistic differential equation. LetXt

be the number of copies of the mutant allele at time t, and let Y N
t = Xt/2N .

Y N
t makes transitions as follows:

i/2N → (i+ 1)/2N at rate bi = 2N − i · i

2N

i/2N → (i− 1)/2N at rate di ≈ (1− s)i · 2N − i

2N

When Y N
0 = i/2N = y, the infinitesimal mean

d

dt
EY N

t = bi ·
1

2N
+ di ·

(
− 1

2N

)
= s

2N − i

2N
· i

2N
= sy(1− y)

while the infinitesimal variance

d

dt
E(Y N

t − y0)2 = (bi + di) ·
1

(2N)2
= (2− s)

2N − i

2N
· i

2N
· 1
2N

→ 0

(If the terms infinitesimal mean and variance are unfamiliar, they are ex-
plained in Section 7.1).

In this situation, results in Section 8.7 of Durrett (1996) or in Section 7.4
of Ethier and Kurtz (1986), show that as N → ∞, Y N

t converges to Yt, the
solution of the logistic differential equation

dYt = sYt(1− Yt)

It is straightforward to check that the solution of this equation is

Yt =
1

1 + Ce−t

where C = (1−Y0)/Y0. In the case of interest, Y0 = 1/ log(N), so C ≈ log(N)
and Yt = 1− 1/(logN) when

(logN)e−t =
logN

logN − 1
− 1 =

1
logN − 1

∼ 1
logN

Solving, we find that T2 − T1 ≈ 2 log logN .

Phase 3. To achieve fixation of the A allele mutation after time T2, the
M = 2N/(logN) a alleles must decrease to 0. The number of a alleles, Zt,
makes transitions

j → j + 1 at rate d2N−j ≈ (1− s)j
j → j − 1 at rate b2N−j ≈ j

That is, Zt is a continuous time branching process in which each of the j
individuals gives birth at rate (1 − s) and dies at rate 1. By arguments in
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phase 1, EZt = Z0e
−st so it takes about (1/s) log(2N) units of time to reach

0.

The times of the three phases were

Phase 1 (1/s) log(2N)
Phase 2 log log(2N)
Phase 3 (1/s) log(2N)

and we have a seond proof of (6.4).

6.1.4 Ancestral selection graph

Krone and Neuhauser (1997), see also Neuhauser and Krone (1997), were
the first to figure out how to study the genealogy of samples in models with
selection. Departing from our usual approach in order to keep a closer contact
with their work, we will consider a haploid population of N individuals that
evolves according to the Moran model. We focus on one locus, and limit the
discussion to the case of two alleles A and a with relative fitnesses 1 and 1−s.
Following Krone and Neuhauser, we consider only symmetric mutation: a’s
mutate to A’s at rate u and A’s mutate to a’s at rate u.

•

•

Fig. 6.1. A realization of the ancestral selection graph for a sample of size 4.

We first construct the genealogy ignoring mutation. The details may look
a little strange, but the point of the construction is not to mimic reality,



200 6 Natural Selection

but simply to develop a scheme that will simulate the Moran model with
selection. As in the ordinary case with s = 0, when we work backwards in
time each individual in the population is subject to replacement at a total
rate 1. However, this time there are two types of events. At rate 1−s, we have
a replacement event that chooses a parent at random and always replaces the
individual by the parent. At rate s, we choose a parent at random but replace
the individual by the parent only if the parent is A. Since we will not know
until the end of the genealogical computation whether or not replacement
should occur, we must follow the lineages of both the individual and the
parent and the result is branching in the genealogy. The picture in Figure 6.1
gives a possible outcome for a sample of four individuals. Here dots mark the
edges that can only be used by A’s.

A a

Fig. 6.2. The actual genealogy depends on the state of the ultimate ancestor.

If we speed up time by N and let σ = Ns this results in a process in which
coalescence occurs at rate j(j − 1)/2 and branching occurs at rate σj when
there are j lineages. The time at which the genealogy reaches one individual is
denoted TUA, where UA stands for “ultimate ancestor.” As the two pictures
in Figure 6.2 show, depending on the state of the ultimate ancestor, it may or
may not be the most recent common ancestor of the sample. Note also that
the topology of the tree is different in the two cases.
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The first thing to be proved is that the process ultimately will coalesce to
one lineage. Krone and Neuhauser (1997) do this in their Theorem 3.2, but
this can also be deduced from Theorem 3.10 for the ancestral recombination
graph, since in each case there is a linear birth rate versus the coalescence
death rate of k(k − 1)/2.

To compute the time of the most recent common ancestor, one must work
backwards to TUA and then forwards from that time to see what lineages in
the genealogy are real. For this reason, exact computations are difficult. To
get around this difficulty, Krone and Neuhauser (1997) computed expected
values to first order in σ, which corresponds to considering lineages with 0
or 1 mutation. Theorem 4.19 in Krone and Neuhauser (1997) shows that if
σ is small and θ = 2Nu then the probability that two individuals chosen at
random are identical by descent is

1
1 + θ

− θ(5 + 2θ)
4(1 + θ)2(3 + θ)(3 + 2θ)

σ +O(σ2)

Again, when σ = 0 this reduces to the classic answer for the ordinary coales-
cent. When θ = 1, this becomes

1
2
− 7

320
σ +O(σ2)

The coefficient of σ is small in this case. Figure 9 of Krone and Neuhauser
(1997) shows it is < 0.025 for all θ ∈ [0,∞).

To get results for σ that are not small, one has to turn to simulation. When
σ gets to be 5–10, this becomes difficult because there are a large number
of lineages created before the ultimate ancestor occurs. Slade (2000a,b) has
recently developed some methods for trimming the tree in addition to proving
some new theoretical results for the coalescent with selection.

6.2 Balancing selection

We begin this section by considering a Wright-Fisher model with diploid indi-
viduals and a locus with two alleles: A1 and A2. Let wij be the relative fitness
of AiAj and assume that w12 = w21. To be concrete, we will think of viability
selection where wij ≤ 1 is the probability an individual of genotype AiAj

survives to maturity. Ignoring mutation, and considering the large population
limit, if x = k/2N is the current frequency of allele A1, then the frequency of
A1 in the next generation is

x′ =
1
w̄

[w11x
2 + w12x(1− x)] (6.13)

where w̄ = w11x
2 + w12 · 2x(1 − x) + w22(1 − x)2 is the average fitness of

individuals in the population. To explain (6.13), note that if random mating
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occurs to produce M offspring then the number of individuals produced with
Ai on their first chromosome and Aj on the second is Mxixj . The number
that survive to maturity is Mxixjwij , so the fraction of AiAj individuals
among the survivors is xixjwij/w̄. x′ gives the fraction of survivors that have
A1 as their first chromosome.

Introducing mi = xwi1 + (1− x)wi2, we have w̄ = xm1 + (1− x)m2 and

x′ =
xm1

xm1 + (1− x)m2
(6.14)

mi = xwi1+(1−x)wi2 is called the marginal fitness of Ai since it is the fitness
of Ai when paired with a randomly chosen allele. To have a fixed point of the
iteration (6.14), we must have

m1

xm1 + (1− x)m2
= 1

or m1 = m2. Setting xw11 +(1−x)w12 = xw12 +(1−x)w22 and solving gives

x̄ =
w22 − w12

(w22 − w12) + (w11 − w12)
(6.15)

The fixed point x̄ ∈ (0, 1) if and only if w22 −w12 and w11 −w12 have the
same sign. There are several cases to consider:

(i) A1 dominant over A2. w11 > w12 > w22.

(ii) A2 dominant over A1. w11 < w12 < w22.

(iii) Underdominance. w11 > w12 < w22. Heterozygotes are less fit.

(iv) Overdominance. w11 < w12 > w22. Heterozygotes are more fit.

Two inequalities that define our cases, so, ignoring the possbility of equality,
this covers all of the cases. A fixed point x̄ ∈ (0, 1) exists in cases (iii) and
(iv), but not in (i) and (ii).

Theorem 6.4. Let xn be the frequency of A1 in generation n. In the four
cases given above, we have the following behavior.
(i) If x0 > 0, xn → 1.
(ii) If x0 < 1, xn → 0.
(iii) If x0 < x̄, xn → 0. If x0 > x̄, xn → 1.
(iv) If x0 ∈ (0, 1), xn → x̄.

Proof. In case (i), m1 > m2 so if x ∈ (0, 1)

x′

x
=

m1

xm1 + (1− x)m2
> 1

Let xn be the frequency in generation n. If 0 < x0 < 1, then xn is increasing
so xn converges to a limit x∞. To conclude that x∞ = 1 we note that
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xn+1 =
m1xn

xnm1 + (1− xn)m2

so letting n→∞
x∞ =

m1x∞
x∞m1 + (1− x∞)m2

Solving we have
x∞ + (1− x∞)

m2

m1
= 1

Since m2/m1 < 1, this implies x∞ = 1. Case (ii) is similar to case (i).
To determine whether the fixed points are attracting or repelling in the

last two cases, we note that

m1 = w12 + x(w11 − w12)
m2 = w22 + x(w12 − w22)

In case (iii), m1 is an increasing function of x and m2 is decreasing. The two
functions are equal at x̄, so

if x > x̄ then m1 > m2 and x′ > x

if x < x̄ then m1 < m2 and x′ < x

Since the limit of xn will be a fixed point of the iteration, this implies that if
x0 > x̄ then xn → 1, while if x0 < x̄ then xn → 0.

In case (iv), m1 is a decreasing function of x and m2 is increasing so

if x > x̄ then m1 < m2 and x′ < x

if x < x̄ then m1 > m2 and x′ > x

This is not quite enough to conclude that convergence to x̄ for x′ might
overshoot the fixed point x̄ and we could have a periodic orbit with period 2.
To rule this out, we note that

x′ − x̄ =
m1x

m1x+m2(1− x)
− m1x̄

m1x̄+m2(1− x̄)

=
m1m2(x− x̄)

(m1x+m2(1− x))(m1x̄+m2(1− x̄))

so x′ − x̄ has the same sign as x− x̄. From this we see that

if 0 < x0 < x̄ then xn < x̄ is increasing
if x̄ < x0 < 1 then x̄ < xn is decreasing

Since the limit of the xn will be a fixed point of the iteration, in both cases
we must have xn → x̄ and the desired result follows.
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In the case of overdominance, the selective advantage of the heterozygote
maintains both alleles at positive frequencies, so this case is called balancing
selection. If we write the fitnesses as

w11 = 1− s1 w12 = 1 w22 = 1− s2

then (6.15) shows that the fixed point is

x̄ = s2/(s1 + s2) (6.16)

Sickle-cell anemia

A classic case of overdominance is sickle-cell anemia in human beings.
It is caused by an allele S that codes for a variant form of the β chain of
hemoglobin. In persons of genotype SS, many blood cells assume a curved
elongated shape and are removed from circulation, resulting in a severe ane-
mia as well as pain and disability from the accumulation of defective cells
in capillaries, joints, spleen, and other organs. The S allele is maintained at
relatively high frequency because persons of genotype Ss, in which s is the
nonmutant allele, have only a mild form of the anemia, but are resistant to
malaria.

In regions of Africa in which malaria is common, the relative fitnesses of
ss, Ss, and SS have been estimated as w11 = 0.9, w12 = 1, and w22 = 0.2.
Substitution into (6.16) predicts s will have frequency

0.8
0.1 + 0.8

=
8
9

and hence that S has frequency 1/9 = 0.11. This value is reasonably close to
the average allele frequency of 0.09 across West Africa.

Mutation

Suppose mutation occurs after selection. Let µ1 be the mutation probabil-
ity A1 → A2 and µ2 be the mutation probability A2 → A1. In this case

x′ = (1− µ1)
xm1

xm1 + (1− x)m2
+ µ2

(1− x)m2

xm1 + (1− x)m2
(6.17)

Since mi = xwi1 + (1− x)wi2, this is a cubic equation in x and is very messy
to solve explicitly (see Theorem 8.10). To paraphrase, Ewens (1979), page 13:
we have in mind the case where selective differences are 10−2 to 10−3, while
the mutation rates per locus are of order 10−5 to 10−6, so the fixed point x̄
for the recursion without mutation will be an excellent approximation for the
equilibrium with mutation.

For a numerical example with selection at a low value and mutation high,
suppose w11 = 0.999, w12 = w21 = 1.0, w22 = 0.998, and µ1 = µ2 = 10−5.
The fixed point without mutation is x̄ = 2/3. Iterating (6.17) starting from
this value, we find that the equilibrium with mutation is 0.661848.



6.2 Balancing selection 205

Genealogies

Kaplan, Darden, and Hudson (1988) were the first to study genealogies
in models with balancing selection. The details are somewhat involved alge-
braically, but the idea is simple: this form of selection can be treated as if it
were a two island model. Population i consists of the gametes with allele Ai,
since in the absence of mutation two chromosomes can have the same par-
ent only if they have the same allele. Mutation produces migration between
populations.

Suppose that n genes are chosen at random from the 0th generation and
let Q(0) = (i, j) if the sample contains i A1 alleles and j A2 alleles.

Theorem 6.5. For t ≤ 0, let Q(t) = (i(t), j(t)) denote the number of lineages
in generation t with alleles A1 and A2. If we assume the frequency of allele
A1 is at its equilibrium value x̄, and if we ignore the posssibility of two events
happening on one step, then Q(t) is well approximated by a Markov chain with
transtion probabilities

P (Q(t− 1) = (i+ 1, j − 1)|Q(t) = (i, j)) =
jβ1x̄

1− x̄
· 1
2N

P (Q(t− 1) = (i− 1, j + 1)|Q(t) = (i, j)) =
iβ2(1− x̄)

x̄
· 1
2N

P (Q(t− 1) = (i− 1, j)|Q(t) = (i, j)) =
(
i

2

)
1

2Nx̄

P (Q(t− 1) = (i, j − 1)|Q(t) = (i, j)) =
(
j

2

)
1

2N(1− x̄)

The t−1 may look odd on the left in the conditional probability, but it is not,
since time is indexed by t ≤ 0. To make the connection with the two-island
model with populations of sizes 2Nx̄ and 2N(1− x̄), we note that the forward
migration probabilities f1,2 = β1/2N and f2,1 = β2/2N so the backward
migration probabilities, using (4.9), are

m2,1 =
2Nx̄β1/2N

2Nx̄β1/2N + 2N(1− x̄)(1− β2/2N)
≈ β1

2N
x̄

1− x̄

m1,2 =
2N(1− x̄)β2/2N

2N(1− x̄)β2/2N + 2Nx̄(1− β1/2N)
≈ β2

2N
1− x̄

x̄

Proof. Let X(t) be the frequency of allele A1 in generation t. Let mi(t− 1) =
Xt−1wi1 +(1−Xt−1)wi2 be the marginal fitness of Ai in generation t− 1 and
let

w̄t−1 = X2
t−1w11 + 2Xt−1(1−Xt−1)w12 + (1−Xt−1)2w22

be the mean fitness of the population in generation t− 1.
Let fAj (Ak, t) denote the probability that a randomly chosen gene from

generation t is of allelic type Ak and its parental gene from generation t − 1
is of allelic type Aj . By the calculation that led to (6.17),
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fA1(A1, t) = (1− µ1)
Xt−1m1(t− 1)

w̄t−1

fA1(A2, t) = µ1
Xt−1m1(t− 1)

w̄t−1

fA2(A2, t) = (1− µ2)
(1−Xt−1)m2(t− 1)

w̄t−1

fA2(A1, t) = µ2
(1−Xt−1)m2(t− 1)

w̄t−1

To compute the transition probability ofQ(t), we let f(Ai, t) = fA1(Ai, t)+
fA2(Ai, t) be the probability of picking a gene of allelic type Ai in generation
t regardless of the type of the parental gene. The probability that a sampled
A2 allele from generation t has an A1 parental gene equals

fA1(A2, t)
f(A2, t)

=
µ1Xt−1m1(t− 1)

µ1Xt−1m1(t− 1) + (1− µ2)(1−Xt−1)m2(t− 1)

If we assume the allele frequencies are in equilibrium then Xt−1 ≈ x̄ and hence
m1(t− 1) ≈ m2(t− 1), so assuming µ1 = β1/2N and µ2 = β2/2N are small,

fA1(A2, t)
f(A2, t)

≈
x̄ β1

2N

x̄ β1
2N + (1− x̄)

(
1− β2

2N

) ≈ β1x̄

1− x̄
· 1
2N

Ignoring the possibility of two mutations on one step,

P (Q(t− 1) = (i+ 1, j − 1)|Q(t) = (i, j)) =
jβ1x̄

1− x̄
· 1
2N

A similar argument shows that

P (Q(t− 1) = (i− 1, j + 1)|Q(t) = (i, j)) =
iβ2(1− x̄)

x̄
· 1
2N

In the cases of interest, µ1 and µ2 are small, so most individuals pick their
parents from their subpopulation. Ignoring the possibility of two coalescences
or a coalescence and a mutation on one step we have

P (Q(t− 1) = (i− 1, j)|Q(t) = (i, j)) =
(
i

2

)
1

2Nx̄

P (Q(t− 1) = (i, j − 1)|Q(t) = (i, j)) =
(
j

2

)
1

2N(1− x̄)

which completes the proof.
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Adding recombination

As Hudson and Kaplan (1988) observed, it is not hard to generalize the
setup above to include recombination. Suppose one is investigating the ge-
nealogy of a neutral locus B that is separated from A by recombination with
probability r = R/2N per generation, and that n genes are chosen at random
from the 0th generation. Let Q(0) = (i, j) if the sample contains i A1 alleles
and j A2 alleles.

Theorem 6.6. For t ≤ 0, let Q(t) = (i(t), j(t)) denote the number of lineages
in generation t with alleles A1 and A2. If we assume the frequency of allele
A1 is at its equilibrium value x̄, and if we ignore the possibility of two events
happening on one step, then Q(t) is well approximated by a Markov chain with
transition probabilities

P (Q(t− 1) = (i+ 1, j − 1)|Q(t) = (i, j)) =
jx̄(β1 +R(1− x̄))

1− x̄
· 1
2N

P (Q(t− 1) = (i− 1, j + 1)|Q(t) = (i, j)) =
i(1− x̄)(β2 +Rx̄)

x̄
· 1
2N

P (Q(t− 1) = (i− 1, j)|Q(t) = (i, j)) =
(
i

2

)
1

2Nx̄

P (Q(t− 1) = (i, j − 1)|Q(t) = (i, j)) =
(
j

2

)
1

2N(1− x̄)

Proof. Recombination adds a term of the form

1
w̄t−1

rXt−1(1−Xt−1)w12

to fA1(A2, t) and fA2(A1, t) and subtracts it from fA1(A1, t) and fA2(A2, t).
Repeating the calculations in the previous proof and using wij = 1 +O(1/N)
we have

fA1(A2, t)
f(A2, t)

≈ µ1Xt−1m1(t− 1) + rXt−1(1−Xt−1)w12

1−Xt−1

≈
x̄ β1

2N + x̄(1− x̄) R
2N

1− x̄

Combining this with a similar calculation for fA2(A1, t)/f(A1, t) gives the
indicated result.

Coalescence times

Consider now a sample of size 2 of the B locus. Our first goal is to compute
Mi,j , the mean coalescence time for two lineages when i start linked to the
A1 allele and j start linked to the A2 allele. To simplify notation, we will let
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α1 =
(1− x̄)(β2 +Rx̄)

x̄
α2 =

x̄(β1 +R(1− x̄))
1− x̄

γ1 = 1/x̄ γ2 = 1/(1− x̄)

Here αi is the migration rate out of subpopulation i and γi is the coalescence
rate within it. By considering what happens on the first event, it is easy to
see that

M2,0 =
1

2α1 + γ1
+

2α1

2α1 + γ1
M1,1

M0,2 =
1

2α2 + γ2
+

2α2

2α2 + γ2
M1,1

M1,1 =
1

α1 + α2
+

α1

α1 + α2
M0,2 +

α2

α1 + α2
M2,0

Plugging the first two equations into the third one, we have

(α1 + α2)M1,1 = 1 +
α1

2α2 + γ2
+
α1(2α2)
2α2 + γ2

M1,1

+
α2

2α1 + γ1
+
α2(2α1)
2α1 + γ1

M1,1

Solving gives

M1,1 =
1 + α1

2α2+γ2
+ α2

2α1+γ1
α1γ2

2α2+γ2
+ α2γ1

2α1+γ1

(6.18)

and then M0,2 and M2,0 can be computed from the preceding equations. To
check this formula, we note that if γ1, γ2 >> α1, α2, i.e., the coalescence rates
are much larger than the migration rates, then

M1,1 ≈
1

α1 + α2

In words, the two lineages wait an amount of time with mean 1/(α1 + α2)
to come to the same population and then coalescence comes soon after that
event.

In the other direction, if γ1, γ2 << α1, α2, then

M1,1 ≈
1 + α1

2α2
+ α2

2α1
α1γ2
2α2

+ α2γ1
2α1

As we argued earlier for the fast migration limit of the island model, since
migration is much faster than coalescence, we can pretend that before they hit
the two lineages are independent and in equilibrium. A lineage is in the first
population with probability α2/(α1 + α2) and in the second with probability
α1/(α1 + α2), so the probability of coalescence on one step is approximately(

α2

α1 + α2

)2

γ1 +
(

α1

α1 + α2

)2

γ2 =
α2

2γ1 + α2
1γ2

(α1 + α2)2
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Inverting this to get the mean coalescence time and then multiplying top and
bottom by 1/2α1α2, the mean is then

(α1 + α2)2

α2
2γ1 + α2

1γ2
=

1 + α1
2α2

+ α2
2α1

α1γ2
2α2

+ α2γ1
2α1

Identity by descent

The same logic that led to (6.18) can be used to compute h(i, j), the prob-
ability that two lineages are identical by descent when i starts in population
1 and j in population 2. Let u be the mutation rate and let θ = 4Nu. By
considering what happens at the first event,

(2α1 + γ1 + θ)h(2, 0) = 2α1h(1, 1) + γ1

(2α2 + γ2 + θ)h(0, 2) = 2α2h(1, 1) + γ2

(α1 + α2 + θ)h(1, 1) = α1h(0, 2) + α2h(2, 0)

Plugging the first two equations into the third one

(α1 + α2 + θ)h(1, 1) =
α1(2α2)

2α2 + γ2 + θ
h(1, 1) +

α1γ2

2α2 + γ2 + θ

+
α2(2α1)

2α1 + γ1 + θ
h(1, 1) +

α2γ1

2α1 + γ1 + θ

which can be solved for h(1, 1).

Example 6.1. Hudson and Kaplan (1988) used the last result to study Kre-
itman’s (1983) data on the Adh locus. To examine the distribution of poly-
morphic sites along the chromosome, a “sliding window” method was used.
Three different quantities were computed to characterize the variability in
the window centered at each nucleotide site k: πFS(k), πFF (k), and πSS(k),
the average number of pairwise differences between Fast and Slow sequences,
between Fast sequences, and between Slow sequences. The region sequenced
contained protein coding sequences as well as introns and other noncoding se-
quences. To take at least partial account of the different levels of constraints in
these regions, the size of the window was varied to keep the number of possible
silent changes in the window constant. The window size chosen corresponds
to 50 base pairs in noncoding regions.

If each nucleotide is treated as an individual locus and if it is assumed that
the allelic frequencies at position 2 of codon 192 are maintained by strong
balancing selection, then the theory above can be used to calculate the expec-
tation of πFS(k), πSS(k), and πFF (k). These calculations require that values
be assigned to β1, β2, and x̄, and that for each site i we must compute θi

and Ri, the recombination rate between i and the location i0 of the balanced
polymorphism.
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At sites where m of the three possible mutations is a silent change (does
not change the amino acid), they assumed that the rate θi = mθ0/3. The
heterozygosity per nucleotide at silent sites, π, has been estimated to be 0.006
for a region that is 13 kb long that includes the Adh locus, so they set θ0 =
0.006. The mutations that change lysine to threonine and threonine back
to lysine are the second-position transversions A → C and C → A. Since
θ0 = 4Nu, a plausible value for β1 = β2 = θ0/6 = 0.001, since these are 2N
times the mutation rates. Since x̄, the frequency of the Slow variant varies with
geographic location (Oakeshott et al. 1982) it is not clear what value to assign
to it. A more realistic model must take spatial structure into account, but
Hudson and Kaplan simply set x̄ = 0.7, a value for a sample of D. melanogaster
from Raleigh, North Carolina discussed in Kreitman and Aguadé (1986a).

Finally, they set Ri = R0|i − i0|. Recombination per base pair has been
estimated for several regions of the D. melanogaster genome to be approx-
imately 10−8 per generation in females (Chovnick, Gelbart, and McCarron
1977). There is no recombination in males. The neutral mutation rate has
been estimated to be approximately 5 × 10−9 per year in many organisms.
If we assume that D. melanogaster has four generations per year, then the
ratio of the recombination rate to the neutral mutation rate per generation is
approximately

10−8/2
(5× 10−9)/4

= 4

This implies that R0 is approximately 4 times θ0/2, or 0.012.

Fig. 6.3. Adh Fast-Slow comparison.

With all of the parameters estimated, they could compute the expected
values of πFS(k), πSS(k), and πFF (k) by using the formulas for h(1, 1), h(2, 0),
and h(0, 2) above. The next graph shows that in order to fit the FS data, the
recombination rate needed to be lowered by a factor of 6 from what was
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Fig. 6.4. Adh Slow-Slow comparison.

expected. Even after that was done, the fit was not good for the SS data,
which showed a surprising amount of polymorphism in the SS near the locus
under selection.

In his survey paper, Hudson (1991) redid the analysis using the divergence
between D. melanogaster and D. simulans to estimate the mutation rate on
a locus-by-locus basis. Now the recombination value that produces this fit is
only a factor of 2 smaller than the a priori estimate.

6.3 Background selection

Mutation constantly introduces deleterious alleles. The action of selection to
eliminate these deleterious alleles is called background selection. Following
D. Charlesworth, B. Charlesworth, and Morgan (1995) and Hudson and Ka-
plan (1994, 1995, 1996), we will use a coalescent-based approach to asses its
impact. To begin, we assume that the locus A is linked to one other locus
at which deleterious mutations occur at rate u per individual per generation
and that there is no recombination between the two loci. All deleterious mu-
tations are assumed to have the same effect: 1− sh in the heterozygous state
and 1−h in the homozygous state. However, individual deleterious mutations
will have low frequencies, so we will ignore the possibility of homozygous mu-
tants. Interaction between mutations is assumed to be multiplicative so that
an individual heterozygous for i such mutations has fitness (1− sh)i.

Our first result was derived by B. Charlesworth, Morgan, and D. Charles-
worth (1983), see their equation (3).

Theorem 6.7. In the presence of background selection, the shape of the ge-
nealogy will be just like the neutral case except that the effective population
size is changed to Ne = Ne−u/2sh.
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As a consequence, the site frequency spectrum will be the same as under the
neutral model. To prepare for the statements of the next two results, note
that if we let θ = 4Neµ and θ0 = 4Nµ, then we have θ/θ0 = e−u/2sh. If u is
small then the nucleotide diversity π ≈ θ so the reduction in the presence of
background selection,

π/π0 ≈ e−u/2sh (6.19)

Proof. Following Kimura and Maruyama (1966) and Hey (1991), we formulate
the dynamics of the process and the corresponding coalescent as follows. Let fi

be the frequency of gametes with i mutations, mk = exp(−u/2)(u/2)k/k! be
the probability that a gamete experiences k new mutations, and wj = (1−sh)j

be the relative fitness of a gamete with j mutations. Assuming that selection
acts before mutation, the proportion of the population that are gametes with
j mutations produced by parental gametes with i ≤ j mutations is

pij =
wij

W
where wij = fiwimj−i and W =

∑
ij

wij

Our first step is to check that

Theorem 6.8. The Poisson fi = e−u/2sh(u/2sh)i/i! is a stationary distribu-
tion for the process.

Proof. To do this, the algebra is simpler if we let v = u/2 to get rid of a
number of 2’s, and note that

j∑
i=0

wij =
j∑

i=0

e−v/sh (v/sh)i

i!
(1− sh)ie−v vj−i

(j − i)!

= e−v(1+1/sh) 1
j!

j∑
i=0

j!
i!(j − i)!

((v/sh)− v)i
vj−i

= e−v(1+1/sh) (v/sh)
j

j!

since
j∑

i=0

j!
i!(j − i)!

aibj−i = (a+ b)j

Summing over j now, we have

W =
∞∑

j=0

e−v(1+1/sh) (v/sh)
j

j!
= e−v

so
∑j

i=0 pij =
∑j

i=0 wij/W = e−v/sh(v/sh)j/j!, and we have checked that
the Poisson distribution is stationary.
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By Bayes’ theorem, the probability that a gamete with j mutations derives
from one with i ≤ j mutations is

qji =
pij∑j
i=0 pij

=
e−v/sh (v/sh)i

i! (1− sh)i vj−i

(j−i)!

e−v/sh (v/sh)j

j!

=
j!

i!(j − i)!
(1− sh)i(sh)j−i (6.20)

In words, qji is a binomial distribution.
When j = 1 and i = 0, q10 = sh. If sh = 0.02, as has been suggested by

Crow and Simmons (1983), then as we work backwards in time, a geometrically
distributed number of generations with mean 50 is needed for a sampled class
1 gamete to get to class 0. To estimate the amount of time needed for a
sampled class j gamete to get to class 0, visualize the initial state as j white
balls and that loss of mutation, with probability sh on each trial, results in
a ball being painted green. Ignoring the possibility that two balls are painted
on one turn, the total time to go from j to 0 then has mean

≤ 1
jsh

+
1

(j − 1)sh
+ · · ·+ 1

2sh
+

1
sh

≈ log(j + 1)
sh

For most biologically reasonable values of sh, the sample size j, and popu-
lation size N , (log(j + 1))/sh << N , so the time to get to class 0 is short
compared to the coalescence time. Thus ignoring the time to get to class 0
and the possibility that the two lineages coalesce before getting to class 0, the
coalescent process occurs as for the neutral model, with a population size of
2Ne−u/2sh instead of 2N .

Adding recombination

We suppose now that there is recombination with probability R per gen-
eration between the selected locus and the neutral locus A.

Theorem 6.9. Consider a sample of size 2 at the A locus. If the mutation
rate u is small then, when time is measured in units of 2N generations, the
time to coalescence of two lineages is roughly exponential with mean

λ−1 ≈ 1− ush/2(R+ sh)2 (6.21)

Since the expected time under the neutral model is 1, π/π0 ≈ λ−1.

Proof. If there are recombinations, then as we work backwards in time the
march toward the 0 class is interrupted by recombinations. At recombination
events, the selected locus is replaced by an independent copy drawn from
the population and hence has a Poisson mean u/2sh number of mutations.
As (6.20) shows, in the absence of recombination, the number of mutations
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decreases according to the binomial distribution with a fraction (1−sh) of the
mutations retained. From this, we see that if as we work backwards in time, the
last recombination event happened k generations ago, an event of probability
R(1 − R)k, then the number of deleterious mutations will have a Poisson
distribution with mean (1 − sh)ku/2sh. Thus, in equilibrium the number of
deleterious mutations is a geometric mixture of Poisson distributions.

Suppose now that u is small. In this case, there will always be 0 or 1
mutation, so the Poisson is replaced by the Bernoulli. Supposing R and sh
are small, the probability of one mutation by the argument above is

∞∑
k=0

R(1−R)k u

2sh
(1− sh)k =

uR

2sh(R+ sh+Rsh)
≈ uR

2sh(R+ sh)

Actually, in many cases R will not be small but if, say, R = 0.1 and sh = 0.02,
then R+ sh+Rsh = 0.122 while R+ sh = 0.120, so the approximation is still
reasonable.

Consider now a sample of size 2 at the A locus, and let µ(k) be the equilib-
rium probability that a lineage in the coalescent has k deleterious mutations.
If we suppose that particle movement is more rapid than coalescence, then by
the reasoning for the fast migration limit of the island model, Theorem 4.11,
the probability of coalescence on one step is

Λ =
∑

k

µ(k)2

2Nk
(6.22)

where Nk = Ne−u/2sh(u/2sh)k/k! is the number of individuals in the popu-
lation with k mutations. When u is small, we only have two classes to worry
about: 0 and 1 mutation. In this case, 2N times the sum reduces to

λ =

(
uR

2sh(R+sh)

)2
u/2sh

+

(
1− uR

2sh(R+sh)

)2
1− u/2sh

When y is small (1 − y)2 ≈ 1 − 2y and 1/(1 − y) ≈ 1 + y. Thus, if u/sh is
small, the above is

≈ uR2

2sh(R+ sh)2
+
(

1− 2uR
2sh(R+ sh)

)
· (1 + u/2sh)

If y and z are small (1−y)(1+z) ≈ 1−y+z, so putting things over a common
denominator, the above

≈ 1 +
uR2 − 2uR(R+ sh) + u(R+ sh)2

2sh(R+ sh)2
= 1 +

ush

2(R+ sh)2

Since the per generation coalescence time is ≈ λ/2N the probability of no
coalescence by time t is
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≈
(

1− λ

2N

)2Nt

≈ e−λt

and we have proved the desired result.

DNA segment

Consider now a continuous segment [a, b] of DNA. Let R(x) be the rate
at which recombinations occur in [0, x] and suppose that mutations in [0, x]
occur at rate

∫ x

0
u(y) dy.

Theorem 6.10. The nucleotide diversity π compared to the predictions of the
neutral theory, π0, satisfies

π

π0
≈ exp

(
−
∫ b

a

u(x)sh
2(sh+R(x))2

dx

)
(6.23)

Proof. Suppose first that the neutral locus A is followed by two selected loci
B1 and B2 with the probability of a recombination between A and B1 being
R1 and between B1 and B2 being R2 − R1. Let u1 and u2 be the mutation
rates at the two loci. Combining the two loci into one locus with mutation rate
u = u1 +u2 and then randomly allocating the mutations between the two loci
with probabilities pi = ui/(u1 + u2), it is easy to see that in the equilibrium
of the process going forward, the numbers of deleterious mutations at the two
loci are independent. To argue that this also holds for the process working
backwards in time, we note that this is true when a recombination occurs
between A and B1 and all subsequent operations: thinning the number of
mutations using the binomial or a recombination between B1 and B2 preserves
this property.

The last argument is valid for any number of selected loci. We are now
ready to divide up our segment of DNA into a lot of little pieces Bi and take
a limit as the number of pieces goes to infinity. Let ui be the mutation rate at
Bi and let Ri be the recombination rate between A and Bi. Consider now a
sample of size 2 at the A locus. When there are m loci the classes are denoted
by vectors k = (k1, k2, . . . , km) but the argument that leads to (6.22) stays the
same. Let µ(k) be the equilibrium probability that a lineage in the coalescent
has ki deleterious mutations at locus i. If we suppose that particle movement
is more rapid than coalescence, then the probability of coalescence on one step
is approximately

Λ =
∑
k

µ(k)2

2Nk

where Nk is the number of individuals in the population with k mutations
and

Nk = N

m∏
i=1

e−ui/2sh(ui/2sh)ki/ki!
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≈ N

m∏
i=1

( ui

sh
1{ki=1} +

(
1− ui

sh

)
1{ki=0}

)
Since µ is itself a product, it is easy to see that 2N times the sum is

λ =
m∏

i=1

(
uiRi

2sh(Ri+sh)

)2
ui/2sh

+

(
1− uiRi

2sh(Ri+sh)

)2
1− ui/2sh

.

By a calculation in the previous proof, this is

≈
m∏

i=1

1 +
uish

2(Ri + sh)2
≈ exp

(
m∑

i=1

uish

2(Ri + sh)2

)
.

To pass to the limit, let x be the distance from the neutral locus measured in
kb and suppose that ui =

∫
Bi
u(x) dx. In this case

λ ≈ exp

(∫ b

a

u(x)sh
2(sh+R(x))2

dx

)

where a and b are the endpoints of the region under consideration. Since, when
time is measured in units of 2N generations, the coalescence time is roughly
exponential with mean λ−1, we have proved the desired result.

Example 6.2. If we suppose u(x) ≡ u, R(x) = r|x|, a = −L, and b = L, then
(6.23) reduces to

π

π0
≈ exp

(
−2
∫ L

0

ush

2(sh+ rx)2
dx

)

= exp
(

2
r

[
ush

2(sh+ rL)
− u

2

])
= exp

(
− 2uL

2sh+ 2rL

)
Writing U = 2uL for the total deleterious mutation rate in the region and
R = 2rL for the total recombination rate, the above can be written as

π

π0
≈ exp

(
− U

2sh+R

)
(6.24)

When R = 0, this reduces to the result in (6.19). Note that as we should
expect, recombination lessens the impact of deleterious mutations.

(6.23) gives the effect of deleterious mutations on the variability at 0,
but it is straightforward to extend this to calculate the effect at other places.
Suppose we have a chromosome of length L and let M(x) be the distance from
0 to x measured in Morgans, i.e., the expected number of recombinations in
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Fig. 6.5. Predicted variability under background selection for sh = 0.0003 (dashed
line) and sh = 0.03 (solid line) when M(x) = (x + sin x)/12

[0, x] in one generation. In this case, the reduction in variability at y is given
by

π

π0
≈ exp

(
−
∫ L

0

u(x)sh
2(sh+ |M(x)−M(y)|)2

dx

)
(6.25)

Example 6.3. Following Nordborg, B. Charlesworth, and D. Charlesworth
(1996), we will now consider the case M(x) = (x+sinx)/12 for 0 ≤ x ≤ 2π. To
explain their choice of this function we note that M ′(x) = (1 + cosx)/12 = 0
when x = π so recombination is reduced near the centromere. The plot in
Figure 6.5 shows what happens when U = 0.1 and sh = 0.0003 (dotted line)
or sh = 0.003 (solid line). Note that near the centromere the weaker recombi-
nation causes a greater reduction in variability. The graphs turn up sharply
toward the ends because at the telomeres contributions only come from one
side.

Example 6.4. Hudson and Kaplan (1995) applied (6.25) to predict levels of
variation on the third chromosome of D. melanogaster. The total diploid
deleterious mutation rate has been estimated from mutation accumulation
studies to be 1.0 or larger (Crow and Simmons 1983, Keightley 1994). Since
there are approximately 5000 cytological bands in the Drosophila genome,
they estimated u, the deleterious mutation rate per generation per band, to
be 1.0/5000 = 2× 10−4. To estimate recombination as a function of distance,
Hudson and Kaplan used information in Flybase to determine map distance
as a function of physical position for 107 locations on the third chromosome.

The map gives the values of M(x) at a discrete sequence of points xi. From
these they estimated the reduction in variability at xk by π/π0 = e−G, where

G =
∑

i

ush

2
· |xi+1 − xi|
(sh+ |M(xi+1)−M(xk)|/2)(sh+ |M(xi)−M(xk)|/2)

To compare with (6.25), we first note that the 1/2 in the denominator is to
account for the fact that there is no recombination in male Drosophila.
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Proof. Ignoring this 1/2, we can then derive their approximation as follows.
Suppose without loss of generality that M(xk) ≤ M(xi) < M(xi+1). If we
suppose that M(x) is linear on [xi, xi+1], then ignoring the constant factor
ush/2 the contribution to the integral in (3.7) from this interval is∫ 1

0

(xi+1 − xi) dv
[sh+ v(M(xi+1)−M(xk)) + (1− v)(M(xi)−M(xk))]2

= − (xi+1 − xi)/(M(xi+1)−M(xi))
[sh+ v(M(xi+1)−M(xk)) + (1− v)(M(xi)−M(xk))]

∣∣∣∣1
0

= − (xi+1 − xi)/(M(xi+1)−M(xi))
[sh+ (M(xi+1)−M(xk))]

+
(xi+1 − xi)/(M(xi+1)−M(xi))

[sh+ (M(xi)−M(xk))]

Adding the two fractions we have

=
|xi+1 − xi|

(sh+ |M(xi+1)−M(xk)|)(sh+ |M(xi)−M(xk)|)

Hudson and Kaplan compared the levels of variability at 17 loci on the
third chromosome with predictions based on three different values of sh: 0.03,
0.02, and 0.005. The value of π0 used, namely 0.014, was chosen to produce a
good fit to the data as judged by eye. The fit given in the next figure is not
very sensitive to the value of sh except near the centromere and is remarkably
good except at the tips of the chromosomes.

Fig. 6.6. Hudson and Kaplan’s fit of background selection to Drosophila third
chromosome data.
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Example 6.5. Another example of this type of analysis occurs in Hamblin and
Aquadro’s (1996) study of Gld. To estimateM(x) they used information about
the following loci in D. simulans. Here xi is the band number, M(xi) is the
distance from the tip measured in Morgans, and nd means “not determined.”

Locus xi M(xi) Locus xi M(xi)
jv 175 0 Rh3 1089 nd
idh 285 0.064 Aldox 1299 0.754
Est-6 432 0.252 rosy 1403 nd
Pgm 567 0.381 Men 1413 0.877
ri 780 0.580 boss 1850 nd
Gld 996 0.590 Ald 1865 1.246
e 1059 0.600 ca 1990 1.300
H 1071 0.610 Acph-1 2000 1.340

Taking sh = 0.02, u = 0.0002, and choosing π0 = 0.11 as Hamblin and
Aquadro (1996) did gives the following prediction for π. We do not know the
confidence intervals associated with the estimates of π, but with the exception
of boss, the general pattern seems consistent with the background selection
model.

0 500 1000 1500 2000
0.02

0.03

0.04
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Fig. 6.7. Predicted versus under background selection versus observed levels of
variablity at Est-6, Gld, Rh3, rosy, and boss.

6.4 Muller’s ratchet

Asexual reproduction compels genomes to be inherited as indivisible blocks.
This leads to an accumulation of deleterious mutations known as Muller’s
ratchet. Once the least mutated genome in the population carries at least
one bad mutation, no genomes with fewer mutations can be found in future
generations except as a result of a highly unlikely back mutation.
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To see how fast the ratchet will click, we return to the calculations in
the previous section which show that, assuming multiplicative fitness, the
number of deleterious mutations in a randomly chosen individual is Poisson
with mean u/sh where u is the genome wide deleterious mutation rate and
sh is the selective disadvantage of a heterozygote with deleterious mutation.
Suppose, as we did in the previous section, that sh = 0.02, a number that
Gillespie (1998) supports with the observation that in Drosophila, the fitness
disadvantage of flies with a recessive lethal mutation is 2–5%. If the genome
wide deleterious mutation rate is u = 1 then the mutation free class has Ne−50

individuals, which will be zero for most sensible values of N . On the other
hand if u = 0.1 and N = 106 then the answer is 106e−5 = 6, 738.

The last calculation is not relevant to Drosophila because they reproduce
sexually and so chromosomes undergo recombination. It does apply to the
human Y chromosome, since it only exists in males, and with the exception
of small “pseudo-autosomal” region near the chromosome ends does not un-
dergo recombination. Sequencing of the nonrecombining or male-specific Y
chromosome (MSY) by Skaletsky et al. (2003) revealed approximately 78 pro-
tein coding units, about 60 of which are members of nine MSY-specific gene
families. In contrast, the finished sequence of the X chromosome described in
Ross et al. (2005) contains more than 1000 genes. Combining this with Ohno’s
(1967) idea that the mammalian X and Y chromosomes are evolved from a
pair of autosomes, we see that the Y chromosome has lost most of its genes
over time.

At this point some readers may be wondering, what about mitochondrial
DNA? The crucial difference is that mtDNA has about 16,000 nucleotides
compared to 32 million on the Y chromosome. Thus, even if the mutation
rate for mtDNA is 10 times larger, the ratio u/sh is 200 times smaller, and
we will have e−u/sh ≈ 1.

6.4.1 Evolutionary advantages of recombination

One of the oldest hypotheses for the advantage of recombination, first articu-
lated by Fisher (1930) and Muller (1932), is that it allows beneficial mutations
that arise on different individuals to be placed together on the same chromo-
some. If no recombination occurs, one of the beneficial alleles is doomed to
extinction, slowing the rate at which adaptive mutations are incorporated
within a population.

The initial arguments were qualitative. Muller (1958) in his Gibbs Lecture
to the American Math Society took the first steps in making the argument
quantitative, see page 150. For mathematicians, this may seem like a fairly
recent paper. However, in it Muller talks about “the brilliant recent theory of
Watson and Crick” and he estimates the size of the human genome by noting

“the total mass of nucleotide material, or DNA, contained in one set
of human chromosomes, such as would be found in a human sperm or
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egg nucleus just before they united in fertilization, is approximately
4×10−12 of a gram. Since the mass of one pair of nucleotides is about
10−21 of a gram there must be about 4 × 109 nucleotide pairs in the
chromosome set.”

In (1964) Muller gave a detailed argument. Using his notation and phras-
ing, we let some initial mutant be represented in the next generation by (1+r)
individuals, in the second successive generation by (1 + r)2, and so on. After
g generations, the mutant will have given rise to a total of

1 + (1 + r) + (1 + r)2 + · · ·+ (1 + r)g =
(1 + r)g+1 − 1

r
descendants.

Suppose that the probability of a new advantageous mutation is f = 1/F .
Then the number of generations needed, on the average, to generate an ad-
vantageous mutation in one of the descendants can be calculated by setting

(1 + r)g+1 − 1
r

= F

Solving, we get

g =
log(1 + rF )
log(1 + r)

− 1 (6.26)

For an example, if r = 0.01 and F = 109 then since log(1 + x) ≈ x

g ≈ log(107)
log(1.01)

≈ 7 log(10)
0.01

= 1612 generations.

During this time, in the whole population, there will have been an average
of gN/F advantageous mutations. That expression, then, represents the ratio
of the amount of mutational accumulation in the sexual population to that in
the asexual one, inasmuch as all of the gN/F advantageous mutations in the
former have the opportunity to become concentrated, eventually, within the
same descendants, by recombining as they multiply. If we continue with our
example and set N = 106 then gN/F = 1.612. On the other hand if r = 0.001
then

g ≈ log(106)
log(1.001)

= 13, 815 and gN/F = 13.815

and the evolution of the asexual population is 13.8 times as slow.
Crow and Kimura (1965) did a very similar analysis starting from the

logistic growth of a mutation with selective advantage s:

p =
p0

p0 + (1− p0)e−st

Taking the initial frequency p0 = 1/N the solution is
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p =
1

1 + (N − 1)e−st

Integrating ∫ g

0

est

est +N − 1
dt =

1
s

log(est +N − 1)
∣∣∣∣g
0

=
1
s

log
(
esg +N − 1

N

)
Multiplying by N we see that the total number of individuals = F when

F =
N

s
log
(
esg +N − 1

N

)
Rearranging gives esF/N = (esg +N − 1)/N and hence

g =
1
s

log[N(esF/N − 1) + 1]

Note that as N →∞, N(esF/N − 1) → sF , so this answer reduces to the one
in (6.26). The number of mutations in the whole population that occur in this
time is

Ng

F
=

N

sF
log[N(esF/N − 1) + 1] (6.27)

This formula is similar to Muller’s, but has the advantage that the answer
depends only on N and sF . When N = 106 and sF = 107, 106 the new
answers are 2.38 and 14.4, compared with the previous 1.61 and 13.8.

Maynard Smith (1968) questioned these conclusions and proposed a coun-
terexample. In his deterministic model for the infinite population limit, each
mutant is originally at a low equilibrium frequency in the population main-
tained by a balance between recurrent mutation and natural selection. In
this setting if the relative fitnesses of ab, Ab, Ab, AB are 1, 1 − H, 1 − h,
(1−H)(1− h) then the gene frequencies will satisfy pabpAB = pAbpaB . Thus
there is no linkage disequilibrium initially and none will be created by the
deterministic evolution.

Crow and Kimura (1969) replied by pointing out that if favorable muta-
tions were initially rare, there would almost never be any individuals carrying
two or more of them so the population would not be in a state of linkage
equilibrium. Indeed, as Maynard Smith’s own calculations showed, the prob-
abilities are to a first approximation 1, µA, µB , µAµB . The mutation rates
µA and µB are very small, so for most populations there will be no AB’s. A
lively debate ensued. See Felsenstein (1974) for an account.

6.4.2 Sex, epistasis, and Kondrashov

While it is fairly clear, based on the calculations above, that recombination
is a good thing, the same cannot be said for the sexual reproduction which
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makes it possible. In 10 second sound bite form “asexual reproduction has
an intrinsic twofold advantage over anisogamous sexual reproduction.” where
“anisogamous” refers to the situation in which the female produces relatively
large gametes, such as eggs or seeds, and the male produces a large number
of small and mobile gametes, such as sperm or seeds.

To explain the two-fold cost, note that in a population with a 1:1 sex ratio,
each female produces an average of two offspring, one male and one female.
Imagine now that a dominant mutation arises that allows parthenogeneis, i.e.,
females reproduce asexually. The genome carrying the mutation will persist in
two copies in the next generation, and then double in subsequent generations
until it takes over the population.

There must be some problem with this scenario, because sexual repro-
duction is predominant among eukaryotes. One possibility is that mutations
that cause parthenogenesis either do not occur, or are so deleterious that they
swamp the two-fold advantage. However, parthenogenesis does occur in the
dandelion Taraxacum officianale, which probably lost sex only recently, so we
must look somewhere else for an explanation.

Our calculations in the previous section assume that fitness is multiplica-
tive, i.e., an individual with k mutations has fitness (1 − s)k. However this
assumption is contradicted by a number of experimental studies. Mukai (1969)
accumulated mutations on second chromosomes of Drosophila melanogaster
for 60 generations. He found that the best fit for the fitness of an individual
in generation k mutations was

wk = 1− 0.009813x− 0.00555x2

where x = 0.141k was the expected number of mutations in generation k.
Under this fitness function, called positive epistasis, fitness drops off faster
than in the additive or multiplicative cases.
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Fig. 6.8. Mukai’s data showing the quadratic and linear fits to fitness.
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Models with epistasis are very difficult to analyze so following Kondrashov
(1988) we will consider truncation selection, i.e., the fitness of an individual
with n mutations is

wn =

{
1 if n ≤ k

0 if n > k

To compare asexual and sexual reproduction, we will compute the mutation
load, which is the fraction of individuals that, in selection-mutation equilib-
rium, do not reproduce because of selection. Under truncation selection, an
asexual species will, due to Muller’s ratchet, eventually come to the point
where all individuals have k mutations. In this case, if the deleterious muta-
tion rate is U per genome per generation, then there will be a Poisson mean
U number of mutations per reproduction, so the probability of at least one
mutation is 1− e−U . In words, the mutational load for an asexual species is

Lasex = 1− e−U

If U ≥ log 2 then Lasex ≤ 1/2 and there is potential for a two-fold advan-
tage.

Theorem 6.11. Under truncation selection, a sexually reproducing species
has mutation load Lsex → 0 as k →∞.

Our account is inspired by Kondrashov (1988) and Gillespie (1998), but we
use an argument by contradiction rather than numerical computation.

Proof. Suppose that the mean number of deleterious mutations per chromo-
some is µ before reproduction. If these are spread out along a reasonably large
genome, then due to recombination, gametes will have roughly a Poisson mean
λ = µ+U number of mutations. Those with > k mutations will be eliminated
by selection. Thus the distribution after selection will be

qm =
pm∑k
n=0 pn

where pm = e−λλ
m

m!

We will have equilibrium when the mean of q is µ.
This value of the mean µ(k) is not easy to find algebraically. To prove the

theorem we will show

(k − µ(k))/k1/2 →∞ as k →∞. (6.28)

To see this is enough, note that when λ is large pm is roughly a normal with
mean λ and standard deviation

√
λ, so the fraction of the probability lost by

truncation tends to 0.
To prove (6.28), let Ck = (k − λ)/

√
λ so that k = λ+ Ck

√
λ. Let X have

the normal with mean λ and standard deviation
√
λ, truncated to removed

values > k and then renormalized to be a probability distribution. Let A =
[λ− Ck

√
λ, λ+ Ck

√
λ]. Using symmetry and a trivial inequality
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E(X;X ∈ A) = λP (X ∈ A)

E(X;X ∈ Ac) ≤ (λ− Ck

√
λ)P (X ∈ Ac)

Adding the two inequalities we have

µ ≤ λ− Ck

√
λP (X ∈ Ac)

If there is a sequence of values k(n) → ∞ so that Ck(n) stays bounded then
P (X ∈ Ac) stays bounded away from 0, a contradiction since λ = µ(k) + U .

The argument by contradiction does not provide any quantitative informa-
tion about how large k has to be, so we will now consider a concrete example:

Example 6.6. Take U = 1.4, so e−U = 0.246 and Lasex = 0.754. If we iterate
the dynamics of truncation selection with n = 6, we find that the equilibrium
has mean µ = 4.317, Lsex = 0.349 < Lasex/2, and the distribution of the
number of mutations per individual in the population is

0 1 2 3 4 5 6
0.0050 0.0288 0.0824 0.1572 0.2246 0.2569 0.2448

6.5 Hitchhiking

When a selectively favorable mutation occurs in a population and is subse-
quently fixed, the process will alter the frequency of alleles at closely linked
loci. Alleles present on the chromosome on which the original mutation oc-
curred will tend to increase in frequency, and other alleles will decrease in
frequency. This is referred to as “hitchhiking” because an allele can get a lift
in frequency from selection acting on a neighboring allele.

Following Maynard-Smith and Haigh (1974), we consider haploid individ-
uals and begin by considering the behavior of the selected locus when alleles
B and b have relative fitnesses 1 + s and 1. If we assume a very large popu-
lation in which individuals of type B produce 1 + s times as many offspring
as those of type b, then the fraction of individuals of type B in generation n,
pn, satisfies

pn+1 =
(1 + s)pn

(1 + s)pn + (1− pn)
=

1 + s

1 + spn
pn (6.29)

In n generations, B’s will produce (1+s)n times as many offspring as b’s will,
so the general solution of the equation is

pn =
(1 + s)np0

1− p0 + (1 + s)np0
(6.30)

Readers not convinced by the verbal argument can check that with this choice
of pn
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(1 + s)pn

1 + spn
=

(1 + s)n+1p0

1− p0 + (1 + s)np0

(
1 +

s(1 + s)np0

1− p0 + (1 + s)np0

)−1

=
(1 + s)n+1p0

1− p0 + (1 + s)np0 + s(1 + s)np0
= pn+1

We will have pn ≈ 1 in (6.30) when (1 + s)np0 = C and C is large, that is,
n = log(C/p0)/ log(1+ s). If p0 = 1/2N and s is small, so that log(1+ s) ≈ s,
this condition is n = (ln 2NC)/s in accord with our previous result in (6.4)
on the duration of a selective sweep.

Consider now a second neutral locus with alleles A and a. Introducing
Qn and Rn to denote the conditional probabilities P (A|B) and P (A|b) in
generation n we have

Genotype AB aB Ab ab
Fitness 1 + s 1 + s 1 1
Frequency pnQn pn(1−Qn) (1− pn)Rn (1− pn)(1−Rn)

The main result of Maynard-Smith and Haigh (1974) is

Theorem 6.12. Suppose that Q0 = 0. In this case the frequency of the A
allele after the sweep is

Q∞ = R0(1− p0)
∞∑

n=0

(1− r)nr

1− p0 + p0(1 + s)n+1
(6.31)

To interpret this equation, we note that the initial frequency of the A allele
is R0(1− p0) while its frequency after the sweep is Q∞. Thus, the sum on the
right-hand side gives the factor by which it has been reduced.

Proof. Let r be the probability of a recombination between the A and B loci
per generation. Our first goal is to show

Qn −Rn = (1− r)n(Q0 −R0) (6.32)

Even though it will take a lot of algebra to derive this, the answer is intuitive. A
recombination event makes the two loci independent so the difference between
the two conditional probabilities is (1− r)n times the original difference.

Proof of (6.32). The first step is to compute Qn+1. By considering the possible
parent pairs we have

parents expected number of AB offspring
AB,AB (1 + s)pnQn · (1 + s)pnQn

AB,aB (1 + s)pnQn · (1 + s)pn(1−Qn)
AB,Ab (1 + s)pnQn · (1− pn)Rn

AB,ab (1 + s)pnQn · (1− pn)(1−Rn) · (1− r)
Ab,aB (1− pn)Rn · (1 + s)pn(1−Qn) · r
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To explain the calculation, note that in the first case the offspring will always
be AB. In the second and third, recombination has no effect. The offspring
is AB 1/2 of the time but there is a factor of 2 coming from the fact that
the parents in the second case could be AB,aB or aB,AB. This (1/2) · 2
occurs in the fourth and fifth cases as well. In the fourth, recombination must
be avoided, while in the fifth it must occur to obtain the desired outcome.
Adding up the first three rows with the part of the fourth that comes from
the 1 in the 1− r and then putting the rest in the second term, we have

(1 + s)pnQn · ((1 + s)pn + 1− pn)
+ r(1 + s)pn(1− pn)[Rn(1−Qn)−Qn(1−Rn)]

Dividing by the total number of offspring (1 + pns)2, it follows that

pn+1Qn+1 =
(1 + s)pnQn(1 + spn) + r(1 + s)pn(1− pn)(Rn −Qn)

(1 + spn)2

Rearranging gives

(a) (1 + spn)2pn+1Qn+1 =
[(1 + s)pn]{Qn(1 + spn) + r(1− pn)(Rn −Qn)}

(6.29) implies that

(1 + spn)2pn+1 = (1 + s)pn(1 + spn)

Substituting this on the left-hand side of (a) and then dividing by (1 + s)pn,
we have

(b) (1 + spn)Qn+1 = Qn(1 + spn) + r(1− pn)(Rn −Qn)

Considering Ab, we have

parents expected number of Ab offspring
Ab,Ab (1− pn)Rn · (1− pn)Rn

Ab,ab (1− pn)Rn · (1− pn)(1−Rn)
Ab,AB (1− pn)Rn · (1 + s)pnQn

Ab,aB (1− pn)Rn · (1 + s)pn(1−Qn) · (1− r)
AB,ab (1 + s)pnQn · (1− pn)(1−Rn) · r

Adding things up as before, we get

(c) (1 + spn)2(1− pn+1)Rn+1 = (1− pn)Rn(1 + spn)
+ r(1 + s)pn(1− pn)(Qn −Rn)

(6.29) implies that

(1 + spn)2(1− pn+1) = (1 + spn)2 · (1 + spn)− (1 + s)pn

1 + spn
= (1 + spn)(1− pn)
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Substituting this on the left-hand side of (c) and then dividing by (1 − pn),
we have

(d) (1 + spn)Rn+1 = Rn(1 + spn) + r(1 + s)pn(Qn −Rn)

Subtracting (d) from (b) and then dividing by (1 + spn) we have

Qn+1 −Rn+1 = Qn −Rn −
r(1− pn) + r(1 + s)

(1 + spn)
(Qn −Rn)

= (1− r)(Qn −Rn)

proving (6.32).

If we assume that initially Q0 = 0 then

(e) Qn −Rn = −R0(1− r)n

Using (b) and (e), we have

Qn+1 −Qn =
r(1− pn)
1 + spn

R0(1− r)n

Using (6.30) twice, we have

1− pn =
1− p0

1− p0 + p0(1 + s)n
1 + spn =

1− p0 + p0(1 + s)n+1

1− p0 + p0(1 + s)n

Inserting this into the previous equation and summing, we have (6.31).

A second derivation

There is a different approach to this question, pioneered by Ohta and
Kimura (1975) that leads to more insight. We assume that a favorable muta-
tion B arises in the population at time t = 0 and is subsequently in the process
of replacing allele b. As we have described in the first section of this chapter,
the number of B’s has a first phase in which it behaves like a supercritical
branching process, a second in which the fraction of B’s approximates the
solution of the logistic differential equation, and a third in which the number
of b’s behaves like a subcritical branching process.

However, here we will simplify things by using the logistic differential equa-
tion to model the increase of pt, the fraction of B alleles,

dpt

dt
= spt(1− pt) (6.33)

We will call this the logistic sweep model. Using the notation introduced for
Theorem 6.12, we have
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Theorem 6.13. Suppose that Q0 = 0. In this case the frequency of the A
allele after the sweep is

Q∞ = R0(1− p0)
∫ 2τ

0

re−rt

(1− p0) + p0est
dt (6.34)

This is a close relative of the expression in (6.31):

Q∞ = R0(1− p0)
∞∑

n=0

(1− r)nr

1− p0 + p0(1 + s)n+1

Proof. As one can easily check by differentiating, the solution to (6.33) is

pt =
p0

p0 + (1− p0)e−st
(6.35)

When p0 = ε the solution reaches 1/2 at the time τ when ε = (1 − ε)e−sτ ,
that is, when (

1− ε

ε

)
e−sτ = 1

Solving gives τ = (1/s) log((1/ε)− 1) ≈ −(1/s) log(ε). The solution in (6.35)
has the symmetry property

pτ+s = 1− pτ−s (6.36)

so it will reach 1 − ε at time 2τ . The next graph gives a picture of pt when
ε = 1/200 and s = 0.02. In this case τ = 264.67.

To relate the selective sweep to population subdivision, we divide the pop-
ulation into two parts: chromosomes with the advantageous mutant B and
those with the original allele b. Let v(t) be the frequency of allele A in the B
population and w(t) be the frequency of allele A in the b population after t
generations. Recombinations between chromosomes from the two populations
occur at rate rpt(1− pt) so we have

dv

dt
= r(1− pt)(w(t)− v(t))

dw

dt
= rpt(v(t)− w(t))

Subtracting the second equation from the first gives

d

dt
(v(t)− w(t)) = −r(v(t)− w(t))

so we have
v(t)− w(t) = e−rt(v(0)− w(0)) (6.37)

which is the analogue of (6.32). Using (6.37) and (6.35) in our pair of differ-
ential equations gives
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Fig. 6.9. Rise of the favored allele in a selective sweep. ε is the initial frequency, s
is the selective advantage, and τ = (1/s) log((1/ε)− 1).

v(2τ) = v(0) + r(w(0)− v(0))
∫ 2τ

0

(1− p0)e−st−rt

p0 + (1− p0)e−st
dt (6.38)

w(2τ) = w(0) + r(v(0)− w(0))
∫ 2τ

0

p0e
−rt

p0 + (1− p0)e−st
dt

When v(0) = 0 and w(0) = R0, the first equation becomes (6.34) and the
proof is complete.

Let v1(t) be the solution given in (6.38) with R0 = 1. A little thought
reveals that v1(t) is the probability that the neutral locus of an individual in
the B population at time t comes from the b population at time 0.

v1(2τ) = r

∫ 2τ

0

(1− p0)e−(r+s)t

p0 + (1− p0)e−st
dt

The integral is what Stephan, Wiehe, and Lenz (1992) call I(τ), except that
they replace 1 − p0 by 1. To get an approximation to v1(2τ), note that the
expected number of times a lineage will cross from the B population to the b
population during the sweep is

v1(2τ) ≈ r

∫ 2τ

0

(1− pt) dt = rτ =
r

s
log(1/ε) (6.39)
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since the symmetry property (6.36) implies∫ τ

0

(1− pτ−s + 1− pτ+s) ds =
∫ τ

0

1 ds

Since the number of crossings should have approximately a Poisson distribu-
tion, the probability of at least one is

1− exp(−(r/s) log(1/ε)) = 1− εr/s (6.40)

The most natural value to use here is ε = 1/2N , but we will see later in the
discussion of (6.46) that it is better to set ε = 1/2Ns.

It is not hard to show, see e.g., the appendix of Durrett and Schweinsberg
(2004), that the result in (6.40) becomes exact when N →∞.

Theorem 6.14. Under the logistic sweep model, if N →∞ and r log(2N)/s→
a then

v1(2τ) → 1− e−a.

The reader should note that since we assume r log(2N)/s→ a this is a little
different from the rule of thumb that, see e.g., Nurminsky (2001), “hitchhiking
of the neighboring neutral locus is efficient if r < s and becomes negligible if
r ≈ s.”

To judge the quality of the approximation, we consider the situation with
a population size of N = 10,000 and selection coefficient s = 0.01 for various
values of recombination r = 0.0001 ot 0.001. The curves compare the exact
value from (6.31) with the approximation from (6.40). Some authors, see e.g.,
Fay and Wu (2000) page 1407, suggest the use of (6.39), but as the graph
shows, this is not very accurate.
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(6.31)

(6.40)

(6.39)

Fig. 6.10. Comparison of approximations for the probability a lineage does not
escape from the selective sweep.

Site frequency spectrum
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The results above show how the frequencies of linked neutral alleles are
changed by a selective sweep. Using them we can determine the effect of
hitchhiking on the site frequency spectrum.

Theorem 6.15. Under the logistic sweep model, if c = 1− εr/s then the site
frequency spectrum after the sweep is

φc(x) =
(
θ

x
− θ

c

)
1[0,c](x) +

θ

c
1[1−c,1](x) (6.41)

where 1[a,b](x) is 1 on [a, b] and 0 otherwise.

This is a result from Fay and Wu (2000), see their equations (5) and (6), which
has been rewritten to allow for the possibility that c > 1/2 in which case the
two regions overlap.

Proof. This is a fairly straightforward calculation but it is more easily done in
terms of the distribution function, rather than in terms of the density function
where one has to take into account how the two transformations stretch the
space.

Returning to (6.38), and recalling that v1 is the solution with v(0) = 0
and w(0) = 1 we have

v(2τ) = v(0) + (w(0)− v(0))v1(2τ)
≈ v(0) + (w(0)− v(0))

(
1− εr/s

)
From this, we see that if w(0) = p0 is the frequency in the b population at time
0 then the frequency in the B population will be v(0) = 1 with probability
p0 and v(0) = 0 with probability 1 − p0, so the ending frequencies will be
(1− c) + cp0 with probability p0 and cp0 with probability 1− p0.

The second term in (6.41) comes from the fact that the new frequency
p′ = (1 − c) + cp0 with probability p0. In order for p′ ≥ y > 1 − c we must
have p0 ≥ [y − (1 − c)]/c. Taking into account the probability of this case is
p0 = x we have∫ 1

[y−(1−c)]/c

x · θ
x
dx =

θ

c
[c− y + (1− c)] =

∫ 1

y

θ

c
dx

The first term in (6.41) comes from the fact that the new frequency p′ = cp0

with probability 1 − p0. In order for p′ ∈ [y, c] with y < c we must have
p0 ∈ [y/c, 1]. Taking into account the probability of this case is 1− p0 = 1−x
we have ∫ 1

y/c

(1− x) · θ
x
dx = −θ log(y/c)− θ

c− y

c
=
∫ c

y

θ

x
− θ

c
dx

Combining the two calculations gives the desired result.
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Samples of size n ≥ 2

Theorem 6.14 concerns the effect of a selective sweep on a single lineage.
As Kaplan, Hudson, and Langley (1989) observed in their equation (16), the
heterozygosity after the sweep H∞ is related to that before the sweep H0 by

H∞

H0
= p22 (6.42)

where p22 is the probability that two lineages sampled from the B population
at time 2τ are distinct at time 0. Since the time of the sweep is much smaller
than the population size, two lineages will coalesce only if they both end up
in the B population at time 2τ . That is,

p22 = 1− (1− v1(2τ))2 = v1(2τ)(2− v1(2τ)) (6.43)

which is equation (14a) of Stephan, Wiehe, and Lenz (1992).
Using this we obtain formula (13) from Kim and Stephan (2000).

Theorem 6.16. Under the logistic sweep model, the nucleotide diversity π in
a population that experienced a selective sweep 2Nτ generations ago has

Eπ = θ[1− (1− p22)e−τ ] (6.44)

Proof. If Ts is the coalescence time in the presence of the sweep then Eπ =
θETs. Let T0 ≥ Ts be the coalescence time without the sweep. Ts 6= T0 only
if there is no coalescence by time τ , an event of probability e−τ , and the
sweep causes the two lineages to coalesce, an independent event of probability
1 − p22. When these two events occur Ts = τ . The lack of memory property
of the exponential implies that E(T0 − τ |T0 > τ) = 1, so we have

ET0 − ETs = e−τ (1− p22) · 1

which proves the desired result.

As Proposition 2 in Durrett and Schweinsberg (2004) shows, the reasoning
that led to (6.43) implies

Theorem 6.17. Under the logistic sweep model, if N →∞ with r ln(2N)/s→
a and s(lnN)2 →∞ then for j ≥ 2

pk,k−j+1 →
(
k

j

)
pj(1− p)k−j where p = e−a

and pk,k → (1− p)k + kp(1− p)k−1.

In the special case k = 2 we have

p22 = (1− p)2 + 2p(1− p) = 1− p2

In words, the two lineages do not coalesce unless neither escapes from the
sweep.
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6.6 Better approximations

To evaluate the approximations proposed in the previous section, we turn to
simulation, starting with a sample of size 2. Let p2inb be the probability both
lineages escapes the sweep and do not coalesce, let p2cinb be the probability
both lineage escapes the sweep but coalesce, and let p1B1b be the probability
one lineage escapes but the other does not. p22 = p2inb + p1B1b. Theorem
6.17 implies that if r log(2N)/s→ a then

p2inb→ p2 p2cinb→ 0 p1B1b→ 2p(1− p) (6.45)

where p = e−a is the limiting probability that one lineage escapes from the
sweep.

In the first set of simulations N = 10, 000, s = 0.1, and the values of r
have been chosen to make the approximate probabilities of escaping from the
sweep (pinb) equal to 0.1 and 0.4 respectively. The first row in each group
gives the probabilities obtained from the approximation in Theorem 6.17.
The second row gives the result of integrating the differential equations for
the probabilites. The third row gives the average of 10,000 simulation runs
of the Moran model conditioned on fixation of the advantageous allele. The
fourth row gives the values from the much more accurate Theorem 6.19 which
will be stated in a moment.

pinb p2inb p2cinb p1B1b p22

Th 6.17 0.1 0.01 0 0.18 0.19
r = 0.00106 logistic 0.09983 0.00845 0.03365 0.11544 0.12390

Moran 0.08203 0.00620 0.01826 0.11513 0.12134
Th 6.19 0.08235 0.00627 0.01765 0.11687 0.12314
Th 6.17 0.4 0.16 0 0.48 0.64

r = 0.00516 logistic 0.39936 0.13814 0.09599 0.32646 0.46460
Moran 0.33656 0.10567 0.05488 0.35201 0.45769
Th 6.19 0.34065 0.10911 0.05100 0.36112 0.47203

Note that Theorem 6.17 does a good job of approximating the probabilities
of escaping from the sweep, but the other approximations on the first row are
poor. The logistic overestimates the true probability of escaping the sweep
by about 20%, but does a good job of computing p22, despite not being very
accurate for the two probabilities make up p22.

Results for N = 100, 000, s = 0.03 are similar, but this time are based on
only 1,000 simulations. Again the values of r have been chosen to make the
approximate probabilities of escaping from the sweep (pinb) equal to 0.1 and
0.4 respectively.
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pinb p2inb p2cinb p1B1b p22

Th 6.17 0.1 0.01 0 0.18 0.19
r = .000259 logistic 0.09989 0.00837 0.03034 0.11097 0.11935

Moran 0.07675 0.00554 0.01545 0.11149 0.11704
Th 6.19 0.07671 0.00553 0.01494 0.11249 0.11803
Th 6.17 0.4 0.16 0 0.48 0.64

r = .001256 logistic 0.39826 0.13808 0.10204 0.31627 0.45437
Moran 0.31846 0.09641 0.04581 0.35246 0.44888
Th 6.19 0.32074 0.09790 0.04409 0.35750 0.45540

Stick breaking construction

We now begin the description of the more accurate approximation due to
Durrett and Schweisnberg (2004). They describe the impact of a sweep on a
sample of size k as a marked partition Πs of {1, . . . , k}. The integers i and j
will be in the same block of the partition if and only if the ith and jth lineages
in the sample coalesce during the sweep and the block will be marked if the
individuals in the block are descended from the one who started the selective
sweep.

In the approximation of Theorem 6.17, we made a partition Π1 by flipping
k coins with a probability p = e−a of heads. All of the integers with heads are
combined into one marked block. They are the lineages that did not escpe from
the sweep. The other integers are singletons in the partition. This partition
has only one block with more than one integer, because in this approximation
only the lineages that get trapped in the B population coalesce. The more
accurate approximation allows multiple blocks to have more than one integer.

To define the new random partition Π2, we will use a stick-breaking con-
struction, which is essentially the same as the paintbox construction of King-
man (1978). The construction is simple to describe, but it will take us a while
to explain the intuition behind it. The ingredients for the construction are as
follows:

• Let M = [2Ns], where [m] is the greatest integer ≤ m.
• Let ξl, 2 ≤ l ≤ M , be independent Bernoulli random variables that are 1

with probability r/s and 0 otherwise.
• Let Wl, 2 ≤ l ≤ M , be independent random variables with Wl having a

beta(1, l − 1) distribution.
• For 2 ≤ l ≤M , let Vl = ξlWl, and let Tl = Vl

∏M
i=l+1(1− Vi).

• Let T1 =
∏M

l=2(1− Vl).

In words,
∏M

i=l+1(1 − Vi) is the length of the stick at time ` + 1, and we
break off a fraction V` of what remains. Now, divide the interval [0, 1] into
M subintervals (some of which may be empty) as follows. Let aM+1 = 1 and
for 1 ≤ l ≤ M , let al = al+1 − Tl. Since

∑M
l=1 Tl = 1, we have a1 = 0. Let

Il = [al, al+1].
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I1 I4 I6 I7 I10

a1 a2 = a3 = a4 a5 = a6 a7

a8 = a9 = a10

↓ a11

Fig. 6.11. Example of the stick breaking construction.

In the picture drawn M = 10, the Bernoulli variables ξ2, ξ3, ξ5, ξ8, ξ9 = 0, so
the corresponding V` = 0.

To obtain a partition of {1, . . . , k}, let U1, . . . , Uk be i.i.d. random variables
with a uniform distribution on [0, 1]. We declare i and j to be in the same
block of the partition if and only if Ui and Uj are both in the interval Il for
some l. Since we wish also to keep track of which lineages are descended from
the B population and which come from the b population, we will mark, with
probability s/(r(1− s) + s), the block of the partition containing all of the i
such that Ui is in I1 to indicate that these lineages did not escape from the
sweep. This defines the marked partition Π2. The main result of Schweinsberg
and Durrett (2005) is

Theorem 6.18. There is a positive constant C so that for all N and marked
partitions π,

|P (Πs = π)− P (Π2 = π)| ≤ C/(logN)2.

A similar result has been derived by Etheridge, Pfaffelhuber, and Wakol-
binger (2006) by considering the diffusion limit with 2Ns → α and then let-
ting α→∞. Recent work of Pfaffelhuber, Haubold, and Wakolbinger (2006),
Pfaffelhuber and Studeny (2007), and Eriksson, Fernström, Mehlig, and Sag-
itov (2007) has resulted in various improvements to the approximation or to
associated simulation procedures.

In contrast the error in the approximation by Π1 from Theorem 6.17 is
of order C/(logN), since as we work backwards in time, with probability
≈ r/s there is a recombination at the last moment which takes all of the
coalesced lineages to the b population. When N = 10, 000, logN = 9.214 so
the C/(logN)2 error may not seem to be much of an improvement, but as the
numbers in the tables indicate the new approximation is considerably more
accurate.

Sketch of proof. Our approximation in Theorem 6.18 is based on the following
ideas:

1. We ignore the possibility that a lineage experiences two recombinations
during the sweep, taking it from the B population to the b population and
back to the B population.
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2. When the number of chromosomes with the B allele is much smaller than
the population size, the number of individuals with the B allele can be ap-
proximated by a continuous-time branching process, in which each individual
splits into two at rate 1 and dies at rate 1−s. We don’t care about the lines of
descent in the branching process that die out. Known results, see for example
O’Connell (1993), imply that the lineages in a branching process that do not
die out are themselves a branching process, in our case the Yule process, a
continuous time branching process in which each particle splits into two at
rate s. Since each lineage has an infinite line of descent with probability s, the
number of such lineages at the end of the sweep is approximately M = b2Nsc.

3. When there are l ≥ 2 lineages in the Yule process, the time to the next
birth is exponentially distributed with mean 1/sl, and recombinations occur
at rate lr, so the expected number of recombination events is r/s. We assume
that the number of such events is always 0 or 1. The Bernoulli variables ξl,
2 ≤ l ≤M tell us whether one occurs or not.

4. As time tends to infinity, the number of individuals in the Yule process
divided by its mean converges to an exponential distribution with mean 1.
See Theorem 1.15. This implies that when there are l lineages, the fraction of
individuals at the end of the sweep that are descendants of a given lineage has
roughly the same distribution as ξ1/(ξ1 + · · · + ξl) where ξi are independent
exponentails. The ratio has a beta(1, l−1) distribution. Thus, the Wl, 2 ≤ l ≤
M represent the fraction of descendants of an individual in the Yule process
when there are l individuals.

5. If ξl = 0 there is no recombination and Vl = 0. If ξl = 1 there is a
recombination that removes a fraction Vl of the remaining population, i.e.,
the fraction of individuals that recombine at time l is Vl. T1 =

∏M
l=2(1 − Vl)

is the fraction of the initial population that trace their ancestry back to the
B population at the time when there was one lineage in the Yule process.

6. The probability a recombination happens before the first birth in the Yule
process is r(1− s)/(r(1− s) + s). In this case, no lineage for the neutral locus
comes from the B population.

The procedure described above translates directly into a procedure for
simulating genealogies for a linked neutral locus, which is much simpler than
Kaplan, Hudson, and Langley (1989). However, in the case of one or two
lineages one can compute the probabilities of interest analytically.

Theorem 6.19. For the approximation Π2, we have
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pinB =
s

r(1− s) + s

M∏
l=2

(
1− r

sl

)
pinb = 1− pinB

p2inB =
s

r(1− s) + s

M∏
l=2

(
1− 2r

s(l + 1)

)

p2cinb =
r(1− s)

r(1− s) + s

M∏
l=2

(
1− 2r

s(l + 1)

)

+
M∑
i=2

2r
si(i+ 1)

M∏
l=i+1

(
1− 2r

s(l + 1)

)
p1B1b = 2(pinB − p2inB) and p22 = 1− p2inB − p2cinb.

Proof. Since Wl has a beta(1, l − 1) distribution, which has density function
(l− 1)(1−x)l−2, integration shows that E[Wl] = 1/l and E[W 2

l ] = 2/l(l+1).
To calculate pinB, first note that pinB = [s/(r(1− s) + s)]P (U1 ∈ I1) where
U1 is uniform on (0, 1). If U1 is not in any of the intervals Il+1, . . . , IM , then
the probability, conditional on Vl, that U1 ∈ Il is Vl. Therefore, for 2 ≤ l ≤M ,
we have

P (U1 ∈ Il|U1 /∈ Il+1 ∪ · · · ∪ IM ) = E[Vl] = E[ξl]E[Wl] =
r

sl

It follows that

P (U1 ∈ I1) =
M∏
l=2

P (U1 /∈ Il|U1 /∈ Il+1 ∪ · · · ∪ IM ) =
M∏
l=2

(
1− r

sl

)
which implies the first statement.

For the second, note that if U2 is independent of U1 and uniform on (0, 1),
then

p2inB =
s

(r(1− s) + s)
P (U1, U2 ∈ I1)

If U1 and U2 are not in any of the intervals Il+1, . . . , IM , then the probability,
conditional on Vl, that either U1 or U2 is in Il is 1−(1−Vl)2. A little calculation
shows

E[1− (1− Vl)2] = 2E[Vl]− E[V 2
l ] = E[ξl](2E[Wl]− E[W 2

l ])

=
r

s

(
2
l
− 2
l(l + 1)

)
=

2r
s(l + 1)

and the formula for p2inB now follows by the same reasoning as the formula
for pinB.

Finally, to obtain the formula for p2cinb, we note that

p2cinb =
r(1− s)

r(1− s) + s
P (U1, U2 ∈ I1) +

M∑
i=2

P (U1, U2 ∈ Ii).
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From the calculation for p2inB, we know that the probability that U1 and U2

are not in any of the intervals Ii+1, . . . , IM is

M∏
l=i+1

(
1− 2r

s(l + 1)

)
This formula when i = 1 gives P (U1, U2 ∈ I1). Conditional on the event that
U1 and U2 are not in any of the intervals Ii+1, . . . , IM , the probability that
U1 and U2 are both in Ii is

E[V 2
i ] = E[ξi]E[W 2

i ] = 2r/[si(i+ 1)].

By combining these observations, we obtain the desired formula for p2cinb.
The last two relationships follow easily from the definitions.

The expressions in Theorem 6.19 are exact, but can be simplified without
much loss of accuracy by using 1 − x ≈ e−x. Consider for example pinB.
Rewriting the first fraction and dropping the r(1 − s) from the denominator
(recall r = as/ log(2N)), and using M = [2ns],

pinB =
(

1− r(1− s)
r(1− s) + s

) M∏
l=2

(
1− r

sl

)

≈ exp

(
−r(1− s)

s
−

M∑
l=2

r

sl

)

= exp

(
−r
s

[
−s+

M∑
l=1

1
l

])
≈ exp

(
−r
s

[ln(2Ns) + γ − s]
)

(6.46)

where γ = limk→∞
∑k

j=1
1
j − ln k ≈ 0.57721 is Euler’s constant. If one ignores

the γ − s, this corresponds to taking ε = 1/2Ns in (6.40). This provides an
explanantion for why Kim and Stephan like this choice of ε in Theorem 6.41.

Stephan, Wiehe, and Lenz (1992) found a different approximation for p22

by writing differential equations for the second moments of the allele freqeuncy
and then approximately solving the equations. Their result, which is given in
(17) of their paper, is

p22 ≈
2r
s
α−2r/s

∫ 1

1/α

z−(2r/s)−1e−z dz (6.47)

where α = 2Ns and we have taken ε = 1/2Ns. This does not look much like
the approximation from Theorem 6.19, in which M = [2Ns]:

p22 = 1−
M∑
i=1

2r
si(i+ 1)

M∏
l=i+1

(
1− 2r

s(l + 1)

)
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but the numerical values are similar. To compare the two approximations, we
use a case considered in Kim and Stephan (2002); we take N = 200, 000 and
s = 0.001, and use values of r that, assming a per nucleotide recombination
probability of 10−8 correspond to 1, 4, 7, and 10 kilobases.

r (6.47) Logistic Theorem 6.19 Theorem 6.17
0.00001 0.098790 0.098363 0.087375 0.227393
0.00004 0.338821 0.331240 0.305675 0.643684
0.00007 0.513202 0.494525 0.470897 0.835672
0.00010 0.640356 0.610135 0.595986 0.924214

The column labeled logistic gives the values obtained by solving the differential
equations exactly. The approximation in (6.47) is always slightly larger than
the value computed from the logistic, while the more accurate approximation
from Theorem 6.19 is somewhat smaller. We have listed the rather awful
approximations from Theorem 6.17 to show that the differences between the
last three columns are not as large as they might first appear.

Using (6.44) as an approximation for p22 gives an approximation for the
expected number of pairwise differences. To compare with Figure 2 in Kim
and Stephan (2002) we again take N = 200, 000, s = 0.001, and assume
a recombination probability of 10−8 per nucleotide per generation. Setting
θ = 0.01 assuming that the time since the sweep occured at 20,000 is τ = 0.005
in units of 2N generations, we have the results plotted in Figure 6.12. The
upper line uses the Kim and Stephan approximation of p22. The thicker line
below comes from solving the differential equation. The third dotted curve is
Durrett and Schweinsberg’s result from Theorem 6.19.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9
x 10

−3

Fig. 6.12. Nucleotide diversity versus position in kilobases along the chromosome
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6.7 Recurrent sweeps

Begun and Aquadro (1992) observed that in Drosophila melanogaster there is
a positive correlation between nucleotide diversity and recombination rates.
This observation may be explained by repeated episodes of hitchhiking caused
by the fixation of newly arising advantageous mutations, because the average
size of the region affected depends on the ratio s/r. Thus if selection inten-
sities are similar across the genome, loci in regions of low recombination will
be affected by more sweeps per unit time. Formula (6.23) shows that back-
ground selection has a greater impact in regions of low recombination, so as
B. Charlesworth, Morgan and D. Charlesworth (1993) have suggested, it also
provides an explanation.

To try to distinguish between the two explanations one must focus on other
features of the data, such as the site frequency spectrum. Since background
selection can be modeled as a reduction in the effective population size, it
does not change the distribution of allele frequencies. However, the fixation of
advantageous alleles is expected to result in an increase in the number of low
frequency alleles because selective sweeps reduce variability, and then new
mutations have low frequencies. In this section, we will try to quantify the
effects of recurrent selective sweeps.

6.7.1 Nucleotide diversity

To consider in detail the impact of selective sweeps on genetic variability,
we will now consider recurring selected substitutions that occur according
to a Poisson process at rate ν per nucleotide per generation. If the physical
distance of a selected substitution from the neutral region is m nucleotides,
then its recombinational distance is ρm, where ρ is the recombination rate
per nucleotide per generation. Recall p22 is the probability that two lineages
do not coalesce during the selective sweep. Writing p22(r, s,N) to display the
dependence of the probability on the population parameters, we can see that
selective sweeps cause coalescence at an additional rate (per 2N generations)
of

λ = 2N · 2ν
∫ ∞

0

1− p22(ρx, s,N) dx

= 4N
ν

ρ

∫ ∞

0

1− p22(y, s,N) dy (6.48)

so the time to coalescence has an exponential distribution with rate 1 + λ. A
coalescence caused by a sweep forces the state of the neutral allele to be equal
in the two sampled individuals, so the heterozygosity under repeated sweeps
is 1/(1 + λ) times that under the neutral theory. In symbols

H =
Hneu

1 + λ
(6.49)
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This is equation (21) of Stephan, Wiehe and Lenz (1992).
Stephan, Wiehe, and Lenz (1992) developed an approximation of p22, see

(6.47), which allowed Wiehe and Stephan (1993) to conclude that

2
∫ ∞

0

1− p22(y, s,N) dy ≈ sI

where I ≈ 0.075 is a constant. Using this in (6.48) we have λ ≈ Iαν/ρ where
α = 2Ns. Inserting this result into (6.49) we have

H ≈ Hneu ·
ρ

ρ+ ναI
(6.50)

From this, it follows that

1
H

=
1

Hneu
+

ναI

Hneu
· 1
ρ

= β1 + β2 ·
1
ρ

(6.51)

Wiehe and Stephan (1993) used this relationship to fit data on 17 Drosophila
melanogaster loci from Begun and Aquadro (1992). Taking H to be the nu-
cleotide diversity π, they found β1 = 125.54 and β2 = 5.04 × 10−7, which
corresponds to Hneu = 0.008.

To interpret the parameters, we note that if we assume the per nucleotide
mutation rate is 1× 10−9, then since 0.008 = Hneu = 4Neµ, Ne is estimated
to be 2× 106. Assuming an average selective effect of 0.01, then α = 2Nes =
4× 104 and

ν =
β2Hneu

Iα
=

(5.04× 10−7) · 0.008
0.075 · 4× 104

= 1.34× 10−12

Comparing this to the mutation rate 10−9, we see that 1/(1.34 × 10−3), or
1 out of every 746 mutations, are driven to fixation by selection. Aquadro,
Begun, and Kindahl (1994) repeated these calculations for 15 gene regions of
the third chromosome of Drosophila with almost the same result.

The change of variables in (6.51) is called the Linweaver-Burk transfor-
mation. This procedure is generally used in biochemistry to fit models of the
Michaelis-Menten type to data. This procedure has two problems: the esti-
mates have large variance, and β2 is a combination of Hneu and αν so it
is not possible to provide confidence limits for the estimate of αν. Stephan
(1995) instead used the equation

π = Hneu − Iαν
π

ρ

and reanalyzed the data of Aquadro, Begun, and Kindahl (1994) but the
parameter estimates were almost identical to those in the first study. The
next figure compares the fitted curve to the data.
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Fig. 6.13. Stephan’s (1995) fit to data of Aquadro, Begun, and Kindahl (1994).

6.7.2 Genealogies

Using results from Section 6.4, we can obtain an approximation for the behav-
ior of genealogies under recurrent selective sweeps. Let σ be a finite measure
on [−L,L] × [0, 1]. σ([a, b] × [c, d]) gives the rate at which successful selec-
tive sweeps occur in the chromosome interval [a, b] with selective advantage
c ≤ s ≤ d. Let r : [−L,L] → [0,∞) be a continuous function such that
r(0) = 0 and r is nonincreasing on [−L, 0] and nondecreasing on [0, L]. r(x)
gives the rate at which recombinations occur between 0 and x. Adding sub-
scripts σN and rN to indicate the dependence on the population size, Theorem
2.2 of Durrett and Schweinsberg (2005) shows

Theorem 6.20. Suppose that, as N → ∞, the measures 2NσN converge
weakly to σ and the functions (log 2N)rN converge uniformly to r. Let η be
the measure on (0, 1] such that

η([y, 1]) =
∫ L

−L

∫ 1

0

1{e−r(x)/u≥y} µ(dx× du)

for all y ∈ (0, 1]. Let Λ be the measure on [0, 1] defined by Λ = δ0 +Λ0, where
Λ0(dx) = x2η(dx). Then, as N →∞, the genealogy of the locus at 0 converges
to the Λ coalescent defined by (4.1).

The result in the paper cited has a u multiplying the indicator. That factor
is missing because here our rates concern successful selective sweeps. The
conclusion given above is a simple consequence of Theorem 6.17. A successful
selective sweep that occurs at a recombination distance of r causes lineages
to be trapped by the sweep with probability p = e−r(log 2N)/s.

We now derive the limiting Λ-coalescent in two natural examples.
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Example 6.7. Selection at one locus. Consider the case in which we are con-
cerned only with mutations at a single site, which we think of a rapidly evolv-
ing gene. To simplify, we assume that all mutations have the same selective
advantage, but this assumption can easily be relaxed. Fix γ > 0, and let
σN = (γ/2N)δ(z,s) where δ(z,s) is a point mass at (z, s) with z ∈ [−L,L] and
s ∈ (0, 1]. This means that beneficial mutations that provide selective advan-
tage s appear on the chromosome at site z at times of a Poisson process with
rate γ/2N . The measures 2NσN converge to σ = γδ(z,s). Assume that the
recombination functions rN are defined such that the sequence (log 2N)rN
converges uniformly to r, and let β = r(z). Then, for all y ∈ (0, 1], we have

η([y, 1]) =
∫ L

−L

∫ 1

0

1{e−r(x)/u≥y} µ(dx× du) = γ1{e−β/s≥y}.

Therefore, η consists of a mass γ at p = e−β/s. It follows from Theorem 6.20
that the limiting coalescent process is the Λ-coalescent, where Λ = δ0 +γp2δp.
Recalling the definition of a p-merger given in Example 4.1, we see that in
addition to the mergers involving just two blocks, we have coalescence events
at times of a Poisson process with rate γ in which we flip coins with probability
p of heads for each lineage and merge the lineages whose coins come up heads.

Example 6.8. Mutations along a chromosome. It is also natural to consider
the case in which favorable mutations occur uniformly along the chromosome.
For simplicity, we will assume that the selective advantage s is fixed. Let dx
denote Lebesgue measure on (−∞,∞). (To treat this case, we have to first
apply the result to [−L,L] and then let L→∞.)

Suppose σN = (2N)−1(γdx× δs), so the measures 2NσN converge to σ =
γdx×δs. To model recombinations occurring uniformly along the chromosome,
we assume that the functions (log 2N)rN converge uniformly to the function
r(x) = β|x|, so the probability of recombination is proportional to the distance
between the two sites on the chromosome. For all y ∈ (0, 1], we have

η([y, 1]) = γ

∫
1{e−β|x|/s≥y} dx.

Since e−β|x|/s ≥ y if and only if |x| ≤ −(s/β)(log y), we have

η([y, 1]) =
−2γs log y

β

− d

dy
η([y, 1]) =

2γs
βy

By Theorem 6.20, the genealogies converge to a Λ-coalescent with Λ = δ0+Λ0

where Λ0 has density h(y) = cy with c = 2γs2/β.
To connect these parameters with the ones used by Braverman et al. (1995),

suppose x is the distance along the chromosome in Morgans. Their Λr, which is
the hitchhiking events per 2N generations per recombination unit, is 2Nγ, and
α = 2Ns so γs = Λrα. In their simulations 2N = 108, so β = log(2N) = 18.42.
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6.7.3 Segregating sites

Suppose the ancestral history of a sample of n individuals is given by a Λ-
coalescent. Let λb be the total rate of all mergers when the coalescent has
b blocks, see (4.2). Assume that, on the time scale of the coalescent process,
mutations happen at rate θ/2. Let ∆ij be the number of sites at which the ith
and jth sequences differ and let ∆n =

(
n
2

)−1∑
i<j ∆ij be the average number

of pairwise differences. Since the average time for two lineages to coalesce is
λ−1

2

E∆n = E∆ij = θ/λ2 (6.52)

To compare with (6.49) we note that λ2 = 1 + λ, where λ is the rate of
coalescence due to selective sweeps.

To calculate the expected number of segregating sites, we note that any
mutation in the ancestral tree before all n lineages have coalesced to 1 adds to
the number of segregating sites. If, at some time, the coalescent has exactly b
blocks, the expected time that the coalescent has b blocks is λ−1

b . Let Gn(b) be
the probability that the coalescent, starting with n blocks, will have exactly
b blocks at some time. Then

E[Sn] =
θ

2

n∑
b=2

bλ−1
b Gn(b). (6.53)

Although we do not have a closed-form expression for Gn(b), these quantities
can be calculated recursively because the transition rates of the Λ-coalescent
allow us to express Gn(b) in terms of Gk(b) for k < n.

We will now use (6.53) with Theorem 6.20 to compute the reduction in
variability due to recurrent selective sweeps. Let ξ be a partition with b blocks
and η a partition with b − k + 1 blocks obtained by collapsing k blocks of ξ
into one in η. Recall from (4.1) that the jump rate

qξ,η =
∫ 1

0

xk−2(1− x)|ξ|−kΛ(dx)

Since there are
(

b
k

)
possible such jumps, the rate at which the number of

lineages decreases from b to b− k + 1 due to selective sweeps is

rb,b−k+1 =
(
b

k

)∫ 1

0

xk−2(1− x)b−kΛ0(dx)

where Λ0 = Λ− δ0.
In Example 6.8, Λ0 has density cx, so

rb,b−k+1 = c

(
b

k

)∫ 1

0

xk−1(1− x)b−k dx

= c
b!

k!(b− k)!
· (k − 1)!(b− k)!

b!
=

1
k
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The calculus can be done by remembering the definition of the beta distribu-
tion or integrating by parts to show that∫ 1

0

xi

i!
· x

j

j!
dx =

1
(i+ j + 1)!

The total rate at which transitions occurs, when the partition has b blocks is
λb =

(
b
2

)
+
∑b

k=2
1
k , so the probability that the next jump will take the chain

from b to b− j is

pb,b−j =

{((
b
2

)
+ 1

2

)
/λb j = 1

1/(j + 1)λb 2 ≤ j ≤ b− 1

From this it follows that for n > b

Gn(b) =
n−b∑
j=1

pn,n−jGn−j(b)

Thus the values can be computed by starting with Gb(b) = 1 and then com-
puting Gn(b) for n = b+ 1, b+ 2, . . ..

By the reasoning that led to (6.53) the expected total time in the tree for
a sample of size n is

ETn =
n∑

b=2

bλ−1
b Gn(b)

Since λb ≥
(

b
2

)
and Gn(b) ≤ 1, this is smaller than the neutral expectation.
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Fig. 6.14. Reduction in heterozygosity due to recurrent selective sweeps.

In Figure 6.14 we have plotted ETn/E0Tn for Example 6.8 as a func-
tion of distance along the chromosome measure in centiMorgans, when c =
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0.1, 1, 10, 100. As noted earlier, in comparison to the parameters of Braverman
et al. (1995)

c =
2γs
β

=
2Λrα

18.42
= 0.1085Λrα

The graphs in their Figure 3 end at about Λr = 0.001 so our values of c
correspond to their α = 103, 104, 105, 106. Our analytical curves show good
agreement with the values they found by simulation.
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Diffusion Processes

“One cannot escape the feeling that these mathematical formulas have
an independent existence and an intelligence of their own.” H.R. Hertz

As we have mentioned several times, if we let the population size N →∞
then our processes become deterministic. In this section, we will see that if we
let N →∞ and at the same time speed up time so that it runs at rate O(N),
then allele frequencies converge to limits called diffusion processes. This will
allow us to obtain more detailed results about the models with selection in-
troduced in the previous chapter. A rigorous treatment of diffusion processes
requires a fair amount of mathematical sophistication and the details them-
selves could fill a book, see e.g., Durrett (1996). Here, we will content ourselves
to state and explain the use of the main formulas useful for computation.

As an antidote to the mathematical skullduggery, we will give some anec-
dotes concerning the historical development of the use of diffusion process in
genetics that, taking place in the 30s, 40s, and 50s, occurs in parallel to the de-
velopment of a rigorous mathematical foundation for probability theory. Our
first is a quote from Feller’s (1951) Berkeley Symposium paper, which began
the development of the mathematical machinery for treating the convergence
of Markov chains to diffusion processes:

“There exists a huge literature on the mathematical theory of evo-
lution and statistical genetics, but existing methods and results are
due almost entirely to R.A. Fisher and Sewall Wright. They have
attacked individual problems with great ingenuity and an admirable
resourcefulness, and had in some instances to discover for themselves
isolated facts of the general theory of stochastic processes. However,
as is natural with such pioneer work, it is not easy to penetrate to
the mathematical core of the arguments to discover the explicit and
implicit assumptions underlying the theory.”

A footnote to the first sentence of the quote says: “See Fisher (1930), Wright
(1939) and Wright (1942). It is difficult to give useful references to original
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papers, since these are mostly highly technical and inaccessible to nonspecial-
ists.” I am sure that many biologists have similar feelings about the mathe-
matics literature.

7.1 Infinitesimal mean and variance

To motivate the definition of a diffusion process, we begin by recalling that a
continuous-time Markov chain Xt is defined by giving the rate q(i, j) at which
the chain jumps from i to j. That is, if we use Pi for the distribution of the
process starting from i then

Pi(Xs = j) = q(i, j)s+ o(s)

where o(s), pronounced “little oh of s,” is a quantity that when divided by s
tends to 0 as s→ 0. If we define q(i, i) = −

∑
j 6=i q(i, j) then the rows of the

matrix sum to 0 and

Pi(Xs = i) = 1 + q(i, i)s+ o(s)

Combining the last two formulas, it follows that if f is a bounded function
then

Eif(Xs) = (1 + q(i, i)s)f(i) +
∑
j 6=i

q(i, j)sf(j) + o(s)

Rearranging we have

Eif(Xs)− f(i)
s

=
∑

j

q(i, j)f(j) + o(1)

where o(1) denotes a quantity that (when divided by 1) tends to 0 as s→ 0.
Letting s→ 0

d

ds
Eif(Xs)

∣∣∣∣
s=0

= Qf(i) (7.1)

where the right-hand side is the ith component of the product of the matrix
Q = q(i, j) and the vector f(j). Q is called the infinitesimal generator of Xs.

To define diffusion processes, we will take an approach that is not intuitive,
but is efficient.

Definition. A one dimensional diffusion process is a continuous Markov pro-
cess with infinitesimal generator

Lf =
1
2
a(x)

d2

dx2
f + b(x)

d

dx
f

That is, we have (d/dt)Exf(Xt)|t=0 = Lf(x).
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To see what this means, note that if we take f(x) = x then f ′(x) = 1 and
f ′′(x) = 0 so

d

dt
ExXt

∣∣∣∣
t=0

= b(x)

while if we fix x and define f(y) = (y − x)2 then f ′(x) = 0 and f ′′(y) = 2 so

d

dt
Ex(Xt − x)2

∣∣∣∣
t=0

= a(x)

For this reason, b(x) and a(x) are called the infinitesimal mean and infinites-
imal variance.

Taking f(y) = (y − x)4 we have f ′(x) = 0 and f ′′(x) = 0 so

d

dt
Ex(Xt − x)4

∣∣∣∣
t=0

= 0

Since (y − x)4 ≥ 0, we have Ex(Xt − x)4 ≥ ε4Px(|Xt − x| > ε), and it follows
that

1
t
Px(|Xt − x| > ε) → 0 as t→ 0

It can be shown that this condition implies that the paths t→ Xt are contin-
uous. To see why we need this probability to be o(t), recall that for continuous
time Markov chains with jumps

Pi(Xt = j)/t→ q(i, j) as t→ 0.

To explain the intuitive meaning of the coefficients b(x) and a(x) we will
consider some examples.

Example 7.1. Deterministic motion. Suppose X0 = x and dXt/dt = b(Xt). A
little calculus shows

f(Xt)− f(X0) =
∫ t

0

d

ds
f(Xs) ds

=
∫ t

0

f ′(Xs)
dXs

ds
ds =

∫ t

0

f ′(Xs)b(Xs) ds

So if f ′ and b are continuous

f(Xt)− f(x)
t

→ f ′(x)b(x)

i.e., Lf(x) = b(x)f ′(x). Thus, when a(x) = 0, a diffusion process reduces to a
differential equation.

Notation. In the next example and in what follows Bt = B(t) and the second
form will often be used when t has subscripts or a complicated formula.
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Example 7.2. Brownian motion. Suppose B(0) = x and for 0 = t0 < t1 <
. . . < tn, B(t1)−B(t0), B(t2)−B(t1), . . . B(tn)−B(tn−1) are independent with
B(ti)−B(ti−1) normally distributed with mean 0 and variance σ2(ti − ti−1).
Using Taylor’s theorem, when t is small

f(Bt)− f(B0) ≈ f ′(B0)(Bt −B0) +
1
2
f ′′(B0)(Bt −B0)2

Taking expected values

Ex(f(Bt)− f(x)) ≈ 1
2
f ′′(x)σ2t

so Lf(x) = (σ2/2)f ′′(x), i.e., a(x) = σ2 and b(x) = 0. Thus, a(x) measures
the size of the stochastic fluctuations, or what biologists call random genetic
drift.

Example 7.3. Stochastic differential equations. Let σ(x) =
√
a(x). Intuitively,

a diffusion process has for small t

(?) Xt −X0 ≈ b(X0)t+ σ(X0)(Bt −B0)

If b and σ are Lipschitz continuous, i.e., |b(x)− b(y)| ≤ K|x− y| and |σ(x)−
σ(y)| ≤ K|x− y| then it can be shown that the integral equation

Xt −X0 =
∫ t

0

b(Xs) ds+
∫ t

0

σ(Xs)dBs

has a unique solution, where the second integral is defined to be the limit
of approximating sums

∑
i σ(X(si−1))(B(si) − B(si−1)). The formalities in-

volved in making the last sentence precise are considerable but the intuition
in (?) is important: a diffusion process is a differential equation plus random
fluctuations, which can be thought of as coming from a Brownian motion with
a state dependent variance.

7.2 Examples of diffusions

In this section, we will introduce many of the examples from genetics that
we will study. A formal proof of the convergence of Markov chains to limiting
diffusions is somewhat complicated. Here, we will content ourselves to compute
the limits of the infinitesimal mean and variance. Theoretical results which
show that this is sufficient to conclude convergence can be found in Section
8.7 of Durrett (1996) or Section 7.4 of Ethier and Kurtz (1986).

Example 7.4. Wright-Fisher model with selection. There are two alleles, A and
a. The fitness of A is 1 and fitness of a is 1−s where s ≥ 0. In the Wright-Fisher
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model, this can be implemented by declaring that, as we build up the state at
time t+ 1 by drawing with replacement from generation t, we always accept
an A that is drawn, but we keep an a with probability 1− s. Here, selection
acts on the individual chromosomes, so, in effect, we have a population of 2N
haploid individuals. Later we will discuss the more complicated situation of
selection acting on diploids.

If the frequency of allele A in generation 0 is X0 = x then a newly drawn
ball will be kept with probability x+(1−x)(1− s) so the expected frequency
in the next generation will be

x′ =
x

x+ (1− x)(1− s)
=

x

1− (1− x)s
= x+ x(1− x)s+ o(s)

since 1/(1− y) = 1 + y + y2 + · · · . The number of A’s in the next generation
N1 will be binomial(2N,x′) so the frequency X1 = N1/2N has

E(X1 −X0) = x(1− x)s+ o(s)

To take the diffusion limit, we want to write time in units of 2N genera-
tions, i.e., let Yt = X[2Nt] where [s] is the largest integer ≤ s. Since time 1 for
X corresponds to time 1/2N for Y , we want the change in the mean in one
time step to be of order 1/2N , so we let γ = 2Ns and write

E(Y1/N − Y0) = x(1− x)γ · 1
2N

+ o
(
N−1

)
where o(N−1) is a term that when divided by N−1 tends to 0 as N →∞.

The variance of N1 is 2Nx′(1 − x′), and var (cZ) = c2 var (Z) so the
variance of X1 is x′(1− x′)/2N . When s = γ/2N , x′ = x+ o(1) and we have

var (Y1/N − Y0) = x(1− x) · 1
2N

+ o
(
N−1

)
Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1− x)

d2

dx2
f + γx(1− x)

d

dx
f (7.2)

In some papers in the biology literature time is not sped up and one sees

Lf =
1

4N
x(1− x)

d2

dx2
f + sx(1− x)

d

dx
f

Example 7.5. Wright-Fisher model with selection and mutation. As before, we
have two alleles, A and a, with the fitness of A is 1 and fitness of a is 1−s. This
time a → A with probability µ1 and A → a with probability µ2. In defining
our process we will suppose that selection occurs first followed by mutation.
For a concrete story, suppose that the fitnesses give the relative probabilities
of the two types surviving long enough to reproduce, at which point a genetic
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mutation may occur. If the frequency of allele A in generation 0 is X0 = x
then the frequency in the next generation will be

x′′ = x′ + µ1(1− x′)− µ2x
′ where x′ = x+ x(1− x)s+ o(s)

Letting Yt = X[2Nt], γ = 2Ns, βi = 2Nµi, and noting that x′ = x + o(1) we
see that

E(Y1/N − Y0) = {x(1− x)γ + β1(1− x)− β2x} ·
1

2N
+ o

(
N−1

)
Again x′′ = x+ o(1) so we have

var (Y1/N − Y0) = x(1− x) · 1
2N

+ o
(
N−1

)
Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1− x)

d2

dx2
f + {γx(1− x) + β1(1− x)− β2x}

d

dx
f (7.3)

The source of each term is

binomial sampling 1
2x(1− x) d2

dx2 f

selection, 2Ns = γ γx(1− x) d
dxf

mutation, 2Nµi = βi {β1(1− x)− β2x} d
dxf

Example 7.6. Moran model. There are two alleles, A and a. The fitness of A
is 1 and fitness of a is 1 − s. Mutations a → A occur at rate µ1 and A → a
occur at rate µ2. For simplicity, we assume that mutations occur during the
individual’s life, not at birth, so adding the mutation rates to the transition
rates from Section 6.1 we have

k → k + 1 at rate (2N − k)
(
k

2N
+ µ

)
k → k − 1 at rate k

(
2N − k

2N
(1− s) + ν

)
Let Xt be the fraction of individuals with the A allele. To derive the diffusion
approximation we note that if k/2N = x

d

dt
EXt =

1
2N

[
(2N − k)

(
k

2N
+ µ1

)
− k

(
2N − k

2N
(1− s) + µ2

)]
= (1− x)µ1 − xµ2 + x(1− x)s

Letting βi = Nµi, and γ = Ns we see that the drift coefficient for the process
run at rate N is

b(x) = (1− x)β1 − xβ2 + x(1− x)γ
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To compute the second order term, we note that after either an up jump or a
down jump (Xt − x)2 = (1/2N)2, so

d

dt
E(Xt − x)2 =

1
(2N)2

[
(2N − k)

(
k

2N
+ µ1

)
+ k

(
2N − k

2N
(1− s) + µ2

)]
Since µ1, µ2, s,→ 0 and k/2N = x we have

d

dt
E(Xt − x)2 =

1
2N

[2x(1− x) + o(1)]

Thus for the process run at rate N the diffusion coefficient is

a(x) = x(1− x)

Combining our calculations we see that the infinitesimal generator is again

Lf =
1
2
x(1− x)

d2

dx2
f + [γx(1− x) + β1(1− x)− β2x]

d

dx
f (7.4)

In Section 1.5, we saw that the Moran model coalesces twice as fast as the
Wright-Fisher model. To compensate for this, we sped up time by N rather
than 2N , in order to arrive at the same diffusion limit.

Example 7.7. General diploid selection model. We again have two alleles A
and a but the fitnesses of diploid individuals are

AA Aa aa
1− s0 1− s1 1− s2

If the frequency of allele A in generation 0 is X0 = x then assuming random
union of gametes and reasoning as in Section 6.2, the frequency in the next
generation will be

x′ =
x2(1− s0) + x(1− x)(1− s1)

x2(1− s0) + 2x(1− x)(1− s1) + (1− x)2(1− s2)

=
x− s0x

2 − s1x(1− x)
1− x2s0 − 2x(1− x)s1 − (1− x)2s2

Ignoring terms with s2i and sisj the above

≈ x− s0x
2 − s1x(1− x) + s0x

3 + 2x2(1− x)s1 + x(1− x)2s2

A little algebra now shows

x′ − x ≈ x(1− x)[−s0x− s1(1− 2x) + s2(1− x)]
= x(1− x)[s2 − s1 + x(2s1 − s0 − s2)]

Letting Yt = X[2Nt], γi = 2Nsi, δ = γ2 − γ1 and η = 2γ1 − γ0 − γ2 then
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E(Y1/N − Y0) = x(1− x)[δ + ηx] · 1
2N

+ o
(
N−1

)
Again x′ = x+ o(1) so we have

var (Y1/N − Y0) = x(1− x) · 1
2N

+ o
(
N−1

)
Combining our calculations we see that the infinitesimal generator is

Lf =
1
2
x(1− x)

d2

dx2
f + x(1− x)[δ + ηx]

d

dx
f (7.5)

If there is mutation a → A at rate µ − 1 and A → a at rate µ2, and we let
βi = 2Nµi then this adds a term of the form

{β1(1− x)− β2x}
d

dx
f

There are several important special cases

Additive selection. s0 = 0, s1 = s, s2 = 2s, and let γ = 2Ns. δ = γ2 − γ1 = γ
and η = 2γ1 − γ0 − γ2 = 0 so

δ + ηx = γ

b(x) = γx(1− x) (7.6)

just as in our previous Wright-Fisher model with selection.

Balancing selection. s1 = 0, so δ = γ2 and η = −(γ0 + γ2). If we let x0 =
γ2/(γ0 + γ2) then

δ + ηx = (γ0 + γ2)(x0 − x)
b(x) = (γ0 + γ2)x(1− x)(x0 − x) (7.7)

From this we see that the drift is < 0 for x > x0 and > 0 for x < x0. In the
symmetric case γ0 = γ2 = γ so x0 = 1/2 and

δ + ηx = γ(1− 2x)
b(x) = γx(1− x)(1− 2x) (7.8)

A is dominant. Aa has the same fitness as AA. s0 = s1 = 0, s2 = s. δ =
γ2 − γ1 = γ and η = 2γ1 − γ0 − γ2 = −γ

δ + ηx = γ(1− x)
b(x) = γx(1− x)2 (7.9)

A is recessive. Aa has the same fitness as aa. s0 = 0, s1 = s2 = s. δ =
γ2 − γ1 = 0 and η = 2γ1 − γ0 − γ2 = γ.

δ + ηx = γx

b(x) = γx2(1− x) (7.10)
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To compare the drifts for additive selection versus dominant and recessive
alleles we have graphed the solution of the differential equation dXt/dt =
b(Xt) for the three drifts starting with X0 = 0.01. To make the selective
advantage of AA over aa the same in the three cases, we have taken γ = 1, 2, 2.
Note that because of the extra factor of (1− x) the dominant case has more
trouble getting to 1, while due to the extra factor of x, the recessive case has
a hard time escaping from 0.

0 100 200 300 400 500 600
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dominant

additive

recessive

Fig. 7.1. Solution of dXt/dt = b(Xt) for the three drifts for additive selection,
dominant alleles, and recessive alleles.

We can generate new examples of diffusions from old ones by

Theorem 7.1. Change of variables. If h is increasing and has two con-
tinuous derivatives, then Yt = h(Xt) is a diffusion process with infinitesimal
mean and variance

ā(y) = a(x)h′(x)2 b̄(y) = Lh(x)

where x = f−1(y).

Proof. By calculus

d

dx
f(h) = f ′(h)h′

d2

dx2
f(h) = f ′′(h)(h′)2 + f ′(h)h′′

Using this in the definition of the generator

Lf(h) =
1
2
a(x)[f ′′(h)(h′)2 + f ′(h)h′′] + b(x)f ′(h)h′

=
1
2
a(x)(h′)2f ′′(h) + Lh(x)f ′(h)

which gives the result.
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Example 7.8. Fisher’s transformation. Let Xt be the Wright-Fisher model
with no mutation or selection. Fisher (1922) discovered a remarkable transfor-
mation, although he did not get the answer right the first time. See pages 88-89
in Fisher (1930) and pages 119-120 in Wright (1931). Let h(x) = cos−1(1−2x).
This maps [0, 1] → [0, π]. Recalling from calculus that

(f−1)′(x) = 1/f ′(f−1(x))
dh

dx
=

−2
− sin(cos−1(1− 2x))

d2h

dx2
=
−2 cos(cos−1(1− 2x))
sin2(cos−1(1− 2x))

· −2
− sin(cos−1(1− 2x))

To simplify the last expression we draw a picture

����
����

1− 2x

1
y =

√
1− (1− 2x)2 = 2

√
x(1− x)

The last caclulation shows sin(cos−1(1 − 2x)) = 2
√
x(1− x) so θt = h(Xt)

has generator
1
2
d2

dθ2
− 1

2
cot(θ)

d

dθ

The infinitesimal variance is now constant, but a drift (which Fisher missed
in his first attempt) has been introduced. We leave it as an exercise for the
reader to check that sin−1(

√
x) also results in constant variance.

7.3 Transition probabilities

In discrete time, a Markov chain is defined by giving its transition probability
p(i, j). For a continuous-time Markov chain or a diffusion process, the transi-
tion probability pt(x, y) = P (Xt = y|Xt = x) must be computed by solving
one of two differential equations. In the case of a continuous time Markov
chain, it follows from the Markov property and the definition of the generator
in (7.1) that

d

ds
Eif(Xs)

∣∣∣∣
s=t

= EiQf(Xt) (7.11)

From this we get

d

dt

∑
j

pt(i, j)f(j) =
∑

k

pt(i, k)
∑

j

q(k, j)f(j)
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Since this holds for all f we must have

d

dt
pt(i, j) =

∑
k

pt(i, k)q(k, j) (7.12)

or in matrix notation (d/dt)pt = ptQ. This is Kolmogorov’s forward equation.
It can also be derived by letting I be the identity matrix and using the Markov
property to write

1
h

(pt+h(i, j)− pt(i, j)) =
∑

k

pt(i, k)
1
h

(ph(k, j)− I(k, j))

→
∑

k

pt(i, k)q(k, j)

Here, we have broken the time interval [0, t+h] into [0, t] and [t, t+h], with the
small piece on the forward end. If we instead break it into [0, h] and [h, t+ h]
we get

1
h

(pt+h(i, j)− pt(i, j)) =
1
h

∑
k

(ph(i, k)− I(i, k))pt(k, j)

→
∑

k

q(i, k)pt(k, j) (7.13)

or in matrix notation (d/dt)pt = Qpt. This is Kolmogorov’s backward equation.
Consider now a diffusion process. Imitating (7.13) we can write

1
h

(pt+h(x, y)− pt(x, y)) =
1
h

(∫
ph(x, z)pt(z, y) dz − pt(x, y)

)
=

1
h

(Expt(Xh, y)− pt(x, y))

If we let f(x) = pt(x, y) for fixed y then the last quantity is (1/h)(Exf(Xh)−
f(x)), so recalling the definition of the generator and letting h→ 0 we have

d

dt
pt(x, y) =

1
2
a(x)

d2

dx2
pt(x, y) + b(x)

d

dx
pt(x, y) (7.14)

Because we broke us the interval into [0, h] and [h, t+h], this is Kolmogorov’s
backward equation. Another reason is that the derivatives occur in the back-
ward variable x. To get the forward equation note that as in (7.11)

d

ds
Exf(Xs)

∣∣∣∣
s=t

= ExLf(Xt) (7.15)

So we have
d

dt

∫
pt(x, y)f(y) dy =

∫
pt(x, y)Lf(y) dy

=
∫
pt(x, y)

[
1
2
a(y)

d2

dy2
f(y) + b(y)

d

dy
f(y)

]
dy
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To turn this into an equation for pt(x, y) we suppose that f is 0 outside [δ, 1−δ]
for some δ > 0 and integrate by parts twice to get∫ [

1
2
d2

dy2
(a(y)pt(x, y))−

d

dy
(b(y)pt(x, y))

]
f(y) dy

Since this holds for all f we have Kolmogorov’s forward equation

d

dt
pt(x, y) =

1
2
d2

dy2
(a(y)pt(x, y))−

d

dy
(b(y)pt(x, y)) (7.16)

where the derivatives occur in the forward variable y. This is not as nice as the
backward equations since it does not make sense unless b(y) is differentiable
and a(y) is twice differentiable.

(7.16) is called the Fokker-Planck equation by physicists, due to work of
Fokker in 1914 and Planck in 1917. The first rigorous mathematical derivation
was given by Kolmogorov in 1931. The formula makes its first appearance in
the biology literature in Wright (1945).

Defining the adjoint operator L∗

L∗f =
1
2
d2

dy2
(a(y)f(y))− d

dy
(b(y)f(y))

we can write the two equations as

d

dt
pt(x, y) = Lxpt(x, y)

d

dt
pt(x, y) = L∗ypt(x, y)

where the subscript indicates the variable of pt(x, y) where the operator acts.
In comparison, the two equations for continuous time Markov chains are

d

dt
pt(i, j) =

∑
k

Q(i, k)pt(k, j)
d

dt
pt(i, j) =

∑
k

pt(i, k)Q(k, j)

Again Q acts on different variables in the two cases, but we don’t need the
formalities of defining the adjoint matrix. We just shift the matrix to the other
side.

Only on rare occasions can one solve the differential equations given above
to determine the transition probability.

Example 7.9. Brownian motion. Suppose a(x) = σ2, b(x) = 0. In this case the
backward equation (7.14) is

d

dt
pt(x, y) =

σ2

2
d2

dx2
pt(x, y)

From the definition of the process in the previous section we know that
√

2πpt(x, y) = (tσ2)−1/2e−(y−x)2/2σ2t
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Differentiating we find

d

dt
=
(
−1

2
t−3/2σ−1 + t−1/2σ−1 (y − x)2

2σ2t2

)
e−(y−x)2/2σ2t

d

dx
= t−1/2σ−1 · y − x

σ2t
e−(y−x)2/2σ2t

d2

dx2
=
(
−t−3/2σ−3 + t−1/2σ−1 (y − x)2

σ4t2

)
e−(y−x)2/2σ2t

which shows that pt(x, y) satisfies the stated differential equation.

Example 7.10. Ornstein-Uhlenbeck process. Suppose a(x) = σ2 and b(x) =
−αx. This is a model for the velocity of a particle with a random accelera-
tion and experiences friction forces proportional to its velocity. The transi-
tion probability pt(x, y) is a normal with mean u(x, t) = xe−αt and variance
v(t) = σ2

∫ t

0
e−2αr dr, so

√
2πpt(x, y) = v(t)−1/2e−(y−u(x,t))2/2v(t)

Let ux and ut be the partial derivatives of u, and note that uxx = 0. Differ-
entiating we find

d

dt
= −1

2
v(t)−3/2v′(t)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 · y − u(x, t)
v(t)

ut(x, t)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 · (y − u(x, t))2

2v(t)2
v′(t)e−(y−u(x,t))2/2v(t)

d

dx
= v(t)−1/2 · y − u(x, t)

v(t)
ux(x, t)e−(y−u(x,t))2/2v(t)

d2

dx2
= v(t)−3/2(−ux(x, t)2)e−(y−u(x,t))2/2v(t)

+v(t)−1/2 (y − u(x, t))2

v(t)2
ux(x, t)2e−(y−u(x,t))2/2v(t)

Let f1, f2, . . . f6 denote the right hand sides. Since v′(t) = σ2e−2αt and
ux(x, t) = e−αt, we have f1 = (σ2/2)f5 and f3 = (σ2/2)f6. Since ut(x, t) =
−αxe−αt, we have f2 = −αxf4. Combining these results we see that

d

dt
pt(x, y) = −αx d

dx
pt(x, y) +

σ2

2
d2

dx2
pt(x, y)

which verifies that pt(x, y) is the desired transition probability.

In most cases, one cannot find an explicit expression for the transition
probability. Kimura (1955) was able to express the transition probability for
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the Wright-Fisher model as an infinite series of Gegenbauer polynomials. How-
ever, for our purposes, the following qualitative result is more useful. A func-
tion f(x) on [0,1] is said to be Hölder continuous if there is a δ > 0 and C <∞
so that |f(x)− f(y)| ≤ C|x− y|δ.

Theorem 7.2. Suppose that the coefficients a and b are Hölder continuous
on [0, 1], and a(x) > 0 on (0, 1). Then for any δ > 0 there is an ε so that
pt(x, y) ≥ ε when x, y ∈ [δ, 1− δ].

7.4 Hitting probabilities

For our genetics models, we want to be able to compute the probability an
allele becomes fixed in the population. Here, and throughout this chapter, we
will first consider the analogous problems for discrete and continuous time
Markov chains on {0, 1, . . . 2N}. Let Tk = min{n : Xn = k} be the time of the
first visit to k, and let h(i) = Pi(T2N < T0). To compute h(i) we note that
if 0 < i < 2N then breaking things down according to what happens on the
first step

h(i) =
∑

j

p(i, j)h(j) (7.17)

Introducing P for the transition matrix and I for the identity matrix, we can
write (7.17) as h = Ph or (P − I)h = 0. The second formula may look a
little odd now, but soon it will seem natural. To compute h(i), we first need
a technical result.

Theorem 7.3. Let τ = T0 ∧ T2N . In discrete or continuous time, if it is
possible to reach 0 and 2N from each 0 < i < 2N then sup0<i<2N Eiτ <∞.

Proof. Our assumption implies that there are ε > 0 and M < ∞ so that
Pi(τ ≤ M) ≥ ε for all 0 < i < 2N . The Markov property implies Pi(τ >
kM) ≤ (1− ε)k, so

Eiτ =
∫ ∞

0

Pi(τ > t) dt ≤M

∞∑
k=0

(1− ε)k = M/ε

Theorem 7.4. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . h(i) = Pi(T2N < T0) is the unique solution of (P − I)h = 0 with
h(0) = 0 and h(2N) = 1.

Proof. Theorem 7.3 implies sup0<i<2N Eiτ <∞. (7.17) implies that Eh(Xn∧τ )
is constant, since for any jump that starts at a point 0 < i < 2N , the expected
value after a jump is the same as before. The irreducibility condition implies
that Pi(τ < ∞) = 1. Letting n → ∞, which can be justified since h is a
bounded function,

h(i) = Eih(Xτ ) = Pi(T2N < T0)

since h(0) = 0 and h(2N) = 1.
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The next result is the continuous-time analogue of Theorem 7.4.

Theorem 7.5. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . h(i) = Pi(T2N < T0) is the unique solution of Qh = 0 for 0 < i < 2N
with h(0) = 0 and h(2N) = 1.

Proof. Theorem 7.3 implies sup0<i<2N Eiτ <∞. To check that the equation
is satisfied, we note that

d

ds
Eih(Xs)

∣∣∣∣
s=t

= EiQh(Xt) = 0

so Eih(Xt∧τ ) is constant in time, and we can repeat the argument from dis-
crete time to conclude h(i) = Eih(Xτ ) = Pi(T2N < T0).

Turning to the case of a diffusion process, let Ta = inf{t : Xt = a}. Again,
we begin with a technical result.

Theorem 7.6. Let y < z and τy,z = Ty ∧ Tz. Suppose that it is possible to
reach y and z from each y < x < z. Then supx∈(y,z)Exτy,z <∞.

Proof. Pick w ∈ (y, z). Pick M large enough so that Pw(Ty ≤ M) ≥ ε > 0
and Pw(Tz ≤ M) ≥ ε > 0. By the argument in discrete time, it is enough to
show

sup
x∈(y,z)

Px(τy,z > M) ≤ 1− ε

By considering the first time the process starting from w hits z and using the
Markov property, it follows that if w < x < z then

Pw(Tz ≤ t) = Ew(Px(Tz ≤ t− Tx);Tx ≤ t)
≤ Px(Tz ≤ t)Pw(Tz ≤ t) ≤ Px(Tz ≤ t)

A similar argument shows that for y < x < w, Px(Ty ≤ t) ≥ Pw(Ty ≤ t). and
the desired result follows.

Theorem 7.7. Let y < z. Suppose that it is possible to reach y and z from
each y < x < z. h(x) = Px(Tz < Ty) is the unique solution of Lh = 0 for
y < x < z with h(y) = 0 and h(z) = 1.

Proof. Theorem 7.6 implies that supx∈(y,z)Exτy,z < ∞, so h is well defined.
To check that the equation is satisfied, we note that the Markov property
implies that

d

ds
Exh(Xs)

∣∣∣∣
s=t

= ExLh(Xt) (7.18)

Lh = 0 implies Exh(Xt∧τx,y ) is constant in time, so we can argue as before
that h(x) = Exh(Xτ ) = Px(T1 < T0).
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Comparing the last three theorems shows that hitting probabilities satisfy

(P − I)h = 0 discrete time Markov chain
Qh = 0 continuous time Markov chain
Lh = 0 diffusion process

so the three operators P − I, Q, and L are analogous.

Diffusion hitting probabilities

Based on Theorem 7.7, we want to solve

Lφ =
1
2
a(x)

d2

dx2
φ+ b(x)

d

dx
φ = 0

φ is called the natural scale for the diffusion process because φ(Xt) is a mar-
tingale. To solve this equation, we let ψ = φ′ and note that

1
2
a(x)ψ′ + b(x)ψ = 0 or ψ′ =

−2b(x)
a(x)

ψ

As one can check by differentiating, this equation is solved by

ψ(y) = exp
(∫ y −2b(z)

a(z)
dz

)
where the lack of a lower limit indicates that we can choose any convenient
value, or what is the same, use any antiderivative of −2b(z)/a(z). φ can be
obtained by ψ by integrating:

φ(x) =
∫ x

ψ(y) dy

To have the boundary conditions h(y) = 0, h(z) = 1 satisfied

Px(Tz < Ty) =
φ(x)− φ(y)
φ(z)− φ(y)

Px(Tz > Ty) =
φ(z)− φ(x)
φ(z)− φ(y)

(7.19)

The second equation follows from Px(Tz > Ty) = 1− Px(Tz < Ty).
Turning to special cases:

Example 7.11. Martingale diffusions. Suppose b(x) = 0, ψ′(x) = 0 and hence
φ(x) = x. Xt is a martingale and we have

Px(Tz < Ty) =
x− y

z − y
Px(Tz > Ty) =

z − x

z − y
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In the next three examples, the mutation rates are zero and we are con-
sidering a special case of the general selection model so a(x) = x(1 − x),
b(x) = x(1− x)(δ + ηx) and hence

−2b(x)
a(x)

= −2(δ + ηx)

Example 7.12. Additive selection. In this case, by (7.6) −2b(x)/a(x) = −2γ so

ψ(y) = e−2γy and φ(y) = [1− e−2γy]/2γ (7.20)

and the hitting probabilities are

Px(T1 < T0) =
1− e−2γx

1− e−2γ
(7.21)

which agrees with (6.3). When x = 1/2N , using γ/2N = s and 1− e−2s ≈ 2s
we have

P1/2N (T1 < T0) ≈
2s

1− e−2γ
≈ 2s

when γ is large. The next figure shows the hitting probabilities when γ =
0, 2, 5, 10.
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Fig. 7.2. Hitting probabilities for additive selection.

Example 7.13. Dominant advantageous allele. In this case (7.9) implies that
−2b(x)/a(x) = −2γ(1− x), so ψ(x) = e−γ(2x−x2), and

φ(x) =
∫ x

0

e−γ(2y−y2) dy
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Example 7.14. Recessive advantageous allele. In this case (7.10) implies that
−2b(x)/a(x) = −2γx, so ψ(x) = e−γx2

, and

φ(x) =
∫ x

0

e−γy2
dy

Figure 7.3 shows Px(T1 < T0) = φ(x)/φ(1) when γ = 0, 2, 5, 10.
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Fig. 7.3. Recessive advantageous allele hitting probabilities

The integrand is a constant multiple of the normal density with mean 0
and variance 1/2γ, so if γ is large

φ(1) ≈ 1
2

√
π

γ

If x is small φ(x) ≈ x so if x = 1/2N

φ(1/2N)
φ(1)

≈ 1
N

√
γ

π
=

√
2s
πN

which is (15) of Kimura (1962). This is larger than the neutral fixation
probaiblity 1/2N , but smaller than the 2s/(1− e−γ) for additive selection.

Example 7.15. Symmetric balancing selection. By (7.8)−2b(x)/a(x) = −2γ(1−
2x) so

ψ(y) = e−2γy(1−y) and φ(x) =
∫ x

0

ψ(y) dy

Figure 7.4 shows Px(T1 < T0) = φ(x)/φ(1) when γ = 0, 2, 5, 10.
If γ is large then most of the contribution to φ(1) comes from values within

O(1/2γ) of the boundary so
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Fig. 7.4. Balancing selection hitting probabilities.

φ(1) ≈ 2
∫ ∞

0

e−2γy dy =
1
γ

If x = c/(2γ) then

φ(x) ≈
∫ x

0

e−2γy dy =
1− e−2γx

2γ
=

1− e−c

2γ

and we have
Pc/(2γ)(T1 < T0) ≈

1
2
(1− e−c)

Using P1−x(T0 < T1) = Px(T1 < T0), we see that if x >> 1/γ and (1− x) >>
1/γ then Px(T1 < T0) ≈ 1/2.

Up to this point we have ignored the hypothesis “Suppose that it is pos-
sible to reach y and z from each y < x < z.” It follows from Theorem 7.2
that this holds for 0 < y < z < 1 whenever the coefficients a and b are Hölder
continuous on [0, 1], and a(x) > 0 on (0, 1), which is true in all of our exam-
ples. In all of the results above we can make the derivation rigorous by first
computing Px(Ty < Tz) and then letting y → 0 and z → 1. To show that
problems can occur even in natural examples, we consider

Example 7.16. Wright-Fisher model with mutation. For simplicity we assume
that there is no selection, so

Lf =
1
2
x(1− x)

d2

dx2
f + (β1(1− x)− β2x)

d

dx
f

In this case, we have
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ψ(x) = exp
(∫ x

−2b(y)/a(y) dy
)

= exp
(∫ x

− 2β2

1− y
− 2β1

y
dy

)
= x−2β1(1− x)−2β2

and φ(x) =
∫ x

1/2
y−2β1(1 − y)−2β2 dy. φ(0) = −∞ if β1 ≥ 1/2 so taking

0 < y < x < z < 1,

Px(Ty < Tz) =
φ(z)− φ(x)
φ(z)− φ(y)

→ 0 as y → 0

and the process cannot get to 0. In words the mutation rate is so strong that
the allele frequency cannot reach 0.

Likewise φ(1) = ∞ if β2 ≥ 1/2 and 0 < y < x < z < 1,

Px(Tz < Ty) =
φ(x)− φ(y)
φ(z)− φ(y)

→ 0 as z → 1

so the process cannot get to 1. Of course if β1 and β2 are both ≥ 1/2, Px(T0 <
T1) is meaningless. We will return to this issue in Section 7.9, when we consider
the boundary behavior of diffusion processes.

7.5 Stationary measures

Stationary distributions for Markov processes are important because they
represent equilibrium states and are (under mild regularity conditions) the
limiting distribution as time t → ∞. In discrete time a nonnegative solution
of ∑

i

π(i)p(i, j) = π(j) (7.22)

is called a stationary measure. A solution with
∑

i π(i) = 1 is called a station-
ary distribution. If (7.22) holds then∑

i

π(i)pn(i, j) =
∑
i,k

π(i)p(i, k)pn−1(k, j) =
∑

k

π(k)pn−1(k, j)

and it follows by induction that Pπ(Xn = i) = π(i). Results from Markov
chain theory imply that if there is a stationary distribution π, and p(i, j) is
irreducible and aperiodic (terms defined in Section 4.5) then pn(i, j) → π(j)
as n→∞.

To see what the condition for stationarity should be in continuous time,
we note that if Eπ is the expected value starting at π then

d

dt
Eπ(f(Xt))

∣∣∣∣
t=0

=
∑

i

π(i)
∑

j

q(i, j)f(j) =
∑

j

(∑
i

π(i)q(i, j)

)
f(j)
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In order for this to be 0 for all f we must have

(πQ)(j) =
∑

i

π(i)q(i, j) = 0 for all j (7.23)

To see that this is sufficient, note that the forward equation implies

d

dt

∑
i

π(i)pt(i, j) =
∑
i,k

π(i)Q(i, k)pt(k, j) = 0

Results from Markov chain theory imply that if there is a stationary distri-
bution π and pt(i, j) is irreducible then pt(i, j) → π(j) as n→∞.

For a diffusion process we want

0 =
d

dt
Eπf(Xt)

∣∣∣∣
t=0

=
∫
π(x)Lf(x) dx

If f is 0 outside [δ, 1 − δ] for some δ > 0 then integrating by parts twice
converts this into ∫

L∗π(x)f(x) dx = 0

where L∗ is the adjoint operator

L∗π =
1
2
d2

dx2
(a(x)π(x))− d

dx
(b(x)π(x))

If this holds for all f then we must have

L∗π = 0 (7.24)

To see that this is sufficient, note that the backward equation and integration
by parts imply

d

dt

∫
π(x)pt(x, y) dx =

∫
π(x)Lxpt(x, y) dx =

∫
L∗π(x)pt(x, y) dx = 0

From Theorem 7.2 and the theory of Harris chains, it follows that if there is
a stationary distribution π, and a(x) > 0 for x ∈ (0, 1) then pt(x, y) → π(y)
as t→∞.

Comparing the last three equations shows that the stationary measures
satisfy

π(P − I) = 0 discrete time Markov chain
πQ = 0 continuous time Markov chain
L∗π = 0 diffusion process

Again the three operators P − I, Q, and L are analogous, but as in Section
7.3, multiplying the matrices on the left by π corresponds to using the adjoint
of the diffusion’s generator.

Diffusion stationary measures



270 7 Diffusion Processes

Theorem 7.8. If ψ(x) is the derivative of the natural scale then m(x) =
1/a(x)ψ(x) is a stationary measure.

m is sometimes called the speed measure, although as we will see in Section
7.7, this term is misleading. If

∫ 1

0
m(x) dx <∞ then we can convert m(x) into

a stationary distribution by multiplying by a constant to make the integral
equal to 1.

Proof. To solve L∗π = 0, it is convenient to note that since ψ′(x)/ψ(x) =
−2b(x)/a(x)

1
2
a(x)ψ(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)
=

1
2
a(x)ψ(x)

1
ψ(x)

d2

dx2
f(x) +

1
2
a(x)ψ(x)

−ψ′(x)
ψ(x)2

d

dx
f(x) = Lf

Thus, if we let m(x) = 1/a(x)ψ(x) then

Lf =
1

2m(x)
d

dx

(
1

ψ(x)
d

dx
f(x)

)
(7.25)

Writing L in this form before we integrate by parts, it follows that

L∗m =
d

dx

(
1

ψ(x)

[
d

dx

1
2m(x)

m(x)
])

= 0

Example 7.17. General diploid selection and mutation. In this case, the gen-
erator is

1
2
x(1− x)

d2

dx2
f + {x(1− x)[δ + ηx] + β1(1− x)− β2x}

d

dx
f

so we have

ψ(x) = exp
(∫ x

−2b(y)/a(y) dy
)

= exp
(∫ x

−2[δ + ηy] +
2β2

1− y
− 2β1

y
dy

)
= x−2β1(1− x)−2β2e−2δx−ηx2

(7.26)

Since a(x) = x(1− x) the stationary measure is

m(x) =
1

a(x)ψ(x)
= x2β1−1(1− x)2β2−1e2δx+ηx2

(7.27)

In the case of additive selection, δ = γ and η = 0 so

m(x) = x2β1−1(1− x)2β2−1e2γx (7.28)
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If either βi = 0 this is not integrable. If β1 = 0 then there are no mutations
from a to A, so 0 is an absorbing state. Likewise if β2 = 0 then there are no
mutations from A to a, so 1 is an absorbing state. If both βi > 0 then there is a
stationary distribution. In the case of no selection this is the beta distribution

π(x) =
Γ (2β1 + 2β2)
Γ (2β1)Γ (2β2)

x2β1−1(1− x)2β2−1

where Γ (z) =
∫∞
0
tz−1e−t dt is the usual gamma function.

This formula can be found on page 123 of Wright’s (1931) seminal paper
on evolutionary theory. According to Will Provine’s annotation of a collection
of Wright’s papers, Wright (1986), “this paper resulted in his admission to the
National Academy of Science at a young age.” It is interesting to note that
the computation of the stationary distribution precedes the equation L∗π = 0,
which first appears in the biology literature in Wright’s (1945) work. In that
paper, Wright says “Dr. A. Kolmogorov has recently been kind enough to
send me a reprint of an important paper on this subject which was published
in 1935, but which had not previously come to my attention.” As one can see
from the dates, the 10 year delay was likely due to World War II.

Suppose X has distribution π. Using this recursion and the fact that the
constant makes

∫
π(x) dx = 1, we can compute

EX =
Γ (2β1 + 2β2)

Γ (2β1)
Γ (2β1 + 1)

Γ (2β1 + 2β2 + 1)
=

2β1

2β1 + 2β2

EX2 =
Γ (2β1 + 2β2)

Γ (2β1)
Γ (2β1 + 2)

Γ (2β1 + 2β2 + 2)
=

2β1(2β1 + 1)
(2β1 + 2β2)(2β1 + 2β2 + 1)

var (X) = EX2 − (EX)2 =
2β1(2β2)

(2β1 + 2β2)2(2β1 + 2β2 + 1)

Using the first two formulas, we can compute the mean of the heterozygosity,
i.e., the probability in equilibrium that two randomly chosen individuals are
different:

E(2X(1−X)) =
2β1

2β1 + 2β2

(
1− 2β1 + 1

2β1 + 2β2 + 1

)
= 2 · 2β1(2β2)

(2β1 + 2β2)(2β1 + 2β2 + 1)

Reversibility

As we will now explain, the stationary measures of a one dimensional
diffusion process have a very special property. Again, we begin by considering
Markov chains. In discrete time the detailed balance condition:

π(i)p(i, j) = π(j)p(j, i) (7.29)

implies that
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i

π(i)p(i, j) = π(j)
∑

i

p(j, i) = π(j)

so π is a stationary distribution. In most cases, there is no π satisfying (7.29).
However, if there is and we start the process from π, then the time reversal
Ym = Xn−m, 0 ≤ m ≤ n is a Markov chain with transition probability

p∗(i, j) = Pπ(X0 = j|X1 = i) =
Pπ(X0 = j,X1 = i)

Pπ(X1 = i)
=
π(j)p(j, i)

π(i)
= p(i, j)

Informally, a movie of a reversible process looks the same running forward or
backwards in time.

For a continuous-time Markov chain, the detailed balance condition is

π(i)q(i, j) = π(j)q(j, i)

or, in equilibrium, the rate of jumps from i to j is the same as the rate of
jumps from j to i. To extend the definition to diffusions, we define an inner
product by

< f, g >π=
∑

i

f(i)π(i)g(i)

Given a linear operator R, we define the adjoint operator R∗ with respect to
π by

< f,Rg >π=< R∗f, g >π

Theorem 7.9. If R is a matrix r(i, j) then R∗ is the matrix

r∗(i, j) = π(j)r(j, i)/π(i).

In words, when R is a transition probability with stationary distribution π,
R∗ is the transition probability for the chain running backwards in time.

Proof. To check our proposed formula, we note that

< f,Rg >π =
∑

j

f(j)π(j)
∑

i

r(j, i)g(i)

=
∑

i

∑
j

π(j)r(j, i)
π(i)

f(j)

π(i)g(i)

=
∑

i

∑
j

r∗(i, j)f(j)

π(i)g(i) =< R∗f, g >π

For a diffusion process, if we write

Lf =
1
2
a(x)ψ(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)
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then using the speed measure m(x) = 1/a(x)ψ(x) to define the inner product
we have

< g,Lf >m=
1
2

∫
g(x)

d

dx

(
1

ψ(x)
d

dx
f(x)

)
dx

If we assume that f and g vanish outside [δ, 1− δ], then integrating by parts
twice shows that the above is

=
1
2

∫
d

dx
g(x) · 1

ψ(x)
d

dx
f(x) dx

=
1
2

∫
d

dx

(
1

ψ(x)
d

dx
g(x)

)
f(x) dx =< Lg, f >m

so L is self-adjoint with respect to m. As in the case of discrete state space,
this implies that the transition probability has a symmetry property that
resembles the detailed balance condition

pt(x, y) =
m(y)pt(y, x)

m(x)
or m(x)pt(x, y) = m(y)pt(y, x) (7.30)

7.6 Occupation times

Let τ be the amount of time it takes for fixation or loss of an allele to occur.
In addition to computing the probabilities of the two outcomes, we would
like to determine the average time that this will take. For discrete models
τ = T0 ∧ T2N ; for diffusions τ = T0 ∧ T1. To compute g(i) = Eiτ , it is
convenient to consider a more general problem:

g(i) = Ei

∑
0≤m<τ

f(Xm)

which reduces to the original question when f ≡ 1. If 0 < i < 2N then
breaking things down according to what happens on the first step

g(i) = f(i) +
∑

j

p(i, j)g(j) or Eig(X1) = g(i)− f(i) (7.31)

The next result shows that this equation together with the boundary condi-
tions g(0) = 0 and g(2N) = 0 are enough to identify Ei

∑
0≤m<τ f(Xm).

Theorem 7.10. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . g(i) = Ei

∑
0≤m<τ f(Xm) is the unique solution of (P − I)g = −f

with g(0) = 0 and g(2N) = 0.

Proof. By Theorem 7.3, our assumption implies sup0<i<2N Eiτ < ∞, so g is
well defined. To prove that the equation holds, we note that (7.31) implies
that on {τ > n}
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Ei

g(X(n+1)∧τ ) +
∑

0≤m<(n+1)∧τ

f(Xm)

∣∣∣∣∣∣Fn


= Ei(g(X(n+1)∧τ )|Fn

)
+

∑
0≤m<(n+1)∧τ

f(Xm)

= g(Xn∧τ ) +
∑

0≤m<n∧τ

f(Xm)

by (7.31). The last equality is trivial on {τ ≤ n}. Thus the expected value

Ei

g(X(n+1)∧τ ) +
∑

0≤m<(n+1)∧τ

f(Xm)


is constant in time, so letting n→∞ and using g(Xτ ) = 0.

g(i) = Ei

g(Xτ ) +
∑

0≤m<τ

f(Xm)

 = Ei

∑
0≤m<τ

f(Xm)

For a continuous-time Markov chain:

Theorem 7.11. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . g(i) = Ei

∫ τ

0
f(Xs) ds is the unique solution of Qg = −f for 0 < i <

2N with g(0) = 0 and g(2N) = 0.

Proof. By Theorem 7.3, our assumption implies sup0<i<2N Eiτ < ∞, so g
is well defined. To prove that the equation holds, note that Qg = −f for
0 < i < 2N implies

d

dt
Ei

(
g(Xt) +

∫ t

0

f(Xs) ds
)

= Ei[Qg(Xt) + f(Xt)] = 0 when t < τ

so Ei[g(Xt∧τ ) +
∫ t∧τ

0
f(Xs) ds] is constant in time. If g(0) = g(2N) = 0 then

letting t→∞ we have g(i) = Ei

∫ τ

0
f(Xs) ds.

For a diffusion process:

Theorem 7.12. Suppose that it is possible to reach y and z from each y <
x < z. g(x) = Ex

∫ τ

0
f(Xs) ds is the unique solution of Lg = −f for 0 < x < 1

with g(0) = 0 and g(1) = 0.

Proof. By Theorem 7.6, our assumption implies supx∈(y,z)Exτ < ∞, so g
is well defined. To prove that the equation holds, note that Lg = −f for
y < x < z implies

d

dt
Ex

(
g(Xt) +

∫ t

0

f(Xs) ds
)

= Ex[Lg(Xt) + f(Xt)] = 0 when t < τ

so Ex[g(Xt∧τ ) +
∫ t∧τ

0
f(Xs) ds] is constant in time. If g(y) = g(z) = 0 then

letting t→∞ we have g(x) = Ex

∫ τ

0
f(Xs) ds.
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By now, the reader has probably learned that the three operators P − I,
Q, and L are analogous, but, again, comparing the last three theorems shows
that the occupation times satisfy

(P − I)g = −f discrete time Markov chain
Qg = −f continuous time Markov chain
Lg = −f diffusion process

with g = 0 at the endpoints.

Exit times

We begin with two examples where f ≡ 1.

Example 7.18. Symmetric simple random walk. In this case we guess

g(i) = i(2N − i).

This obviously satisfies the boundary conditions g(0) = 0, g(2N) = 1. To
check (7.31), we note that∑

j

p(i, j)g(j) = (i+ 1)
2N − i− 1

2
+ (i− 1)

2N − i+ 1
2

= i(2N − i) +
2N − i

2
− i+ 1

2
− 2N − i

2
+
i− 1

2
= g(x)− 1

Example 7.19. Wright-Fisher model. In the case of no selection or mutation,
inspired by a result of Kimura we guess

g(x) = −2[x log x+ (1− x) log(1− x)]

g′(x) = −2
[
log x+ 1− log(1− x) + (1− x)

1
1− x

· (−1)
]

g′′(x) = −2
[

1
x
− 1

1− x
· (−1)

]
=

−2
x(1− x)

so (1/2)x(1− x)g′′(x) = −1.

Example 7.20. Higher moments. As the proof will show, the next result is valid
for continuous time Markov chains if we replace L by Q. This is Theorem 13.17
in Dynkin (1965).

Theorem 7.13. If f(x) = Exτ
k/k! then the solution of Lg = −f is g(x) =

Eτk+1/(k + 1)!

Proof. To begin, we recall that Exτ
k/k! =

∫∞
0

uk−1

(k−1)!Px(τ > u) du and write

g(x) = Ex

∫ τ

0

EXs
(τk/k!) ds = Ex

∫ ∞

0

∫ ∞

0

1(τ>s)
uk−1

(k − 1)!
PXs(τ > u) du ds
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The Markov property implies that if Fs is the σ-field generated by the process
up to time s then

Px(τ > t > s|Fs) = 1(τ>s)PXs(τ > t− s)

Taking expected values and changing variables u = t− s, we can write

g(x) =
∫ ∞

0

∫ ∞

s

(t− s)k−1

(k − 1)!
Px(τ > t > s) dt ds

Interchanging the order of integration:

=
∫ ∞

0

∫ t

0

(t− s)k−1

(k − 1)!
Px(τ > t) ds dt

=
∫ ∞

0

tk

k!
Px(τ > t) dt = Exτ

k+1/(k + 1)!

which completes the proof.

7.7 Green’s functions

For a discrete-time Markov chain on {0, 1, . . . 2N}, we define the Green’s func-
tion G(i, j) to be the solution of (P−I)g = −1j with g(0) = g(2N) = 0, where
1j is the function that is 1 at j and 0 otherwise. It follows from Theorem
7.10 that G(i, j) is the expected number of visits to j starting from i before
τ = T0 ∧ T2N and

Ei

∑
0≤m<τ

f(Xm) =
∑

j

G(i, j)f(j).

Theorem 7.14. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . If we let T+

j = min{n ≥ 1 : Xn = j} then

G(i, j) =
Pi(Tj < τ)
Pj(T+

j > τ)
(7.32)

Proof. The first factor is the probability we visit j at least once. If this oc-
curs, then the number of visits to j has a geometric distribution with mean
1/Pj(T+

j > τ).

In continuous time, we define the Green’s function, G(i, j), to be the so-
lution of Qg = −1j . It follows from Theorem 7.11 that G(i, j) is the expected
occupation time of j starting from i and

Ei

∫ τ

0

f(Xs) ds =
∑

j

G(i, j)f(j).
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Theorem 7.15. Suppose that it is possible to reach 0 and 2N from each 0 <
i < 2N . Let Rj = min{t : Xt = j and Xs 6= j for some s < t} be the first
time the process returns to j.

G(i, j) =
Pi(Tj < τ)
qjPj(Rj > τ)

(7.33)

where qj = −Q(j, j) is the rate at which the process jumps out of j.

Proof. Again the first factor is the probability we visit j at least once. If
this occurs, the number of visits to j has a geometric distribution with mean
1/Pj(Rj > τ), and each visit lasts for an average amount of time 1/qj .

When space is continuous, we could, by analogy with the two previous
cases, define the Green’s functionG(x, y) to be the solution of Lg = −δy, where
δy is a point mass at y. However, as we explain in (7.44), solving this equation
requires the use of calculus for “generalized functions.” To keep things simple,
we will instead define the Green’s function G(x, y) for the interval [u, v] by
the property that

g(x) =
∫
G(x, y)f(y) dy satisfies Lg = −f

for u < x < v with g(u) = g(v) = 0.

Theorem 7.16. Suppose that it is possible to reach u and v from each u <
x < v. The Green’s function G(x, y) for the interval [u, v] is

2
(φ(v)− φ(x))(φ(y)− φ(u))

φ(v)− φ(u)
·m(y) y ≤ x

2
(φ(x)− φ(u))(φ(v)− φ(y))

φ(v)− φ(u)
·m(y) x ≤ y (7.34)

where φ(x) is the natural scale and m(x) = 1/φ′(x)a(x) is the speed measure.

Proof. To solve equation Lg = −f now, we use (7.25) to write

d

dx

(
1

ψ(x)
dg

dx

)
= −2m(x)f(x)

and integrate to conclude that for some constant C

1
ψ(y)

dg

dy
= C − 2

∫ y

u

dz m(z)f(z)

Multiplying by ψ(y) on each side, integrating y from u to x, and recalling that
g(u) = 0 and ψ = φ′ we have

g(x) = C(φ(x)− φ(u))− 2
∫ x

u

dy ψ(y)
∫ y

u

dz m(z)f(z) (7.35)
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In order to have g(v) = 0, we must have

C =
2

φ(v)− φ(u)

∫ v

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

Plugging the formula for C into (7.35) and writing

h1(x) =
φ(x)− φ(u)
φ(v)− φ(u)

= Px(Tv < Tu)

we have

f(x) = 2h1(x)
∫ v

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

−2
∫ x

u

dy ψ(y)
∫ y

u

dz m(z)f(z)

Interchanging the order of integration gives

f(x) = 2h1(x)
∫ v

u

dz m(z)f(z)(φ(v)− φ(z))

−2
∫ x

u

dz m(z)f(z)(φ(x)− φ(z))

The integral over [x, v] in the first term is

2h1(x)
∫ v

x

dz m(z)f(z)(φ(v)− φ(z)) (7.36)

Adding the integral over [u, x] from the first term to the second gives

2
∫ x

u

dz m(z)f(z)
[
φ(x)− φ(u)
φ(v)− φ(u)

(φ(v)− φ(z))− (φ(x)− φ(z))
]

A little algebra shows

(φ(x)− φ(u)) · (φ(v)− φ(z))− (φ(x)− φ(z)) · (φ(v)− φ(u))
= −φ(u)φ(v)− φ(x)φ(z) + φ(z)φ(v) + φ(x)φ(u)
= (φ(v)− φ(x)) · (φ(z)− φ(u))

so the second part of our formula becomes

2
φ(v)− φ(x)
φ(v)− φ(u)

∫ x

u

dz m(z)f(z)[φ(z)− φ(u)]

Adding this to (7.36) gives the desired result.
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An important consequence of (7.34) is:

Corollary. If τu,v = Tu ∧ Tv is the exit time from (u, v) then

Exτu,v =
∫ v

u

G(x, y) dy (7.37)

Speed (?) measure

Suppose first that the diffusion is on its natural scale, i.e., φ(x) = x. In
this case, if we take α = x − h and β = x + h then the Green’s function
becomes

(x+ h− y)m(y) x ≤ y ≤ x+ h

(y − x+ h)m(y) x− h ≤ y ≤ x

so (7.37) implies

Exτx−h,x+h =
∫ x+h

x

(x+ h− y)m(y) dy +
∫ x

x−h

(y − x+ h)m(y) dy (7.38)

When h is small, m(y) ≈ m(x) for y ∈ [x− h, x+ h] so the above is

≈ m(x)

(∫ x+h

x

(x+ h− y) dy +
∫ x

x−h

(y − x+ h) dy

)
= m(x)h2

Thus, m(x) gives the time that Xt takes to exit a small interval centered at
x, or to be precise, the ratio of the time for Xt to the time for a standard
Brownian motion, which is h2. Since speed is inversely proportional to the
exit time, the term speed measure is a misnomer, but it is too late to change
its name.

To treat a general diffusion, we have to transform it to its natural scale.
Writing ψ = φ′ and noting Lφ = 0, Theorem 7.1 implies that Yt = φ(Xt) is a
diffusion with coefficients

ā(y) = (aψ2)(φ−1(y)) b̄(y) = 0 (7.39)

Using the previous calculation for Y , if m̄(y) = 1/(aψ2)(φ−1(y)) is the speed
measure for Y then Eφ(x)τφ(x−h),φ(x+h) is

≈ m̄(φ(x))

(∫ φ(x+h)

φ(x)

(φ(x+ h)− z) dz +
∫ φ(x)

φ(x−h)

(z − φ(x− h)) dz

)
Changing variables z = φ(w), dz = ψ(w)dw, we see that this is

= m̄(φ(x))ψ(x)

(∫ x+h

x

(x+ h− w) dw +
∫ x

x−h

(w − x+ h) dw

)

=
1

a(x)ψ(x)
h2 = m(x)h2
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so the interpretation of m(x) given above holds in general. As a final check
that the speed measure is indeed the opposite of what the name suggests,
recall that the stationary measure is m(x), and the long run occupation time
of a region is inversely proportional to the speed at which the process leaves
it.

7.8 Examples

In all of the genetics examples in this section, there is no mutation. The
calculations of the Green’s functions require a fair amount of algebra, but
they inform us about where we can expect the process to spend its time
before reaching a boundary point at time τ and they allow us to compute Eτ .
We begin by considering what happens when there is

No selection

Example 7.21. Symmetric simple random walk. Suppose that up jumps and
down jumps each occur with probability 1/2.Xn is a martingale, and it follows
that if a < x < b

Px(Tb < Ta) =
x− a

b− a
Px(Ta < Tb) =

b− x

b− a

Using the second formula and then the first, the numerator in (7.32) is

Pi(Tj < T2N ) =
2N − i

2N − j
j ≤ i

Pi(Tj < T0) =
i

j
i ≤ j

To compute the denominator of (7.32), we note that if τ = T0 ∧ T2N then

Pj(T+
j > τ) =

1
2
Pj+1(T2N < Tj) +

1
2
Pj−1(T0 < Tj)

=
1
2
· 1
2N − j

+
1
2
· 1
j

=
1
2
· 2N
j(2N − j)

Combining the results, we can write G(i, j) as

2
(2N − i)j

2N
j ≤ i

2
i(2N − j)

2N
i ≤ j (7.40)

Summing over j and letting k = 2N − j, we have
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Eiτ = 2
(2N − i)

2N

i∑
j=1

j + 2 · i

2N

2N−i−1∑
k=1

k

= 2
[
(2N − i)

2N
· i(i+ 1)

2
+

i

2N
· (2N − i)(2N − i− 1)

2

]
=
i(2N − i)

2N
[(i+ 1) + (2N − i− 1)] = i(2N − i)

in agreement with the result in Example 7.18.

Example 7.22. Moran model with no selection. In this case Pi(Tj < τ) and
Pj(Rj > τ) = Pj(T+

j > τ) are the same as for the symmetric simple random
walk considered above, while qj = 2j(2N−j)/2N . It follows from the calcula-
tion in the previous example that qjPj(Rj > τ) in the denominator of (7.33)
is 1 and we can write G(i, j) as

2N − i

2N − j
j ≤ i

i/j i ≤ j (7.41)

Summing over j we have

Eiτ = (2N − i)
i∑

j=1

1
2N − j

+ i

2N∑
j=i+1

1
j

If i = 2Nx with 0 < x < 1 then

2N∑
j=i+1

1
j

=
2N∑

j=i+1

1
j/2N

· 1
2N

=
∫ 1

x

dx

x
= − log x

so we have
1
N
E2Nx − 2x log x− 2(1− x) log(1− x) (7.42)

Example 7.23. Wright-Fisher diffusion with no selection. φ(x) = x, ψ(x) =
φ′(x) = 1, and a(x) = x(1− x) so using (7.34), G(x, y) =

2(1− x)y
y(1− y)

=
2(1− x)
1− y

y ≤ x

2x(1− y)
y(1− y)

=
2x
y

x ≤ y (7.43)

If we set i = 2Nx and j = 2Nx in the Moran model formula, we get (1−x)/(1−
y) and x/y. The missing factor of 2 comes from the fact that i corresponds to
[x, x + 1/2N ], so the occupation time density is multiplied by 2N , but time
is run at rate N , so it is divided by N .
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Fig. 7.5. Green’s function for Wright-Fisher diffusion with no selection.

Integrating G(x, y) we have

Exτ =
∫ 1

x

2x
y
dy +

∫ x

0

2(1− x)
1− y

dy

= −2x log x− 2(1− x) log(1− x)

which agrees with (7.42) and our computation in Example 7.19.
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Fig. 7.6. Slices x → G(x, 0.3) and y → G(0.3, y) of the previous graph.

For fixed y, x→ G(x, y) is linear on [0, y] and [y, 1] and vanishes at 0 and
1. To explain the form of the answer we return to our remark that for fixed
y, g(x) = G(x, y) is a solution of

1
2
x(1− x)

d2

dx2
g = −δy (7.44)

When x 6= y, g′′(x) = 0 so g(x) is linear on [0, y] and [y, 1]. The integral of
−δy is 0 for x < y and −1 for x > y, so with a little thought we realize that
(7.44) can be written as g′(y+)− g′(y−) = 2/y(1− y), which is correct since
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g′(y+)− g′(y−) =
2

1− y
− 2
y

=
2

y(1− y)

Selection

Example 7.24. Asymmetric simple random walk. Suppose that up jumps occur
with probability p = 1/(2 − s) and down jumps with probability 1 − p =
(1− s)/(2− s). We have chosen these values of p so that this is the embedded
discrete-time jump chain for the Moran model with selection. The ratio (1−
p)/p = 1− s, so if we let h(x) = 1− (1− s)x then by calculations in Section
6.1, h(Xn) is a martingale and it follows that if a < x < b

Px(Tb < Ta) =
h(a)− h(x)
h(a)− h(b)

Px(Ta < Tb) =
h(x)− h(b)
h(a)− h(b)

We have reversed the usual order of the numerator and denominator to make
the next few calculations easier to see. Using the second formula and then the
first, the numerator in (7.32) is

Pi(Tj < T2N ) =
(1− s)i − (1− s)2N

(1− s)j − (1− s)2N
j ≤ i

Pi(Tj < T0) =
1− (1− s)i

1− (1− s)j
i ≤ j

To compute the denominator of (7.32), we note that

Pj(T+
j > τ) =

1
2− s

Pj+1(T2N < Tj) +
1− s

2− s
Pj−1(T0 < Tj)

=
1

2− s

(1− s)j − (1− s)j+1

(1− s)j − (1− s)2N
+

1− s

2− s

(1− s)j−1 − (1− s)j

1− (1− s)j

The two numerators are (1− s)j − (1− s)j+1 = s(1− s)j , so the above is

=
s(1− s)j

2− s
· [1− (1− s)2N ]
[1− (1− s)j ][(1− s)j − (1− s)2N ]

(7.45)

Reintroducing h(x) = 1− (1− s)x, we can write G(i, j) as

(h(2N)− h(i)) · (h(j)− h(0))
h(2N)− h(0)

· 2− s

s(1− s)j
j ≤ i

(h(i)− h(0)) · (h(2N)− h(j))
h(2N)− h(0)

· 2− s

s(1− s)j
i ≤ j (7.46)

Example 7.25. Moran model with selection. In this case, Pi(Tj < τ) and
Pj(Rj > τ) = Pj(T+

j > τ) are the same as for the asymmetric simple random
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walk considered above, while qj = (2−s)j(2N − j)/2N . It follows from (7.45)
that the denominator of (7.33) is

qjPj(Rj > τ) =
j(2N − j)

2N
s(1− s)j · [1− (1− s)2N ]

[1− (1− s)j ][(1− s)j − (1− s)2N ]

and the Green’s function becomes

(h(2N)− h(i)) · (h(j)− h(0))
h(2N)− h(0)

· 2N
s(1− s)jj(2N − j)

0 < j < i

(h(i)− h(0)) · (h(2N)− h(j))
h(2N)− h(0)

· 2N
s(1− s)jj(2N − j)

i < j < 2N (7.47)

Example 7.26. Wright-Fisher diffusion with additive selection. To make it eas-
ier to relate the results for this case to the Moran model, we will define the
natural scale to be φ(y) = 1− exp(−2γy) which makes

ψ(y) = 2γ exp(−2γy)

m(y) =
1

a(y)ψ(y)
=

1
2γ exp(−2γ)y(1− y)

Recalling the formula for G(x, y)

2
(φ(1)− φ(x))(φ(y)− φ(0))

φ(1)− φ(0)
·m(y) y ≤ x

2
(φ(x)− φ(0))(φ(1)− φ(y))

φ(1)− φ(0)
·m(y) x ≤ y

we see that G(x, y) is given by

2(e−2γx − e−2γ)
1− e−2γy

1− e−2γ
· 1
2γe−2γyy(1− y)

y ≤ x

2(1− e−2γx)
e−2γy − e−2γ

1− e−2γ
· 1
2γe−2γyy(1− y)

x ≤ y (7.48)

To connect with the Moran model, note that if x = i/2N , y = j/2N , and
s = 2γ/2N then

h(i) = 1− (1− γ/2N)2Nx → 1− e−2γx = φ(x)

2N · 2N
2Ns(1− s)jj(2N − j)

→ 1
2γe−2γyy(1− y)

= m(y)

As in the case of no selection, the missing factor of 2 comes from the fact that
i corresponds to [x, x + 1/2N ], so the density is multiplied by 2N , but time
is run at rate N to get the diffusion limit, so it is divided by N .

To help understand the Green’s function, it is useful to look at slices
through the graph. If y is fixed then for x < y we have G(x, y) = A(y)(1 −
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Fig. 7.7. Green’s function for Wright-Fisher diffusion with additive selection γ = 10
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Fig. 7.8. Slices x → G(x, 1/2) and y → G(1/2, y) of the previous graph.

e−2γx) so if x >> 1/2γ, then G(x, y) is roughly constant because x will hit y
with probability close to 1. For x > y, G(x, y) = B(y)(e−2γx − e−2γ) since
the probability of hitting y decays exponentially fast. Let g(x) = G(x, y). For
x 6= y we have Lg = 0 where

Lg =
1
2
x(1− x)

[
d2g

dx2
+ 2γ

dg

dx

]
A little calculus shows that again we have

g′(y+)− g′(y−) = −2γe−2γy 2
m(y)

=
2

y(1− y)

To understand the behavior for x fixed, it is useful to multiply top and
bottom of (7.48) by e2γy to rewrite G(x, y) as

e−2γx − e−2γ

1− e−2γ
· e

2γy − 1
γy(1− y)

y ≤ x

1− e−2γx

1− e−2γ
· 1− e−2γ(1−y)

2γy(1− y)
x ≤ y (7.49)
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If x is fixed and γ is large, then G(x, y) is approximately

e−2γ(x−y)

γy(1− y)
0 ≤ y ≤ x

1
γy(1− y)

x ≤ y and γ(1− y) >> 1

1− e−2c

c
x ≤ y = 1− c/γ

This shows that the process spends a negligible amount of time < x and moves
through values y < 1 at the rate predicted by the logistic differential equation
until 1− y = O(γ−1). Note that as y → 1, c→ 0 and (1− e−2c)/c→ 2.

Example 7.27. Symmetric balancing selection. In this case ψ(x) = e−2γx(1−x),
m(x) = e2γx(1−x)/x(1− x), and φ(x) =

∫ x

0
ψ(y) dy, so G(x, y) is

2
(φ(1)− φ(x))φ(y)

φ(1)
· e

2γy(1−y)

y(1− y)
y ≤ x

2
(φ(1)− φ(y))φ(x)

φ(1)
· e

2γy(1−y)

y(1− y)
x ≤ y (7.50)
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Fig. 7.9. Green’s function for Wright-Fisher diffusion with symmetric balancing
selection γ = 10

To help understand the Green’s function, it is useful to look at slices
through the graph. As we computed in Example 7.15 at the end of Section
7.4, when γ is large and x is away from the boundaries at 0 and 1,

φ(1) ≈ 2
∫ ∞

0

e−2γy dy =
1
γ

φ(x), 1− φ(x) ≈
∫ ∞

0

e−2γy dy =
1
2γ
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Fig. 7.10. Slices x → G(x, 1/2) and y → G(1/2, y) of the previous graph.

so the first factor in (7.50) is ≈ 1/4γ and the two cases collapse to

e2γy(1−y)

2γy(1− y)

The approximation does not depend on the starting point because no matter
where the diffusion starts, the frequency quickly moves to 1/2.

Changing variables y = 1/2 + z, which makes y(1 − y) = 1/4 − z2, the
above becomes

2eγ/2

γ

e−2γz2

1− 4z2

Realizing that most of the contribution will come from values of z of order
O(1/

√
γ),

Exτ =
∫ 1

0

G(x, y) dy ≈ 2eγ/2

γ

∫
e−2γz2

dz

The integrand resembles the normal density with mean 0 and variance 1/4γ,
so its value is

√
π/2γ and we have

Exτ ≈ eγ/2γ−3/2
√

2π

7.9 Conditioned processes

In many situations we are interested in conditioning that the current mutation
fixes or dies out. If h(x) = Px(T1 < T0) and we condition on fixation then the
new transition probability

p̄t(x, y) = pt(x, y)h(y)/h(x).

The same result holds for conditioning on loss, with h(x) = Px(T0 < T1).
Integrating, we have that the conditioned Green’s function
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Ḡ(x, y) = G(x, y)h(y)/h(x). (7.51)

To compute the generator of the conditioned process, we note that

L̄f(x) = lim
t→0

1
t

(∫
pt(x, y)h(y)

h(x)
f(y) dy − f(x)

)
=

1
h(x)

lim
t→0

1
t

(∫
pt(x, y)h(y)f(y) dy − h(x)f(x)

)
=

1
h(x)

L(hf)

Working out the derivatives

1
h(x)

L(hf) =
1

h(x)

(
b(x)(h′f + hf ′) +

1
2
a(x)(h′′f + 2h′f ′ + hf ′′)

)
Using Lh = 0 and simplifying

L̄f =
1
2
a(x)f ′′ +

(
b(x) + a(x)

h′(x)
h(x)

)
f ′(x) (7.52)

in agreement with (32) in Ewens (1973).

Example 7.28. Wright-Fisher diffusion with no selection. h(x) = x is the prob-
ability of fixation, so using (7.43) and (7.51), Ḡ(x, y) =

2(1− x)
1− y

· y
x

y ≤ x

2x
y
· y
x

= 2 x ≤ y (7.53)

and using (7.52) we have

L̄v1 =
1
2
x(1− x)f ′′(x) + (1− x)f ′(x) (7.54)

Theorem 7.17. For the Wright-Fisher model conditioned on fixation, τ =
T0 ∧ T1 has

Ex(τ |T1 < T0) = −2
(1− x)
x

log(1− x) (7.55)

Ex(τ2|T1 < T0) = 8
(

(1− x) log(1− x)
x

−
∫ 1

x

log(1− y)
y

dy

)
(7.56)

The first formula is (14) in Kimura and Ohta (1969a). This second can be
obtained from (A7) of Kimura and Ohta (1969b), which is for conditioning on
extinction. Both are on page 29 of Ewens (1973), but in the second case he
has an erroneous minus sign. In the two references cited, formulas are given
on the original time scale, so the first formula is multiplied by 2N and the
second by (2N)2.
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Fig. 7.11. First and second moments of τ conditioned on T1 < T0, as a function of
the starting point.

Proof. We can derive the first formula from (7.53). Integrating using y/(1 −
y) = 1/(1− y)− 1, we have

Ex(τ |T1 < T0) =
∫ 1

x

2 dy +
2(1− x)

x

∫ x

0

y

1− y
dy

= 2
(

(1− x) +
(1− x)
x

(− log(1− x)− x)
)

and after a little arithmetic, we have (7.55).
A second approach is to use Theorem 7.12. Let v1(x) be our formula for

Ex(τ |T1 < T0). The first step is to check that Lv1 = −1. To do this, we note
that writing −(1− x)/x = −1/x+ 1

v′1(x) =
2
x2

log(1− x)− 2
1− x

x
· −1
1− x

=
2
x2

log(1− x) +
2
x

v′′1 (x) = − 4
x3

log(1− x) +
2
x2

· −1
1− x

− 2
x2

so we have

L̄v1 =
1
2
x(1− x)v′′1 (x) + (1− x)v′1(x)

= −2(1− x)
x2

log(1− x)− 1
x
− (1− x)

x

+
2(1− x)
x2

log(1− x) +
2(1− x)

x

= − 1
x

+
1− x

x
= −1

To examine the boundary conditions, we note that y log(y) → 0 as y → 0
so v1(1) = 0. We do not have v1(0) = 0. The easiest way to see this is to note
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that log(1 − x) ≤ −x, so v′1(x) ≤ 0, i.e., v1(x) is decreasing, which is what
one should expect for v1(x) = Ex(τ |T1 < T0). As x → 0, log(1 − x) ∼ −x
so v1(0) = 2. As we will see in Section 7.10, the apparent inconsistency with
Theorem 7.12 comes because it is impossible for the conditioned process to
get to 0, so one of the assumptions of that theorem does not hold.

Let v2(x) be our formula for Ex(τ2|T1 < T0). To verify the second formula
using Theorem 7.13, we want to show Lv2 = −2v1. To check this guess, we
note that

d

dx

v2
8

= − 1
x2

log(1− x) +
(1− x)
x

· −1
1− x

+
log(1− x)

x

=
(
− 1
x2

+
1
x

)
log(1− x)− 1

x

d2

dx2

v2
8

=
(

2
x3

− 1
x2

)
log(1− x)− 1− x

x2
· −1
1− x

+
1
x2

=
2− x

x3
log(1− x) +

2
x2

Combining the last two results, we see that

L̄v2
8

=
1
2
· 2− x

x2
(1− x) log(1− x) +

1− x

x

+
(x− 1)(1− x)

x2
log(1− x)− (1− x)

x

=
(1− x)
x

log(1− x)
[

1
x
− 1

2
+ 1− 1

x

]
and it follows that

L̄v2 = 4
(1− x)
x

log(1− x) = −2v1

Clearly v2(1) = 0, so the only relevant boundary condition is satisfied.

Example 7.29. Age of alleles. By symmetry

Ex(τ |T0 < T1) = E1−x(τ |T1 < T0) = −2
x

1− x
log(x)

As we will now show, this gives the average age of an allele A observed to be
at frequency x, a classic result of Kimura and Ohta (1973). To argue this, we
note that the density of the age of A given that it has frequency x is

fx(t) = lim
ε→0

pt(ε, x)∫∞
0
ps(ε, x) ds

Multiplying top and bottom by the speed measure m(ε), then using reversibil-
ity, (7.30), and noting the factors of m cancel, the above
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= lim
ε→0

m(ε)pt(ε, x)∫∞
0
m(ε)ps(ε, x) ds

= lim
ε→0

pt(x, ε)∫∞
0
ps(x, ε) ds

= gx(t)

the density for the hitting time of 0 starting from x. Therefore,∫
tfx(t) dt =

∫
tgx(t) dt = Ex(τ |T0 < T1)

I learned this argument from Griffiths (2003). See his paper for an account of
the history and results for the expected values of the ages of alleles observed
to occur k times in a sample of size n.

Example 7.30. Wright-Fisher diffusion with additive selection. In this case the
probability of fixation is h(x) = (1 − e−2γx)/(1 − e−2γ) when the initial fre-
quency is x, so

Ḡ(x, y) = G(x, y)
1− e−2γy

1− e−2γx

Using (7.49) now, we have that Ḡ(x, y) is

1− e−2γy

1− e−2γx
· e

−2γx − e−2γ

1− e−2γ
· e

2γy − 1
γy(1− y)

y ≤ x

1− e−2γy

1− e−2γ
· 1− e−2γ(1−y)

γy(1− y)
x ≤ y

Note that the second formula does not depend on x (except through the
condition x ≤ y). As Figure 7.12 shows, the conditioning does not change the
picture very much except near x = 0, where we no longer have G(x, y) → 0
as x→ 0.

If we integrate this with respect to y, then we get a result first derived by
Kimura and Ohta (1969a), see their (17).

Ēxτ ≈
∫ 1

x

[1− e−2γy] · [1− e−2γ(1−y)]
[1− e−2γ ] · γy(1− y)

dy

+
e−2γx − e−2γ

1− e−2γx

∫ x

0

[1− e−2γy] · [eγy − 1]
[1− e−2γ ] · 2γy(1− y)

dy

Since 1 − e−2γa ≤ 2γa, the two integrals are finite. However, they must be
evaluated numerically. As a check on the last formula, we note (eaγ−1)/γ → a
as γ → 0 so

1− e−2γy

γy
· 1− e−2γ(1−y)

γ(1− y)
· γ

1− e−2γ
→ 2

Using similar reasoning on the other terms,
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Fig. 7.12. Green’s function for conditioned Wright-Fisher with selection γ = 10

Ēxτ →
∫ 1

x

2 dy + 2N
(

1− x

x

)∫ x

0

2y
1− y

dy

= −2 · (1− x)
x

log(1− x)

by the calculation in Example 7.28.

Example 7.31. General diffusion. Maruyama and Kimura (1974) observed that
for Wright-Fisher diffusions with general diploid selection

lim
x→0

Ex(τ |T1 < T0) = lim
x→1

Ex(τ |T0 < T1) (7.57)

As we will now show, and presumably the authors also realized, this is a
general property of one dimensional diffusions.

Proof. We begin by recalling the formula for the Green’s function given in
(7.34), which we simplify by supposing φ(0) = 0 and φ(1) = 1.

2(1− φ(x))φ(y)m(y) y ≤ x

2φ(x)(1− φ(y))m(y) x ≤ y

The Green’s function G1(x, y) for the process starting from x and conditioned
on T1 < T0 is

2(1− φ(x))φ(y)m(y) · φ(y)
φ(x)

y ≤ x

2φ(x)(1− φ(y))m(y) · φ(y)
φ(x)

x ≤ y

in agreement with (12) of Maruyama and Kimura (1971). The Green’s function
G0(x, y) for the process starting from x and conditioned on T0 < T1 is
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2(1− φ(x))φ(y)m(y) · 1− φ(y)
1− φ(x)

y ≤ x

2φ(x)(1− φ(y))m(y) · 1− φ(y)
1− φ(x)

x ≤ y

In each case, after cancellation we have for x ≤ y

G0(x, y) = G1(x, y) = 2(φ(1)− φ(y))φ(y) ·m(y)

and integrating gives the desired result.

Taylor, Iwasa, and Nowak (2006) have shown that this result holds for
reversible Markov chains on {0, 1, . . . N} in which 0 and N are absorbing and
these two states can only be reached directly from 1 and N − 1 respectively.

7.10 Boundary behavior

The consideration of diffusion processes leads to two questions that have no
analogues for discrete models: “Can the process get to the boundary?” and
“Once it gets to the boundary can it return to the interior of the state space?”
To build some suspense, we invite the reader to guess what happens for the
Wright-Fisher diffusion with mutation

Lf =
1
2
d2

dx2
f + (β1(1− x)− β2x)

d

dx
f

It should not be surprising that if β1 = β2 = 0 then the diffusion stops the
first time it his 0 or 1, but what if one or both of the βi > 0?

It is enough to consider the boundary at 0. Consider a diffusion on (0, r)
where r ≤ ∞, let q ∈ (0, r), and let

I =
∫ q

0

(φ(z)− φ(0))m(z) dz

J =
∫ q

0

(M(z)−M(0))ψ(z) dz

where M is an antiderivative of m. Writing iff as short for “if and only if,” we
have the following results for a diffusion process Xt.

Theorem 7.18. Xt can get IN to the boundary point 0 iff I <∞.
Xt can get OUT from the boundary point 0 iff J <∞.

Note that φ(0) = −∞ implies I = ∞ and M(0) = −∞ implies J = ∞.

Proof. To start to prove the first result, we will show
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Theorem 7.19. Let 1/2 < b < 1. The following are equivalent:
(i) φ(0) > −∞ and

∫ 1/2

0
(φ(z)− φ(0))m(z) dz <∞

(ii) inf0<a<1/2 P1/2(Ta < Tb) > 0 and sup0<a<1/2E1/2(Ta ∧ Tb) <∞
(iii) P1/2(T0 < Tb) > 0

Proof. We first show that (i) and (ii) are equivalent.

P1/2(Ta < Tb) =
φ(b)− φ(1/2)
φ(b)− φ(a)

so infα<a<0 P0(Ta < Tb) > 0 if and only if φ(0) > −∞. Using (7.37) and
(7.34)

Exτa,b = 2
φ(x)− φ(a)
φ(b)− φ(a)

∫ b

x

(φ(b)− φ(z))m(z) dz

+ 2
φ(b)− φ(x)
φ(b)− φ(a)

∫ x

a

(φ(z)− φ(a))m(z) dz

The first integral always stays bounded as a ↓ 0. So E0τ(a,b) stays bounded as
a→ 0 if and only if φ(0) > −∞ and∫ 1/2

0

(φ(z)− φ(0))m(z) dz <∞

which completes the proof of the equivalence of (i) and (ii).
It is easy to see that (ii) implies (iii). For the other direction, note that

Theorem 7.6 implies that if P1/2(T0 < Tb) > 0 then E1/2τ0,b <∞.

To try to start the process Xt from 0, let φ be its natural scale. As (7.39)
shows, Yt = φ(Xt) has coefficients b̄(y) = 0 and

ā(y) = (aψ2)(φ−1(y))

To see if we can start the process Yt at 0, we extend ā to the negative half-
line by setting ā(−y) = ā(y) and let Zt be the associated diffusion. If we let
m̄(y) = 1/ā(|y|) be the speed measure for Zt, which is on its natural scale, we
can use (7.39) and the symmetry m̄(−y) = m̄(y) to conclude

1
2
E0τ−ε,ε =

∫ ε

0

(ε− y)m̄(y) dy

Changing variables y = φ(x), dy = ψ(x) dx, ε = φ(δ), the above

=
∫ δ

0

(φ(δ)− φ(x))
1

ψ(x)a(x)
dx

=
∫ δ

0

(∫ δ

x

ψ(z) dz

)
m(x) dx
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Interchanging the order of integration, the above

=
∫ δ

0

∫ z

0

m(x) dxψ(z) dz

At this point we have shown

E0τ−ε,ε = 2
∫ δ

0

(M(z)−M(0))ψ(z) dz (7.58)

To see that E0τ−ε,ε = ∞ means that the process cannot escape from 0, we
note that Theorem 7.6 implies that if P0(τ−ε,ε < ∞) > 0 then E0τ−ε,ε < ∞.
This completes the proof of the second result and of the theorem.

There are four possible combinations of I and J being finite or infinite, which
were named by Feller as follows

I <∞ J <∞ regular
I <∞ J = ∞ absorbing
I = ∞ J <∞ entrance
I = ∞ J = ∞ natural

The second case is called absorbing because we can get in to 0 but cannot
get out. The third is called an entrance boundary because we cannot get to 0
but we can start the process there. Finally, in the fourth case, the process can
neither get to nor start at 0, so it is reasonable to exclude 0 from the state
space. We will now give examples of the various possibilities.

Example 7.32. Reflecting Brownian motion. Suppose Xt = |Bt|. In this case
φ(x) = x and m(x) = 1 so

I =
∫ 1/2

0

(φ(z)− φ(0))m(z) dz =
∫ 1/2

0

z dz <∞

J =
∫ 1/2

0

(M(z)−M(0))ψ(z) dz =
∫ 1/2

0

z dz <∞

and 0 is a regular boundary point. φ(∞) = ∞ and M(∞) = ∞, so ∞ is a
natural boundary.

Example 7.33. Wright-Fisher diffusion. We begin with the case of no selection.
From (7.26), we have

ψ(x) = x−2β1(1− x)−2β2

m(x) = x2β1−1(1− x)2β2−1

As x→ 0, ψ(x) ∼ x−2β1 , so if β1 ≥ 1/2, φ(0) = −∞ and the boundary cannot
be reached. If β1 < 1/2 then φ(z)−φ(0) ∼ Cx−2β1+1 so I <∞. If β1 = 0 then
M(0) = −∞. If β1 > 0 then M(z) −M(0) ∼ Cz2β1 , so J < ∞. Combining
our calculations we see that
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if I J 0 is
β1 = 0 <∞ = ∞ absorbing
β1 ∈ (0, 1/2) <∞ <∞ regular
β1 ≥ 1/2 = ∞ <∞ entrance

Personally, I find it a little surprising that the accessibility of the boundary
depends on size of the mutation rate.

If we consider a general selection scheme, then the function ψ is multiplied
by e−(2δx+ηx2), and m by e2δx+ηx2

, which are bounded on [0, 1], so the results
of the tests do not change.

Example 7.34. Conditioned processes. If pt(x, y) is the transition probability
of one of our diffusions Xt and h(x) = Px(T1 < T0), then, as we observed
in Section 7.9, the process conditioned to hit 1 before 0, X̄t has transition
probability p̄t(x, y) = pt(x, y)h(y)/h(x), and generator

L̄f = Lf + a(x)
h′(x)
h(x)

f ′(x)

In the absence of mutation and selection, h(x) = x and h′(x) = 1, so

L̄f =
1
2
x(1− x)

d2f

dx2
+ (1− x)

df

dx

Dropping the bars for the rest of the computation, −2b(x)/a(x) = −2/x, so

ψ(x) = e−2 log x = x−2 and φ(x) = −x−1

φ(0) = −∞ so I = ∞. The speed measure

m(x) =
1

x(1− x)x−2
=

x

1− x

so M(z) − M(0) ∼ z2 as z → 0. Since ψ(z) = z−2, J < ∞. Thus, as we
should have expected from the beginning, the conditioning makes 0 an en-
trance boundary. The process started at 0 will immediately become positive
and never to return to 0.

In the next two examples, we will examine the influence of the drift and
diffusion coefficients on the boundary behavior.

Example 7.35. Bessel processes. Suppose that a(x) = 1 and b(x) = γ/2x for a
diffusion on [0,∞). The natural scale is

φ(x) =
∫ x

1

exp
(
−
∫ y

1

γ/z dz

)
dy

=
∫ x

1

y−γ dy =

{
lnx if γ = 1
(x1−γ − 1)/(1− γ) if γ 6= 1
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From the last computation, we see that if γ ≥ 1 then φ(0) = −∞ and I = ∞.
To handle γ < 1, we observe that the speed measure

m(z) =
1

φ′(z)a(z)
= zγ

So taking q = 1 in the definition of I,

I =
∫ q

0

(φ(z)− φ(0))m(z) dz =
∫ 1

0

z1−γ

1− γ
zγ dz <∞

To compute J , we observe that for γ ≤ −1, M(0) = −∞ while for γ > −1,
M(z) = zγ+1/(γ + 1) and

J =
∫ q

0

(M(z)−M(0))ψ(z) dz =
∫ 1

0

zγ+1

γ + 1
z−γ dz <∞

Combining the two conclusions about I and J , we see that

if I J 0 is
γ ≥ 1 = ∞ <∞ entrance
γ ∈ (−1, 1) <∞ <∞ regular
γ ≤ −1 <∞ = ∞ absorbing

which makes sense because as γ gets larger, the push away from 0 increases.

Example 7.36. Power law fluctuations. Suppose a(x) = xδ and b(x) = 0. The
natural scale is φ(x) = x and the speed measure is m(x) = 1/(φ′(x)a(x)) =
x−δ, so

I =
∫ 1

0

x1−δ dx =

{
<∞ if δ < 2
= ∞ if δ ≥ 2

When δ ≥ 1, M(0) = −∞ and hence J = ∞. When δ < 1

J =
∫ 1

0

z1−δ

1− δ
dz <∞

Combining the last two conclusions, we see that

if I J 0 is
δ ∈ [2,∞) = ∞ = ∞ natural
δ ∈ [1, 2) <∞ = ∞ absorbing
δ < 1 <∞ <∞ regular

which makes sense, because as δ gets larger the fluctuations near the boundary
are smaller.
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7.11 Site frequency spectrum

In this section, we will calculate the site frequency spectrum for our diffusion
processes, extending the result for the Moran model in Section 1.5. Special
cases of the formula, as well as pictures similar to ones given in this section can
be found in Wright’s (1942) paper based on his Gibbs lecture to the American
Mathematical Society. The general result can be found in formula (9.27) of
Kimura’s (1964) paper, which appeared in the first volume of the Journal of
Applied Probability.

Theorem 7.20. Under the infinite sites model if mutations occur at rate µ
and θ = 4Nµ then the site frequency spectrum in the diffusion process is

θf(y) where f(y) =
ψ(0)
m(y)

· φ(1)− φ(y)
φ(1)− φ(0)

(7.59)

Proof. We begin by recalling the result for the Moran model. Suppose a mu-
tation occurs at time −t introducing a new allele and no further mutation
occurs at that locus, which is the case in the infinite sites model. The proba-
bility that there are k copies at time 0 is given by the transition probability
pt(1, k). If mutations occur at times of a Poisson process with rate λ and each
mutation occurs at a different site then the number of mutants with k copies
at time 0 is Poisson with mean

λ

∫ ∞

0

pt(1, k) dt = λG(1, k)

Turning to the diffusion process, suppose without loss of generality that
φ(0) = 0. We cannot introduce mutants at frequency 0, so we introduce them
at frequency δ at rate (θ/2)(ψ(0)/φ(δ). Here θ/2 = 2Nµ is the rate at which
mutations occur in the population, and the factor ψ(0)/φ(δ) is chosen so that
if δ < ε then the mutations that reach frequency ε is a Poisson process with
rate

θψ(0)
2φ(δ)

· φ(δ)
φ(ε)

=
θψ(0)
2φ(ε)

The factor ψ(0) is included because the natural scale with φ(0) = 0 is only
specified up to a constant multiple.

Using the Green’s function formula (7.34) now the number of mutants with
frequency in (y, y + dy) with y > δ is Poisson with mean

θψ(0)
2φ(δ)

· 2φ(δ)
φ(1)

· (φ(1)− φ(y))m(y) dy (7.60)

Letting δ → 0 gives the desired formula.

Remark. Most derivations of this result introduce mutations at frequency
1/2N . In this approach, which as Sawyer and Hartl (1992) observe at the
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top of page 1165, the rigorous justification that they give on pages 1172–1174
is somewhat painful. In the example of additive selection which they were
considering, this can be done using our remark in Section 7.8 that the Green’s
function for the Moran model converges to that of the Wright-Fisher diffusion
as the population size N →∞. It would not be much fun to do this for every
model, so we have taken the approach of introducing mutations at frequency
δ and then letting δ → 0, which easily gives the result for any diffusion.

Examples

In all of the diffusions we will consider, a(y) = y(1− y).

Example 7.37. No selection. In the neutral case, φ(x) = x and (7.59) becomes

f(y) =
(1− y)
y(1− y)

=
1
y

which agrees with the result derived in Section 1.5.

Example 7.38. Additive selection. In this case ψ(x) = e−2γx, φ(x) = [1 −
exp(−2γx)]/2γ, and m(x) = e2γx/x(1− x) so (7.59) becomes

f(y) =
e2γy

y(1− y)
e−2γy − e−2γ

1− e−2γ
=

1
y(1− y)

1− e−2γ(1−y)

1− e−2γ
(7.61)

This formula can be found in slightly different notation on page 92 of Fisher
(1930) and as formula (39) in Wright (1938). The next figure shows the site
frequency spectrum for four values of γ. When y → 0, f(y) ∼ 1/y, while for
y → 1, we have (1−e−2γ(1−y))/(1−y) → 2γ and hence f(y) → 2γ/(1−e−2γ) >
1, so there is an excess of high frequency mutations.
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Fig. 7.13. Site frequency spectrum under directional selection.
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Example 7.39. Symmetric balancing selection. In this case ψ(x) = e−2γx(1−x)

and m(x) = e2γx(1−x)/x(1− x) so (7.59) becomes

f(y) =
e2γx(1−x)

x(1− x)

∫ 1

x
e−2γy(1−y) dy∫ 1

0
e−2γy(1−y) dy

(7.62)

As x→ 1,
∫ 1

x
e−2γy(1−y) dy ∼ 1−x so the density does not blow up there. If γ

is large and x is away from the boundary then the ratio of the two integrals is
close to 1/2, and the curve is ≈ e2γx(1−x)/x(1−x), which reaches a maximum
at x = 1/2.
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Fig. 7.14. Site frequency spectrum under balancing selection.

Fixation rate

By reasoning similar to that for (7.60), we see that if φ is chosen with
φ(0) = 0 the rate at which new mutations become fixed (when time is scaled
by 2N generations) is

θψ(0)
2φ(δ)

φ(δ)
φ(1)

=
θψ(0)
2φ(1)

In the case of additive selection ψ(x) = e−2γx and φ(x) = [1− exp(−2γx)]/2γ
so this is

θ

2
· 2γ
1− e−2γ

(7.63)

7.11.1 Poisson random field model

To set up the problem, we quote from page 1166 of Sawyer and Hartl (1992):
“Suppose that two species diverged tdivNe generations ago, and that both have
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the same haploid effective population size Ne. Assume that the mutation rate
for silent sites in the coding region of a particular gene is µs per gene per
generation, and that the mutation rate for nonlethal replacement mutations
is µr per gene per generation. Assume further that (i) all new replacement
mutations bestow equal fitness w = 1+γ/Ne, (ii) each new mutation since the
divergence of species occurred at a different site (in particular, the gene has
not been saturated by mutations), and (iii) different sites remain in linkage
equilibrium.”

In this case (7.63) and (7.61) give us Table 1 of Sawyer and Hartl (1992)

Fixation rate Mutant frequency spectrum
Neutral µs 2µs

dx
x

γ 6= 0 µr
2γ

1−e−2γ
2µr

y(1−y)
1−e−2γ(1−y)

1−e−2γ

To make the connection note that their µr and µs are our 2Nµ. To make it
easier to compare with their paper we will keep their notation. The expected
number of fixed differences between the two species are

2µstdiv and 2µr
2γ

1− e−2γ

for silent and replacement sites, respectively.

McDonald-Kreitman tables

Now suppose we have aligned DNA sequences from m chromosomes from
the first species and n chromosomes from the second species. An allele with
frequency x will be polymorphic in a sample of size m with probability 1 −
xm− (1−x)m, so the expected number of silent polymorphic sites in a sample
of size m is

2µs

∫ 1

0

1− xm − (1− x)m

x
dx = 2µs

m−1∑
k=1

1
k

Writing L(m) =
∑m−1

k=1 1/k ≈ logm, the number of silent polymorphic sites
in both samples together is then

2µs(L(m) + L(n)) (7.64)

A silent site will look like a fixed difference in species 1 in the comparison
of the two samples if it is fixed in the population or if it by chance occurs in
all m sampled individuals, so the expected value is

µstdiv +
∫ 1

0

2µsx
m dx

x
= µs

(
tdiv +

2
m

)
Thus the expected number of silent fixed differences is

2µs

(
tdiv +

1
m

+
1
n

)
(7.65)
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By the same reasoning the number of polymorphic replacement sites in a
sample is

2µr(H(m) +H(n)) (7.66)

where

H(m) =
∫ 1

0

1− xm − (1− x)m

x(1− x)
1− e−2γ(1−x)

1− e−2γ
dx

and the number of replacement fixed differences has mean

2µr
2γ

1− e−2γ
(tdiv +G(m) +G(n)) (7.67)

where

G(m) =
∫ 1

0

xm−1 1− e−2γ(1−x)

2γ(1− x)
dx

Since e−y ≥ 1 − y and hence (1 − e−y)/y ≤ 1 for y > 0, G(m) ≤ 1/m for
γ > 0.

Our formulas give the expected value of the four entries in the McDonald-
Krietman table.

Divergence Polymorphism
Silent (7.65) (7.64)
Replacement (7.67) (7.66)

Bayesian estimation

The number of mutations in one locus typically does not give us enough
information to get good estimates of the parameters, so it is natural to combine
the information from many loci. To do this we will follow the approach of
Bustamante et al. (2002) and Sawyer et al. (2003). Changing to their notation
we let θs = 4Nµs and θa = 4Nµr and denote the entries in the DPRS table
by

Divergence Polymorphism
Silent Ks Ss

Replacement Ka Sa

The theoretical expectations for any single DPRS table include four pa-
rameters, θs, θa, γ, and the divergence time t, and contain four observations:
Ks, Ss, Ka, and Sa hence there is no meaningful opportunity for model fit-
ting. However, the divergence time is a shared parameter among all sequences.
The basic idea of Bayesian analysis is to treat the parameters in a model as
random variables with some underlying prior distribution. In Bustamante et
al. (2002), it was assumed that for each coding sequence γ was a fixed constant
but that across loci the distribution of γ was given by a normal with mean µ
and standard deviation σ. The other prior distributions are q(t) is uniform,
p(θ) is gamma, h(σ) is such that 1/σ2 is gamma, and g(µ|σ) is normal.
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The posterior distribution π(γ, t, θ, µ, σ) is analytically intractable but
can be computed by Markov chain Monte Carlo. That is, by simulation of
a Markov chain defined in such a way that the stationary distribution is pre-
cisely π. One simple method for doing this is the Metropolis algorithm in
which a trial value for the new parameter is used to replace the old if the ra-
tio of the posterior probabilities for the trial and the present values is greater
than a uniform random number in [0, 1]. For more details about the MCMC
method see page 533 of Bustamante et al. (2002).

Sawyer et al. (2003) modified the “fixed-effects” model described above to
be a random-effects model so that for the ith coding sequence, the selection
coefficient for a new mutation is normal with mean γi and standard deviation
σw. Here σw is a global parameter that applies to all loci and has a uniform
prior distribution.

Sawyer et al. (2003) studied a set of 72 D. simulans coding sequences
from GenBank, which had sample sizes ranging from 4 to 70 with an average
of 10.5. Nucleotide divergence between D. simulans and D. melanogaster was
inferred from the reference sequence for D. melanogaster, see Adams (2000). In
applying the random-effects model to the DPRS data, they initially found that
the Markov chain did not converge, or did so excessively slowly. The output
for various runs suggested that the main reason for poor convergence was
that values of θr could be balanced off by γ. That is, an excess of replacement
mutations can be caused either by a stronger intensity of positive selection or
a higher mutation rate.

From runs of the fixed-effects model, they noticed that about 80% of the
coding sequences had values of θr/2θs near 1/4, or more precisely about 0.28,
so they modified the model to include a new parameter Q = θr/2θs with
a gamma prior distribution. Among the 72 genes, 14 were excluded because
θr/2θs > 0.28 and two additional genes were excluded because they appeared
to be spurious for other reasons. The list of genes omitted include eight male
accessory gland proteins.

For the random effects model they found that the distribution of the γi had
mean −7.3 and standard deviation σb = 5.69, while the within locus standard
deviation was σw = 6.79. Most of the mean selection intensities for the 56
genes were negative but many had 95% credible intervals that overlapped 0.
The fraction of beneficial new mutations ranged from 1% for Pgm to 62% for
Rel with an outlier at 90% for mei-218. The average for all loci was 19.4%.
Among the replacement polymorphisms in the data, an average of 46.9% were
estimated to be beneficial. For the Y-linked gene kl-5 the estimated average
selection intensity was −0.38. All others were positive and ranged from 2.1
for vermillion to 9.4 for Rel, with an overall mean, excluding kl-5 of 5.1.

For an application of these methods to a large number of genes in the
human genome, see Bustamante et al. (2005).
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7.12 Fluctuating selection

Two mechanisms by which evolution can occur are the adaptive processes of
natural selection and the neutral processes of genetic drift. Which of these is
the principal force in the evolution of a population has been one of the central
issues in evolutionary biology. An early exchange in this debate was over the
changes in the frequencies of a color polymorphism in a population of the
scarlet tiger moth Callimorpha (Panaxia) dominula near Oxford, England.
Fisher and Ford (1947) argued that the population size was too large for
the changes in frequencies to be due to random drift, and were caused by
fluctuating selection. Wright (1948) replied by arguing that multiple factors
could affect a population, and that the effective population might be much
smaller than the census population size. A publicized debate ensued, see Fisher
and Ford (1950), and Wright (1951).

Kimura (1954, 1962) and Ohta (1972) studied the question mathematically,
but did not find the correct diffusion approximation. A little later Gillespie
(1973) and Jensen (1973) did. For more on the early history see Felsenstein
(1976). We will follow Karlin and Levikson (1974) and consider a model in
which the fitness ofA in generation n is 1+σn and the fitness of a is 1+τn where
σn, τn are independent and identically distributed. Dropping the subscripts
to simplify the formulas, we let

α = 2N [E(σ − τ)− E(σ2 − τ2)/2 + E(σ − τ)2/2]
β = 2NE(σ − τ)2

Theorem 7.21. The diffusion approximation for the Karlin-Levikson model
has coefficients:

b(x) = x(1− x)(α− βx) a(x) = x(1− x)[1 + βx(1− x)] (7.68)

The drift looks like balancing selection, but the variance has an additional
term.

Proof. To derive the diffusion approximation, note that reasoning as in Section
6.2, the change in frequency in one generation is

x(1 + σ)
x(1 + σ) + (1− x)(1 + τ)

− x =
x(1 + σ)− x− σx2 − τx(1− x)

1 + σx+ τ(1− x)

=
(σ − τ)x(1− x)

1 + σx+ τ(1− x)
≈ (σ − τ)x(1− x)[1− σx− τ(1− x)]

Writing x = 1/2− (1/2− x) and 1− x = 1/2 + 1/2− x, the above is

= (σ − τ)x(1− x)[1− (σ + τ)/2 + (σ − τ)(1/2− x)]

= x(1− x)[(σ − τ)− (σ2 − τ2)/2 + (σ − τ)2(1/2− x)]
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Taking expected value and speeding up time by a factor of 2N the drift
coefficient is

b(x) = x(1− x)(2N)[E(σ − τ)− E(σ2 − τ2)/2 + E(σ − τ)2(1/2− x)]

To compute the variance, let ∆X be the change in frequency and Y be
the environment.

var (∆X) = E var (∆X|Y ) + var (E(∆X|Y ))

To evaluate the first term, recall that the variance of Binomial(2N, p) is
2Np(1− p) and the allele frequencies by O(1/N) in one generation so

var (∆X|Y ) ≈ x(1− x)
2N

As we computed above

E(∆X|Y ) =
(σ − τ)x(1− x)

1 + σx+ τ(1− x)

Since σx, τ(1− x) << 1, we can drop these terms from the denominator:

var (E(∆X|Y )) = x2(1− x)2E(σ − τ)2

Adding the two results and speeding up time by a factor of 2N gives

a(x) = x(1− x) + x2(1− x)22NE(σ − τ)2

and completes the proof.

Remark. Takahata, Ishii, Matsuda (1975) considered a Wright-Fisher diffu-
sion with varying selection

1
4N

x(1− x)
d2

dx2
+ s(t)x(1− x)

d

dx

They let s̄ = Es(t) and V =
∫∞
0
E([s(t) − s̄][s(0) − s̄]) dt, and found that in

the diffusion approximation

a(x) =
1

2N
x(1− x) + 2V x2(1− x)2

b(x) = s̄x(1− x) + V x(1− x)(1− 2x)

To connect with the Karlin-Levikson result, suppose E(σ2 − τ2) = 0, let
s̄ = E(σ− τ), and note that in discrete time V = E(σ− τ)2/2. This suggests
that if s̄ = E(σ − τ) = 0 and we have (σn, τn) that are correlated in time all
we do is replace E(σ − τ)2/2 by

∞∑
n=0

E[(σ0 − τ0)(σn − τn)].

For the rest of the section we will only consider the special case that is
closely related to the model of Takahata, Ishii, and Matsuda (1975).
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Theorem 7.22. Consider the Karlin-Levikson model with E(σ − τ) = 0 and
E(σ2 − τ2) = 0. The derivative of the natural scale

ψ(y) =
1

y(1− y) + 1/β

The speed measure is exactly the same as for the neutral case

m(y) =
1

y(1− y)

Proof. Since a(y) = y(1− y)(1 + βy(1− y)), the second formula follows from
the first. To compute ψ, we begin by noting

−2b(x)
a(x)

=
−2[α− βx]

1 + x(1− x)β

To find the roots of the quadratic in the denominator, we write it as x2−x−
1/β = 0 and solve to find roots r1 < 0 < 1 < r2 given by

ri =
1±

√
1 + 4/β
2

Note that the two roots are symmetric about 1/2. To evaluate the integral we
write

−2b(x)
a(x)

=
−2[α− βx]

1 + x(1− x)β
=

−2[α/β − x]
1/β + x(1− x)

=
C

x− r1
+

D

r2 − x

To find the constants we solve −C +D = 2 and Cr2 −Dr1 = −2α/β to
find

C =
2r1 − 2α/β
r2 − r1

D =
2r2 − 2α/β
r2 − r1

which, as the reader can easily check, satisfies the two equations. Integrating∫ y C

x− r1
+

D

r2 − x
dx = C log(y − r1)−D log(r2 − y)

so we have

ψ(y) = exp
(∫ y −2b(x)

a(x)

)
= (y − r1)C(r2 − y)−D

Consider now the special case in which σ and τ have the same distribution
so E(σ − τ) = 0, E(σ2 − τ2) = 0, and hence α = β/2.

C =
2r1 − 2α/β
r2 − r1

=
2(r1 − 1/2)
r2 − r1

= −1

D =
2r2 − 2α/β
r2 − r1

=
2(r2 − 1/2)
r2 − r1

= 1



7.12 Fluctuating selection 307

and we have the very nice formula

ψ(y) = (y − r1)−1(r2 − y)−1 =
1

y(1− y) + 1/β

Karlin and Levikson (1974) find ψ(y) = [1 + βy(1 − y)]−1 on their page
402, but this agrees with our computation since the solution of ψ′(y) =
−2b(y)ψ(y)/a(y) is only determined up to a constant multiple. To make it
easier to compare with their formulas, for the rest of the section we will use

ψ(y) =
1

βy(1− y) + 1
= β−1(y − r1)−1(r2 − y)−1 (7.69)

Theorem 7.23. Let r1 < r2 be the roots (1 ±
√

1 + 4/β)/2. Under the as-
sumptions of Theorem 7.22, the probability of fixation starting from frequency
x is

1
2

+
log
[

x−r1
r2−x

]
2 log[r2/(−r1)]

This is (8) in Jensen (1973). As β → ∞, r1 → 0 and r2 → 1 so φ(x) → 1/2.
The next graph shows the hitting probabilities for β = 0, 10, 40.
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Fig. 7.15. Hitting probabilities for fluctuating selection

Proof. To compute the natural scale φ, we integrate to find

φ(x) = β−1

∫ x

0

(y − r1)−1(r2 − y)−1 dy

=
1

β(r2 − r1)

∫ x

0

1
y − r1

+
1

r2 − y
dy (7.70)

=
1√

β2 + 4β
[log(x− r1)− log(−r1)− log(r2 − x) + log(r2)]
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This is close to but not exactly the same as Karlin and Levikson (1974). Their
roots are λ2 = r1 and λ1 = r2, and they write w = β/2, so their constant has
2β instead of 4β under the square root.

Since φ(0) = 0, the probability of fixation starting from frequency x is

φ(x)/φ(1) = log
[
x− r1
−r1

· r2
r2 − x

]/
log
[
1− r1
−r1

· r2
r2 − 1

]
(7.71)

r2 − 1/2 = 1/2− r1 and r2 − 1 = −r1 so φ(1/2)/φ(1) = 1/2 and we can write
above as

1
2

+
φ(x)− φ(1/2)

φ(1)
=

1
2

+
log
[

x−r1
r2−x

]
2 log[r2/(−r1)]

Theorem 7.24. Let τ = T0 ∧ T1 be the time until one allele is lost. Under
the assumptions of Theorem 7.22

Exτ =


∫ x

0
2

1+βy(1−y) log
(

1−y
y

)
dy when x ≤ 1/2∫ 1

x
2

1+βy(1−y) log
(

y
1−y

)
dy when x ≥ 1/2

Note that in each case the log is nonnegative throughout the range of inte-
gration, so Exτ is a decreasing function of β. This result, which is on page
402 of Karlin and Levikson (1974) is somewhat surprising since (7.68) shows
that the diffusion has a drift toward 1/2, which will encourage it to spend
more time at intermediate values. However, this effect is counteracted by the
increase in a(x).

Proof. Since m(y) = 1/y(1 − y) and φ(0) = 0, the Green’s function G(x, y)
from (7.34) is

2
φ(x)
φ(1)

· φ(1)− φ(y)
y(1− y)

x ≤ y

2
φ(1)− φ(x)

φ(1)
· φ(y)
y(1− y)

y ≤ x

The expected time to fixation is

Exτ = 2
φ(x)
φ(1)

∫ 1

x

φ(1)− φ(y)
y(1− y)

dy + 2
φ(1)− φ(x)

φ(1)

∫ x

0

φ(y)
y(1− y)

dy

Since 1/(1 − y)y = 1/(1 − y) + 1/y has antiderivative − log(1 − y) + log(y),
integrating by parts gives
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= 2
φ(x)
φ(1)

(φ(1)− φ(y)) · (− log(1− y) + log(y))|1x

+ 2
φ(x)
φ(1)

∫ 1

x

ψ(y) log
(

y

1− y

)
dy

+ 2
φ(1)− φ(x)

φ(1)
φ(y) · (− log(1− y) + log(y))|x0

− 2
φ(1)− φ(x)

φ(1)

∫ x

0

ψ(y) log
(

y

1− y

)
dy

Since φ(1)−φ(y) ∼ φ′(1)(1−y) as y → 1 and (1−y) log(1−y) → 0 as y → 1,
evaluating the first term at 1 gives 0. Similarly φ(y) ∼ φ′(0)y as y → 0 and
y log(y) → 0 as y → 0, so evaluating the third term at 0 gives 0. Evaluating
the first term at x cancels with evaluating the third at x, so the above

= 2
φ(x)
φ(1)

∫ 1

x

ψ(y) log
(

y

1− y

)
dy − 2

φ(1)− φ(x)
φ(1)

∫ x

0

ψ(y) log
(

y

1− y

)
dy

Adding and subtracting 2(φ(x)/φ(1))
∫ x

0
, then flipping the fraction inside the

log to get rid of the minus sign, the above

= 2
φ(x)
φ(1)

∫ 1

0

ψ(y) log
(

y

1− y

)
dy +

∫ x

0

2ψ(y) log
(

1− y

y

)
dy

ψ(y) is symmetric about 1/2 and log(y/(1 − y)) = log(y) − log(1 − y) is
antisymmetric about 1/2, so the first integral vanishes, and

Exτ =
∫ x

0

2
1 + βy(1− y)

log
(

1− y

y

)
dy

When x ≥ 1/2 we can use the fact that the total integral is 0 to write

Exτ =
∫ 1

x

2
1 + βy(1− y)

log
(

y

1− y

)
dy

Using Kimura’s formula (7.59), we have

Theorem 7.25. Under the assumptions of Theorem 7.22, the site frequency
spectrum is

θ

y(1− y)
· log

(
1− r1
y − r1

· r2 − y

r2 − 1

)/
log
(

1− r1
−r1

· r2
r2 − 1

)
Proof. Using either formula for ψ(y)

ψ(0)
ψ(y)a(y)

=
1

y(1− y)

Using (7.71), shows that (φ(1)− φ(y))/(φ(1)− φ(0)) = the second factor.
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Fig. 7.16. Log-log plot of the site frequency spectrum for fluctuating selection

Figure 7.16 shows the site frequency spectrum for β = 0, 10, 40. To make
the differences more visible we have done a log-log plot. In the presence of
fluctuating selection high frequency derived alleles (y near 1) are overrepre-
sented, and intermediate frequency alleles are underrepresented with respect
to the neutral case. Somewhat remarkably,

Theorem 7.26. The integral of the site frequency spectrum does not depend
on β.

Proof. It follows from Theorem 7.23 that

g(β, y) =
∂

∂β

φ(1)− φ(y)
φ(1)− φ(0)

has g(β, y) = −g(β, 1− y). From this it follows that

∂

∂β

∫ 1

0

θ

y(1− y)
φ(1)− φ(y)
φ(1)− φ(0)

dy =
∫ 1

0

θ

y(1− y)
g(β, y) dy = 0

Parameter estimation

Most studies of fluctuating selection have based their inferences on time
series data for allele frequencies. See Mueller et al (1985), Lynch (1987), Cook
and Jones (1996), and O’Hara (2005). Recently, Huerta-Sanchez, Durrett, and
Bustamante (2007) have used the Poisson random field framework to develop
an alternative approach that uses DNA polymorphism data from a sample of
individuals collected at a single point in time. To do this they used methods
described in Bustamante et al. (2001), which we will begin by describing in
general. Let f(y, β) be the site frequency spectrum. Since this represents the
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distribution of mutation frequencies at any time, the probability of finding i
mutant alleles in a sample of size n

Fn(k, β) =
∫ 1

0

(
n

k

)
yk(1− y)n−kf(y, β) dy

Our definition of f(y, β) is 1/2 the usual one so there is no factor of 2, as in
(2) of Bustamante et al. (2001).

Let yi be the number of sites at which there are i mutant alleles. In the
Poisson random field framework, different sites are independent so the likeli-
hood is given by

L(θ, β) =
n−1∏
i=1

exp(−θFn(i, β))
(θFn(i, β))yi

yi!

Therefore, the log likelihood function (dropping the term log(yi!) which is
independent of the parameters) is

`(θ, β) =
n−1∑
i=1

−θFn(i, β) + yi log(θFn(i, β))

Differentiating with respect to θ we see that

∂

∂β
logL(y, β) = −

n∑
i=1

Fn(i, β) +
yi

θ

so for fixed β the maximum likelihood estimate of θ is

θ̂(β) = Sn/

n∑
i=1

Fn(i, β)

which is a generalization of Watterson’s estimate.
Given the last result we can work with the profile likelihood

`∗(β) = L(θ̂(β), β)

which can be maximized numerically using standard optimization techniques
such as Newton-Raphson iteration. In the current example, that task simplifies
because Theorem 7.26 implies

Theorem 7.27. ESn =
∑n

i=1 Fn(i, β) does not depend on β.

Proof. Let h(k, y) =
(
n
k

)
yk(1 − y)n−k +

(
n

n−k

)
yn−k(1 − y)k. Since hn(k, y) is

symmetric about 1/2,

∂

∂β
[Fn(k, β) + Fn(n− k, β)] = 0

Summing from k = 1 to n− 1 now gives the desired result.
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To perform the optimization, we have to compute the first and second
derivatives of the log likelihood with respect to its parameters. We have noth-
ing insightful to say about these details so we refer the reader to Bustamante
et al. (2001) or Huerta-Sanchez, Durrett, and Bustamante (2007) for details,
and simulation results which show the performance of the estimators. For an-
other approach to fitting fluctuating selection models to data see Mutsonen
and Lässig (2007). Using data for 271 loci in 12 Droxsophila melanogaster
and a D. simulans sequence, they find strong support (p < 10−17) for time
dependent selection.

Before leaving the topic of fluctuating selection, we must mention the work
of Gillespie. To quote the preface of his 1991 book The Causes of Molecular
Evolution: “If we are to propose that molecular evolution is due to the ac-
tion of natural selection, we need a mathematical theory to demonstrate that
the dynamics of selection are compatible with the observations of molecular
variation. It is my conviction that the only viable model of selection is one
based on temporal and spatial fluctuations in the environment. The mathe-
matics of selection in a random environment have never been systematically
developed or brought to a point where they serve as a model of molecular
evolution. Both situations will be remedied in Chapter 4. Unfortunately, the
mathematics are very difficult. Yet, if molecular evolution is in response to
a changing environment, then this is the sort of mathematical challenge we
must be willing to face. Chapter 4 is littered with unresolved problems that
should prove of interest to those with a mathematical bent.” In addition to
the source just cited the reader should consult his more recent papers on the
SAS-CFF model (stochastic additive scale-concave fitness function).
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Multidimensional Diffusions

“As long as algebra is taught in school, there will be prayer in school.”
Cokie Roberts

It is straightforward to extend our one dimensional definition to higher
dimensions. To make formulas smaller, let

Di =
∂

∂xi
Dij =

∂2

∂xi∂xj

The infinitesimal generator can then be written as

Lf =
1
2

∑
i,j

aij(x)Dijf +
∑

i

bi(x)Dif

where b(x) is the infinitesimal drift vector, and a(x) is the infinitesimal covari-
ance matrix. In one dimension a(x) ≥ 0. Here, since a is a covariance matrix,
a must be nonnegative definite, i.e.,

∑
i,j yiaijyj ≥ 0 for all vectors y, since

this gives the infinitesimal variance of
∑

i yiXi(t).
While the definition of a diffusion, and the derivation of the coefficients

in examples, are not much different in higher dimensions, the theory changes
drastically. In one dimension, differential equations can be solved by calculus,
so we can find formulas for most quantities of interest. In higher dimensions,
there is no systematic method for solving the equations, so there are far fewer
explicit formulas.

8.1 K allele model

This section is devoted to the study of theK allele Moran model with mutation
and selection. If 1−si is the fitness of type i, µij is the rate of mutations from
i to j, and n = (n1, n2, . . . , nK) gives the number of individuals with the K
alleles then
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n→ n+ ei − ej at rate nj

( ni

2N
(1− si) + µji

)
where ei is the vector that is 1 in the ith position and 0 otherwise. In words,
the transition n → n + ei − ej says we lose an individual of type j and add
one of type i. The first term arises because each of the nj individuals with
the jth allele is replaced at rate 1. The randomly chosen individual to do the
replacement will be of type i with probability ni/2N , and the replacement
will occur with probability 1 − si. The second term comes from mutations
from type j to type i.

To find the drift in the diffusion approximation

d

dt
EXi(t) =

1
2N

∑
j 6=i

nj

( ni

2N
(1− si) + µji

)
−
∑
j 6=i

ni

( nj

2N
(1− sj) + µij

)
= −xiµi· +

∑
j

xjµji + xi

∑
j

xj(sj − si)

where xi = ni/2N and µi· =
∑

j µij . We do not need j 6= i on the second line
because µii = 0 and si − si = 0.

Letting βij = Nµij , βi· = Nµi·, and γi = Nsi we see that the drift
coefficient for the process run at rate N is

bi(x) = −xiβi· +
∑

j

xjβji + xi

∑
j

xj(γj − γi)

To compute the second order terms, we note

d

dt
E(Xi(t)− xi)2 =

1
(2N)2

[∑
j 6=i

nj

( ni

2N
(1− si) + µji

)
+
∑
j 6=i

ni

( nj

2N
(1− sj) + µij

)]
=

1
2N

· 2xi(1− xi) + o(1/N)

since si, µij → 0. For i 6= j we have

d

dt
E((Xi(t)− xi)(Xj(t)− xj)) =

−1
(2N)2

[
nj

( ni

2N
(1− si) + µji

)
+ ni

( nj

2N
(1− sj) + µij

)]
= − 1

2N
(2xixj +O(1/N))

Letting δij = 1 if i = j and 0 otherwise, we have shown that the infinitesimal
covariance for the process run at rate N is
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aij(x) = xi(δij − xj)

which is the covariance matrix for multinomial sampling. We get the same
limit for the Wright-Fisher model if we let βij = 2Nµij and γi = 2Nsi. Since
the sum of the coordinates is 0, we drop the Kth coordinate to have a K − 1
dimensional process (just as we did when K = 2).

8.1.1 Fixation probabilities and time

When there is no mutation or selection,

Lf =
1
2

∑
i,j

xi(δij − xj)Dijf

In this case the coordinate functions fi(x) = xi have Lfi = 0, so Xi
t is a

martingale, and if we start from initial frequencies given by x, the probability
the ith allele is the one that takes over the population is xi.

Consider now the case of K = 3 alleles, which is a two dimensional process
with generator

1
2
x1(1− x1)D11 − x1x2D12 +

1
2
x2(1− x2)D22

The middle term has no 1/2, since for nice functions D12f = D21f . The state
space is {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} which is a triangle.

@
@

@
@

@
@

@
@

@
@

x2 = 0

x1 = 0
x3 = 0

• •

•

3

2

1

Fig. 8.1. State space for the three allele diffusion.

When the process begins in the interior of the triangle, it runs until it hits
one of the sides, which represents the loss of one allele. Then it moves along
that side until it becomes absorbed in one the corners. The numbers in the
corners indicate the allele that has frequency 1 there.
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Theorem 8.1. Let E3 = {allele 3 is first to get lost}.

Px(E3) = h(x) = x1x2[(1− x1)−1 + (1− x2)−1] (8.1)

Proof. To check this, we note that if x1 = 0 or x2 = 0 then h = 0, while if
x3 = 0, x1 = 1− x2 and x2 = 1− x1 so

h(x) =
x1(1− x1)

1− x1
+
x2(1− x2)

1− x2
= 1

assuming that 0 < x1, x2 < 1. The function h is not defined at the corners
where x1 = 1 or x2 = 1 but this is not a problem since two alleles will not be
lost simultaneously.

To prove (8.1) now, it is enough to show that Lh = 0, since this implies
h(Xt) is a martingale, and if T2 is the first time there are only two alleles, it
follows that

h(x) = lim
t→∞

Exh(X(t ∧ T2)) = Px(E3)

because of the boundary conditions.
To check that Lh = 0 now, we note that

D1h = x2[(1− x1)−1 + (1− x2)−1] + x1x2(1− x1)−2

D11h = 2x2(1− x1)−2 + 2x1x2(1− x1)−3

D12h = (1− x1)−1 + (1− x2)−1 + x2(1− x2)−2 + x1(1− x1)−2

By symmetry, we can interchange the roles of x1 and x2 to conclude

D22h = 2x1(1− x2)−2 + 2x1x2(1− x2)−3

Using these equations, we have

2Lh = x1[2x2(1− x1)−1 + 2x1x2(1− x1)−2]
− 2x1x2[(1− x1)−1 + (1− x2)−1 + x2(1− x2)−2 + x1(1− x1)−2]
+ x2[2x1(1− x2)−1 + 2x1x2(1− x2)−2]

Numbering the terms on the right-hand side in the order they appear, we have
1 + 3 = 0, 7 + 4 = 0, 2 + 5 = 0, and 8 + 6 = 0, showing that Lh = 0.

Keeping with the case of 3 alleles, we have

Theorem 8.2. Let T1 be the time at which there is only one allele.

ExT1 = g1(x) = −2
∑

i

(1− xi) log(1− xi) (8.2)

where 0 log 0 = limh→0 h log h = 0.



8.1 K allele model 317

Proof. The first step is to note that g1(x) = 0 at the corners of the triangles
where some xi = 1 and the other coordinates are 0. To verify the answer it is
enough to show that Lg1 = −1. Writing

g1(x) = −2(1−x1) log(1−x1)−2(1−x2) log(1−x2)−2(x1 +x2) log(x1 +x2)

and differentiating we have

D1g1 = 2 log(1− x1) + 2− 2 log(x1 + x2)− 2

D11g1 = − 2
1− x1

− 2
x1 + x2

D12g1 = − 2
x1 + x2

Using symmetry to evaluate D22g1, we have

Lg1 =
1
2
x1(1− x1)

[
− 2

1− x1
− 2
x1 + x2

]
− x1x2 ·

−2
x1 + x2

+
1
2
x2(1− x2)

[
− 2

1− x2
− 2
x1 + x2

]
A little algebra converts this into

= −x1 − x2 −
1

x1 + x2
[x1 − x2

1 − 2x1x2 + x2 − x2
2]

= −x1 − x2 − 1− (x1 + x2)2

x1 + x2
= −1

which completes the proof.

Theorem 8.3. Let T2 be the first time at which there are only two alleles.

ExT1 = −2

[∑
i

xi log xi −
∑

i

(1− xi) log(1− xi)

]
(8.3)

Proof. To verify the boundary condition, we note that if x3 = 0 then the
quantity in brackets is

x1 log x1 + x2 log x2 − x2 log x2 − x1 log x1 = 0

By symmetry, we also have g1 = 0 when x1 = 0 or x2 = 0. To check
the differential equation, let g2(x) =

∑
i xi log xi. The proposed formula is

−2g2(x)− g1(x), where g1(x) is the function in (8.2). Thus, it suffices to show
that Lg2 = 1 since this will imply L(−2g2 − g1) = −2 + 1 = −1. Writing
x3 = 1− x1 − x2, we have

g2(x) = x1 log x1 + x2 log x2 + (1− x1 − x2) log(1− x1 − x2)

Differentiating gives
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D1g2 = log x1 + 1− log(1− x1 − x2)− 1

D11g2 =
1
x1

+
1

1− x1 − x2
D12g2 =

1
1− x1 − x2

Using symmetry to evaluate D22g1, we have

Lg2 =
1
2
(1− x1) +

1
2
(1− x2)

+
1

1− x1 − x2

[
1
2
x1(1− x1)− x1x2 +

1
2
x2(1− x2)

]
Two times the term in square brackets is x1 + x2 − x2

1 − 2x1x2 − x2
2, so we

have

Lg2 =
1
2

[
(1− x1) + (1− x2) +

(x1 + x2)(1− x1 − x2)
(1− x1 − x2)

]
= 1

which completes the proof.

Littler (1975) found in the K allele case that if Ti is the first time there
are only i alleles

ETi = −2
i∑

k=1

(−1)i−k

(
K − 1− k

i− k

)∑1−
k∑

j=1

pij

 log

1−
k∑

j=1

pij


where the inner sum is over all possible values 1 ≤ i1 < i2 . . . < ik ≤ K.
This reduces to (8.2) when i = 1 and to (8.3) when i = 2 showing that these
formulas are not restricted to the case K = 3.

8.1.2 Stationary distributions

To derive the stationary distribution for the K allele diffusion, we begin by
finding the stationary distribution for the Moran model.

Theorem 8.4. Suppose that µij = µj does not depend on i and let βj =
Nµj > 0. Then the stationary distribution is

π(n) = c
∏
j

nj∏
k=1

(
1− sj +

2βj − (1− sj)
k

)
(8.4)

The assumption that µij = µj does not depend on i is called parent indepen-
dent mutation. This assumption excludes the interesting case of two loci with
two alleles, because in that case if we let 0 = ab, 1 = aB, 2 = Ab, and 3 = AB
then mutations from 0 → 3 of 1 → 2 are not possible.

To see why this assumption is useful, we extend the reasoning in Section
1.3 to conclude that if we are following a sample backwards in time, then
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when there are k lineages coalescence occurs at rate k(k − 1)/2, and lineages
will be killed at rate k

∑
j µj because if a mutation is encountered, we know

the genetic state of that individual and all of its descendants in the sample.
Of course, for this recipe to work the mutation rate must be independent of
the current state of the individual.

Proof. By definition, the stationary distribution will be reversible if and only
if for all n, and i 6= j

π(n)q(n, n+ ei − ej) = π(n+ ei − ej)q(n+ ei − ej , n)

Filling in the rates, this means

π(n)nj

( ni

2N
(1− si) + µi

)
= π(n+ ei − ej)(ni + 1)

(
nj − 1
2N

(1− sj) + µj

)
Multiplying on both sides by 2N/(nj(ni + 1)), this becomes

π(n)
ni(1− si) + 2Nµi

ni + 1

= π(n+ ei − ej)
(nj − 1)(1− sj) + 2Nµj

nj

For our choice of π this is true because both sides are = π(n+ ei).

To find the stationary distribution for the limiting diffusion, we will now
take the limit as N → ∞ in (8.4), assuming Nsj → γj . This assumption
implies sj → 0, so we can drop that term from the numerator.

π(n) ≈ c
∏
j

nj∏
k=1

(
1− sj +

2βj − 1
k

)
≈ c

∏
j

exp(−sjnj + (2βj − 1) log nj)

Changing variables xj = nj/2N , and altering the constant the above is

C
∏
j

x
2βj−1
j exp(−2γjxj) (8.5)

If K = 2 and γ1 = 0 this reduces to the formula for the additive selection case
given in Section 7.5.

Having found a stationary distribution by taking the limit of the Moran
model, we will now verify that it works for the diffusion. The details are
somewhat involved and the proof relies on several last minute algebraic ma-
nipulations, so before we embark on this task, we note that it has to work.
The stationary distribution for the Moran model has πNQNf = 0 for all fand
as N → ∞, πN → π and NQN → L. Thus, if nothing bad happens, we will
have

∫
πLf = 0 for all f .
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Theorem 8.5. Suppose that in the K allele Wright-Fisher diffusion βij = βj

does not depend on i. Then the stationary distribution is given by (8.5).

Proof. As in one dimension, the stationary distribution satisfies L∗π = 0. The
computation of L∗π will involve a lot of terms so we begin with a special case.

Proof with no selection. Motivated by knowing that the stationary distribution
is reversible, we isolate the terms that come from transitions n→ n+ ei − ej

and write the Moran model generator as

2Lf =
∑
i 6=j

[xixj(Dii −Dij) + (−2βjxi + 2βixj + (2γj − 2γi)xixj)Di] f

2L∗π =
∑
i 6=j

Dii(xixjπ)−Dij(xixjπ)

−Di([(−2βjxi + 2βixj) + (2γj − 2γi)xixj ]π)

Writing Lij and L∗ij for the i, j term in the sum, reversibility suggests that
we will find (L∗ij + L∗ji)π = 0. In the special case, we will have L∗ijπ = 0.

When the γj = 0, (8.5) becomes

π = x2β1−1
1 · · ·x2βK−1−1

K−1 z2βK−1 where z = 1−
K−1∑
i=1

xi (8.6)

Each xi appears twice, once by itself and once in z. Writing 1 and 2 for the
two locations, when we differentiate twice with respect to i we can do 11,
22, or 12 (and 21). To try to keep the formulas simple, we will keep π in the
answer. For example, xixjπ has x2βi

i and x2βj

j , so in term 11 below, the power
of xi is reduced twice and we end up with a constant times x−1

i xjπ.

Dii(xixjπ) = 2βi(2βi − 1)x−1
i xjπ

+ (2βK − 1)(2βK − 2)xixjz
−2π(−1)2

+ 2 · 2βi(2βK − 1)xjz
−1π(−1)

= y1 + y2 + 2y3

Using a similar approach to the mixed derivative term

−Dij(xixjπ) = −2βi(2βj)π − (2βK − 1)(2βK − 2)xixjz
−2π(−1)2

− 2βi(2βK − 1)xjz
−1π(−1)− 2βj(2βK − 1)xiz

−1π(−1)
= y4 + y5 + y6 + y7

while the first order term produces

−Di[(−2βjxi + 2βixj)π] = 2βj(2βi)π + 2βj(2βK − 1)xiz
−1π(−1)

−2βi(2βi − 1)x−1
i xjπ − 2βi(2βK − 1)xjz

−1π(−1)
= y8 + y9 + y10 + y11
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To get the result now we note that y1 = −y10, y2 = −y5, y3 = −y6 = −y11,
y4 = −y8, and y7 = −y9.

Proof with selection. To suppress terms that arise from differentiating the
xK in the exponential, we can subtract γK from all of the γj , which does not
change the generator or the proposed stationary measure (because

∑
i xi = 1)

and suppose without loss of generality that γK = 0. Let

ρ = x2β1−1
1 · · ·x2βK−1−1

K−1 z2βK−1 and h = exp(−
∑

j

2γjxj)

Computing the second order term as before

Dii(xixjρh) = Dii(xixjρ) · h+ xixjρ(2γi)2h+ 2Di(xixjρ)(−2γih)

Using a similar approach to the mixed derivative term

−Dij(xixjπh) = −Dij(xixjρ) · h− xixjρ(2γi)(2γj)h
−Di(xixjρ)(−2γjh)−Dj(xixjρ)(−2γih)

while the first order term produces

−Di[(−2βjxi + 2βixj)ρ] · h+ (2βjxi − 2βixj)ρ(−2γih)
−(2γj − 2γi)Di(xixjρ)h− (2γj − 2γi)xixjρ(−2γih)

By the result for no selection∑
i 6=j

Dii(xixjρ)−Dij(xixjρ)−Di[(−2βjxi + 2βixj)ρ] = 0

In what remains of our three formulas, the terms that contain xixjρh are

xixjρh[(2γi)2 − 2γi(2γj) + (2γj − 2γi)2γi] = 0

At this point, there are (3 + 4 + 4)− (3 + 3) = 5 terms left

2Di(xixjρ)(−2γih)
−Di(xixjρ)(−2γjh)−Dj(xixjρ)(−2γih)
+(2βjxi − 2βixj)ρ(−2γih)− (2γj − 2γi)Di(xixjρ)h

To make the fourth term match the others, we write

(2βjxi − 2βixj)ρ(−2γih) = [Dj(xixjρ) +Di(xixjρ)](−2γih)

The sum over i and j is not affected if we replace Dj(xixjρ)(−2γih) by
Di(xixjρ)(−2γjh). If we do this then the terms with Di(xixjρ) are∑

i 6=j

Di(xixjρ)[−2(2γi) + 2(2γj)− 2(2γj − 2γi)] = 0

which completes the proof.
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8.2 Recombination

Linkage disequilibrium can be built up between two segregating loci in a pop-
ulation due to the action of selection, but is also produced due to random
frequency drift in a finite population. In this section, we will return to a topic
considered in Section 3.4: How much linkage disequilibrium is produced by
random drift? To answer this question, we consider two loci, each with two al-
leles that are separated by recombination with a probability r per generation.
We will use a Wright-Fisher model which assumes that the diploid individuals
in the population are a random union of gametes, and the following notation:

genotype AB Ab aB ab
frequency Z1(t) Z2(t) Z3(t) Z4(t)

Let D(t) = Z4(t)Z1(t) − Z2(t)Z3(t). The D is for linkage disequilibrium.
To see the reason for the name note that

pAB − pApB = z1 − (z1 + z2)(z1 + z3)
= z1(1− z1 − z2 − z3)− z2z3 = z1z4 − z2z3

The first step is to study the evolution of the means.

Lemma 8.1. If we write zi = Zi(t) and z′i = EZi(t+ 1), then

z′i = zi + ηir(z2z3 − z1z4)

where η1 = η4 = 1 and η2 = η3 = −1.

Proof. Considering the ways we can end up with AB gives

z′1 = (1− r)z1 + rz2
1 +

r

2
(2z1z2 + 2z1z3 + 2z2z3)

The first term says that if there is no recombination then the ancestor must
be AB. If both ancestors are AB and a recombination occurs then an AB
is always produced. When i 6= j the probability the ancestors are i and j is
2zizj , but in the three cases indicated, when there is a recombination we only
end up with a new AB half of the time. AB offspring are impossible for the
other combinations. The identity for i = 1 now follows from the fact that
z1 + z2 + z3 = 1− z4, so combining terms on the right-hand side

z′1 = (1− r)z1 + r(z1(1− z4) + z2z3)
= zi + ηir(z2z3 − z1z4)

The other three equations are similar.

In the previous result and throughout this section, capital letters are ran-
dom variables, while lowercase letters are possible values or related functions.



8.2 Recombination 323

Theorem 8.6. If we run time at rate 2N and 2Nr → R then (Z1, Z2, Z3, Z4)
converges to a diffusion with drift vector −ηiRD and covariance matrix

z1(1− z1) −z1z2 −z1z3 −z1z4
−z1z2 z2(1− z2) −z2z3 −z2z4
−z1z3 −z2z3 z3(1− z3) −z3z4
−z1z4 −z2z4 −z3z4 z4(1− z4)

Proof. The drift follows from Lemma 8.1. To compute the covariance note that
the result of the 2N draws in the Wright-Fisher model is multinomial with
probabilities z′i. If Ni are the number of type i drawn then var (Ni/2N) =
z′i(1− z′i)/2N and cov (Ni/2N,Nj/2N) = −z′iz′j/2N . Since zi− z′i = O(1/N)
the desired result follows.

8.2.1 A clever change of variables

Following Ohta and Kimura (1969a) we will now change variables to

X(t) = Z1(t) + Z2(t)
Y (t) = Z1(t) + Z3(t)
D(t) = Z1(t)Z4(t)− Z2(t)Z3(t)

To do this we need a multivariate extension of the change of variables formula
in Theorem 7.1.

Theorem 8.7. Change of variables. Suppose X(t) = (X1(t), . . . , Xm(t)) is
an m-dimensional diffusion. If f : Rm → R has continuous partial derivatives
of order ≤ 2, then the infinitesimal mean of f(Xt) is∑

i

Dif(x)bi(x) +
1
2

∑
i,j

Dijf(x)aij(x) (8.7)

If g is another such function then the infinitesimal covariance of f(Xt) and
g(Xt) is ∑

i,j

Dif(x)Djg(x)aij(x) (8.8)

Proof. Let L be the infinitesimal generator of X(t). If h : R → R is smooth

Lh(f(x)) =
∑

i

bi(x)h′(f(x))Dif(x)

+
1
2

∑
i,j

ai,j(x)[h′′(f(x))Dif(x)Djf(x) + h′(f(x))Dijf(x)]

Rearranging the right-hand side becomes
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= h′(f(x))

∑
i

bi(x)Dif(x) +
1
2

∑
ij

aij(x)Dijf(x)


+

1
2
h′′(f(x))

∑
i,j

ai,j(x)Dif(x)Djf(x)

This identifies the infinitesimal mean and variance of f(Xt). To get the co-
variance of Yt = f(Xt) and Zt = g(Xt) we use

2 cov (Yt, Zt) = var (Yt + Zt)− var (Yt)− var (Zt)

and apply the previous result to f + g, f and g.

Theorem 8.8. If we run time at rate 2N and 2Nr → R then (X,Y,D) con-
verges to a diffusion with drift vector (0, 0,−(1+R)D) and covariance matrix

x(1− x) D D(1− 2x)
D y(1− y) D(1− 2y)

D(1− 2x) D(1− 2y) F

where F = xy(1− x)(1− y) +D(1− 2x)(1− 2y)−D2.

This is 2 times the diffusion defined in formula (2) of Ohta and Kimura (1969),
since they run time at rate N .

Proof. Taking f(z1, z2, z3, z4) = z1 + z2 and using (8.7) with Theorem 8.6 we
see that the infinitesimal mean of X(t) is b1(Z(t)) + b2(Z(t)) = 0. Similarly
the infinitesimal mean of Y (t) is 0.

When f(z1, z2, z3, z4) = z1z4 − z2z3,

D1f = z4, D2f = −z3, D3f = −z2, D4f = z1,

D1,4f = D4,1f = 1, D2,3f = D3,2f = −1

and the other second order partials are 0. So using (8.7) with Theorem 8.6
the infinitesimal mean of D(t) is

z4b1(Z(t))− z3b2(Z(t))− z2b3(Z(t)) + z1b4(Z(t))

+
1
2
· 2(a1,4(Z(t))− a2,3(Z(t)))

= −RD(z4 + z3 + z2 + z1) + (−z1z4 + z2z3) = −(1 +R)D

Using (8.8) with f = g = z1 + z2 we see that the infinitesimal variance of
X(t) is

z1(1− z1)− 2z1z2 + z2(1− z2) = (z1 + z2)(1− z1 − z2) = x(1− x)

Similarly the infinitesimal variance of Y (t) is y(1 − y) Using (8.8) with f =
z1 + z2 and g = z1 + z3 we see that the infinitesimal covariance of X(t) and
Y (t) is
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z1(1− z1)− z1z2 − z1z3 − z2z3 = z1z4 − z2z3 = D

Using (8.8) with f = z1 + z2 and g = z1z4− z2z3 we see that the infinitesimal
covariance of X(t) and D(t) is

z4z1(1− z1)− z3(−z1z2)− z2(−z1z3) + z1(−z1z4)
+ z4(−z1z2)− z3z2(1− z2)− z2(−z2z3) + z1(−z2z4)

= z4z1(1− 2z1) + 2z1z2z3 − z3z2(1− 2z2)− 2z1z2z4
= z4z1(1− 2z1 − 2z2)− z3z2(1− 2z1 − 2z2) = D(1− 2x)

Similarly the infinitesimal covariance of Y (t) and D(t) is D(1− 2y).
The last, and most complicated step, is to compute the infinitesimal vari-

ance of D(t), and show that it is equal to F . Using (8.8) with f = g =
z1z4 − z2z3 which has partial derivatives ∇f = (z4,−z3,−z2, z1), we see that
the variance σ2

D = ∇f · a∇f . To simplify the computation, we write the co-
variance matrix as

z1(z2 + z3 + z4) −z1z2 −z1z3 −z1z4
−z1z2 z2(z1 + z3 + z4) −z2z3 −z2z4
−z1z3 −z2z3 z3(z1 + z2 + z4) −z3z4
−z1z4 −z2z4 −z3z4 z4(z1 + z2 + z3)

We do this so that all of the 24 terms in σ2
D will be of order 4 in the zi. This

is useful, because it will turn out that all of the terms in F are of order 4.
Sorting the 24 terms in σ2

D according to the powers of z:

powers number
(3,1) z3

i z5−i 4
(2,2) −2z2

1z
2
4 − 2z2

2z
2
3 4

(2,1,1) −z2
i z5−izj 8

(1,1,1,1) 8z1z2z3z4 8

Here, and in what follows, all the indices shown are supposed to be different,
and we find the number of the different types by considering how they can be
generated. For example, the (3,1)’s and (2,1,1)’s come from the diagonal aii.
The (2,2)’s come from the anti-diagonal ai,5−i. The (1,1,1,1)’s come from the
other eight entries in aij .

In computing F , it is convenient to introduce now some notation for its
three parts that will be the subject of the next theorem. Writing u = xy(1−
x)(1− y) = (z1 + z2)(z1 + z3)(z3 + z4)(z2 + z4), we generate 16 terms:

powers number
(2,2) z2

1z
2
4 + z2

2z
2
3 2

(2,1,1) z2
i zjzk 12

(1,1,1,1) 2z1z2z3z4 2

Writing v = D(1−2x)(1−2y) = (z1z4−z2z3)(z3+z4−z1−z2)(z1+z3−z2−z4),
we generate 32 terms:
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powers number
(3,1) z3

i z5−i 4
(2,2) −2z2

1z
2
4 − 2z2

2z
2
3 4

(2,1,1) −2z2
i z5−izj − ziz5−iz

2
j 16 + 4

(1,1,1,1) 4z1z2z3z4 4

Finally −w = −D2 = −(z1z4 − z2z3)2 generates only four terms:

powers number
(2,2) −z2

1z
2
4 − z2

2z
2
3 2

(1,1,1,1) 2z1z2z3z4 2

To prove that σ2
D = F , we only have to compare the four tables. The only

subtle part of this to note that the 20 (2,1,1)’s in v cancel with the 12 in u to
leave the 8 in σ2

D.

8.2.2 Time-dependent behavior

The two new functions that made their appearance in the definition of F in
Theorem 8.8 turn out to be special. The miracle here is that Lu, Lv, and Lw
are linear combinations of u, v, and w.

Theorem 8.9. If we let u = xy(1 − x)(1 − y), v = D(1 − 2x)(1 − 2y) and
w = D2 then

Lu = −2u+ v

Lv = −(5 +R)v + 4w
Lw = u+ v − (3 + 2R)w

Again this agrees with (9) in Ohta and Kimura (1969a) once one recalls the
factor of 2 from Theorem 8.8, and another factor of 2 that comes from the
fact that their R = Nr. Thus, to get from our equation to theirs we divide by
2 and then change R→ 2R.

Proof. Given the definition of the infinitesimal generator in Theorem 8.8 it
suffices to compute the relevant partial derivatives. u = (x− x2)(y − y2) has

Dxu = (1− 2x)(y − y2) Dyu = (1− 2y)(x− x2)
Dxxu = −2y(1− y) Dxyu = (1− 2x)(1− 2y) Dyyu = −2x(1− x)

so we have

Lu =
1
2
[−2y(1− y) · x(1− x) + 2(1− 2x)(1− 2y) ·D − 2x(1− x) · y(1− y)]

= −2u+ v

The function v = D(1− 2x)(1− 2y) has
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Dxv = −2(1− 2y)D Dyv = −2(1− 2x)D DDv = (1− 2x)(1− 2y)
Dxxv = Dyyv = DDDv = 0 Dxyv = 4D
DxDv = −2(1− 2y) DyD = −2(1− 2x)

so we have

Lv = −(1 +R)D · (1− 2x)(1− 2y) + 4D ·D − 4D(1− 2x)(1− 2y)
= −(5 +R)v + 4w

The function w = D2 has DDw = 2D and DDDw = 2, so using F = u+v−w

Lw = −2(1 +R)w + (u+ v − w) = u+ v − (3 + 2R)

which completes the proof.

Lemma 8.9 shows that the expected values of u, v, w satisfy a 3 dimensional
linear system of ODE’s. If we consider linear combinations au+bv+cw where
a, b, c is a left eigenvalue of the matrix

−2 1 0
0 −(5 +R) 4
1 1 −(3 + 2R)

(8.9)

with eigenvalue λi then E(au + bv + cw)(t) = eλitE(au + bv + cw)(0). Once
the eigenvectors associated with the eigenvalues are found one can express
u, v, and w as linear combinations of them and find exact formulas for their
expected values. The results are somewhat messy, so we refer the interested
reader to Ohta and Kimura (1969a) for details. Without going through this
work, we can see that if 0 > λ1 > λ2 > λ3 then all three quantities decay
asymptotically like eλ1t.

The eigenvalues λi of the matrix satisfy a cubic equation

det

−(2 + λ) 1 0
0 −(5R+ λ) 4
1 1 −(3 + 2R+ λ)

 = 0

Calculating the determinant by expanding it in the first row, and then multi-
plying the equation by −1 we have

(2 + λ)(5R+ λ)(3 + 2R+ λ)− (2 + λ) · 4− 4 = 0

which after some algebra becomes

λ3 + λ2(10 + 3R) + λ(27 + 19R+ 2R2) + (18 + 26R+ 4R2) = 0

The first step in solving a cubic equation λ3 + bλ2 + cλ + d = 0 is to let
λ = x− (b/3), which eliminates the x2 term and gives
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x3 + x

(
c− b2

3

)
+
(
d− cb

3
+

2b3

27

)
In our case, this is

x3 − x

(
19 + 3R+ 3R2

3

)
+
(

56 + 63R− 45R2

27

)
(8.10)

To solve the equation, we use the following trick

Theorem 8.10. The solutions of y3−(a/12)y+b/108 = 0 are given by setting
k = 0, 1, 2 in

yk =
a1/2

3
cos
(
θ

3
+ k

2π
3

)
where θ = cos−1(−b/a3/2)

Proof. Using the trig identities

sin(2θ) = 2 sin θ cos θ
cos(α+ β) = cosα cosβ − sinα sinβ

cos2 θ = 1− sin2 θ

we have

cos 3θ = cos(2θ) cos θ − sin(2θ) sin θ
= cos3 θ − sin2 θ cos θ − 2 sin2 θ cos θ
= 4 cos3 θ − 3 cos θ

From this, it follows that

y3
k −

a

12
yk =

a3/2

27
cos3

(
θ

3
+ k

2π
3

)
− a3/2

36
cos
(
θ

3
+ k

2π
3

)
=
a3/2

108
cos(θ) = −b/108

when θ = cos−1(−b/a3/2).

Using this on (8.10), we find the solutions given in formula (14) of Ohta
and Kimura (1969a), modulo the usual conversion that to get their formula
from ours we have to let R → 2R and the eigenvalues will be twice as large.
The formulas are ugly, but they can be easily evaluated numerically. In Figure
8.2, we graph −λi, where the eigenvalues in increasing order of magnitude are:
λ1 = y0 − (10 + 3R)/2, λ2 = y2 − (10 + 3R)/2, and λ3 = y1 − (10 + 3R)/2.

When R = 0 the cubic equation is

λ3 + 10λ2 + 27λ+ 18 = (λ+ 1)(λ+ 3)(λ+ 6)

so the eigenvalues are −1, −3, and −6. At first it may be surprising that
disequilibrium decays when R = 0, but recall that D = z4z1 − z2z3, so D
will become 0 when one of the alleles becomes fixed in the population. It is
interesting to note that as R→∞, −λ1 → 2 while −λ2 and −λ3 grow linearly.
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Fig. 8.2. −1 times the eigenvalues of (8.9).

8.2.3 Equilibrium when there is mutation

If we introduce mutation A→ a with probability u1, a→ A with probability
v1, B → b with probability u2, and b→ B with probability v2 then the mean
frequencies x and y of the A and B alleles change according to

x′ − x = −u1x+ v1(1− x) = v1 − (u1 + v1)x
y′ − y = −u2y + v2(1− y) = v2 − (u2 + v2)y

Ignoring the possibility of two changes at once:

p′AB − pAB = −(u1 + u2)pAB + v1paB + v2pAb

p′Ap
′
B − pApB = −(u1 + u2)pApB + v1papB + v2pApb

so the change in D due to mutation is

D′ −D = −(u1 + u2 + v1 + v2)D

Let µi = 2Nui, νi = 2Nvi, and κ = µ1 + µ2 + ν1 + ν2. If we incorporate
mutation, then the covariance matrix of the (X,Y, Z) diffusion remains the
same:

x(1− x) D D(1− 2x)
D y(1− y) D(1− 2y)

D(1− 2x) D(1− 2y) F

but the drift vector is now

ν1 − (µ1 + ν1)x, ν2 − (µ2 + ν2)y, −(1 +R+ κ)D

Using 0 = (d/dt)Ef(X,Y,D) = E(Lf) for different choices of f gives infor-
mation about the equilibirum state of the (X,Y,D) diffusion with mutation.
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Theorem 8.11. In equilibrium, ED = 0, E(XD) = 0, EX = ν1/(µ1 + ν1),

E(XY ) =
ν1

µ1 + ν1
· ν2
µ2 + ν2

E(X(1−X)) =
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1

E(X(1−X)Y ) =
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1
· ν2
µ2 + ν2

In Section 3.4, we showed ED = 0. The second conclusion shows that the
allele freqeuncies are uncorrelated with D. The third and fifth formulas were
obtained in Section 7.5, with µ1 = β1 and ν1 = β2. The fourth formula
follows from the first, third, and ED = E(XY ) − EX · EY . We can obtain
other formulas from these using two rules: (i) to replace Y by 1− Y subtract
two formulas:

E(X(1− Y )) = EX − EXY =
ν1

µ1 + ν1
· µ2

µ2 + ν2

E(X(1−X)(1− Y )) =
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1
· µ2

µ2 + ν2

and (ii) to replace X by Y exchange the roles of the two subscripts,

E(Y (1− Y )X) =
ν2

µ2 + ν2
· 2µ2

2µ2 + 2ν2 + 2
· ν1
µ1 + ν1

E(Y (1− Y )(1−X)) =
ν2

µ2 + ν2
· 2µ2

2µ2 + 2ν2 + 1
· µ1

µ1 + ν1

Proof. It follows from the infinitesimal generator, that

LD = −(1 +R+ κ)D
L(xD) = D[ν1 − (µ1 + ν1)x]− x(1 +R+ κ)D +D(1− 2x)

In equilibrium, the two right-hand sides have 0 expected value, so we conclude
from the first that ED = 0, and then from the second that E(XD) = 0.

Lx = [ν1 − (µ1 + ν1)x] implies EX =
ν1

µ1 + ν1
.

Continuing with the pattern of using Lf to compute Ef ,

L(xy) = y[ν1 − (µ1 + ν1)x] + x[ν2 − (µ2 + ν2)x] +D

so using ED = 0 we have

(µ1 + ν1 + µ2 + µ2)EXY = ν1
ν2

µ2 + ν2
+ ν2

ν1
µ1 + ν1

=
ν1

µ1 + ν1

ν2
µ2 + ν2

(µ1 + ν1 + µ2 + µ2)
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Using the identity ν1 − (µ1 + ν1)x = −µ1 + (µ1 + ν1)(1− x) in the third line

L(x(1− x)) = [(1− x)− x](ν1 − (µ1 + ν1)x) +
1
2
(−2)x(1− x)

= −(µ1 + ν1)x(1− x) + ν1(1− x)
−(µ1 + ν1)x(1− x) + µ1x− x(1− x)

= −(2µ1 + 2ν1 + 1)x(1− x) + ν1(1− x) + µ1x

so we have

EX(1−X) =
(
ν1

µ1

µ1 + ν1
+ µ1

ν1
µ1 + ν1

)
· 1
2µ1 + 2ν1 + 1

=
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1

Using the formula for the generator, we have

L(x(1− x)y) = [(1− x)y − xy](ν1 − (µ1 + ν1)x)
+x(1− x)(ν2 − (µ2 + ν2)y)

+
1
2
(−2y)x(1− x) + (1− 2x)D

Using the identity from the previous calculation on the −xy term in the first
line, the right-hand side is

= −(µ1 + ν1)x(1− x)y + ν1(1− x)y − (µ1 + ν1)x(1− x)y + µ1xy

− (µ2 + ν2)x(1− x)y + ν2x(1− x)− x(1− x)y + (1− 2x)D

Taking expected value and using E(1− 2X)D = 0, we have

(2µ1 + 2ν1 + µ2 + ν2 + 1)EX(1−X)Y

= ν1 ·
µ1

µ1 + ν1
· ν2
µ2 + ν2

+ µ1 ·
ν1

µ1 + ν1
· ν2
µ2 + ν2

+ν2 ·
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1

= µ1 ·
ν1

µ1 + ν1
· ν2

(
2

µ2 + ν2
+

2
2µ1 + 2ν1 + 1

)
Combining the two fractions over a common denominator, we have

EX(1−X)Y =
ν1

µ1 + ν1
· ν2
µ2 + ν2

· 2µ1

2µ1 + 2ν1 + 1

which completes the proof.

Theorem 8.12. If we let U = XY (1−X)(1− Y ), V = D(1− 2X)(1− 2Y )
and W = D2 then in equilibrium the (X,Y,D) diffusion with mutation has
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(2 + 2κ)EU − EV = α

(5 +R+ 2κ)EV − 4EW = 0
EU + EV − (3 + 2R+ 2κ)EW = 0

where κ = µ1 + ν1 + µ2 + ν2 and

α = E[µ2X(1−X)Y + ν2X(1−X)(1− Y )
+ µ1XY (1− Y ) + ν1(1−X)Y (1− Y )]

After the factors of 2 and the differences in notation are taken into account,
this is (16) of Ohta and Kimura (1969b), but with a more symmetric definition
of α.

Proof. In equilibirium ELu = ELv = ELw = 0. Given the formulas for
derivatives in the proof of Theorem 8.9, it is enough to find the terms that
result from the new drifts.

Lu = −2u+ v + (1− 2x)y(1− y)[ν1 − (µ1 + ν1)x]
+ (1− 2y)x(1− x)[ν2 − (µ2 + ν2)y]

Using 1− 2x = 2(1− x)− 1, we can rewrite (1− 2x)[ν1 − (µ1 + ν1)x] as

= −2(µ1 + ν1)x(1− x) + 2ν1(1− x)− ν1 + (µ1 + ν1)x
= −2(µ1 + ν1)x(1− x) + ν1(1− x) + µ1x

so multiplying by y(1− y), we see that the first extra term is

−2(µ1 + ν1)u+ ν1(1− x)y(1− y) + µ1xy(1− y)

By symmetry, the second extra term is

−2(µ2 + ν2)u+ ν2(1− y)x(1− x) + µ2yx(1− x)

so recalling the definition of α, gives the first equation:

Lv = −(5 +R)v + 4w − 2(1− 2y)D[ν1 − (µ1 + ν1)x]
−2(1− 2x)D[ν2 − (µ2 + ν2)y]− (1− 2x)(1− 2y)κD

The final term is −κv. Writing

ν1 − (µ1 + ν1)x =
1
2
[(µ1 + ν1)(1− 2x) + (ν1 − µ1)]

we see that the first extra term is −(µ1 + ν1)v− (ν1−µ1)(1− 2y)D. Theorem
8.11 implies that E(1− 2Y )D = 0. Performing a similar manipulation on the
second extra term gives the second equation.

The last equation is the simplest:

Lw = u+ v − (3 + 2R)w + 2D · (−κD) = u+ v − (3 + 2R+ 2κ)w
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Solving the three equations in three unknowns in Theorem 8.12, we have
(17) in Ohta and Kimura (1969b), a result that was found earlier by Hill and
Robertson (1966).

Theorem 8.13. In equilibrium, the (X,Y,D) diffusion with mutation has

EU =
α

2 + 2κ

(
1 +

1
h

)
EV =

α

h

EW =
5 +R+ 2κ

4
· α
h

where α and κ are given in Theorem 8.12 and

h = (1 + κ)(3 + 2R+ 2κ)(2.5 + 0.5R+ κ)− (2 + 2κ)− 1.

From this it follows that

σ2
d ≡

EW

EU
=

5 +R+ 2κ
(3 + 2R+ 2κ)(2.5 + 0.5R+ κ)− 4

If κ is 2N times the mutation rate at a nucleotide, while R is 2N times
the recombination rate between two nucleotides separated by hundreds or
thousands of nucleotides, then κ << R and the last result simplifies to

σ2
d =

5 +R

11 + 13R+ 2R2

Replacing R by 2R gives the formula on page 577 of Ohta and Kimura (1971).
Replacing R by ρ/2 gives Theorem 3.9.

Proof. To solve the equations in Theorem 8.12, we note that the first two
equations imply

EU =
α+ EV

2 + 2κ
EW =

5 +R+ 2κ
4

EV

Using these in the third equation, we have

α+ EV

2 + 2κ
+ EV − (3 + 2R+ 2κ)

5 +R+ 2κ
4

EV = 0

Rearranging gives

α

1 + κ
=
(

(3 + 2R+ 2κ)
5 +R+ 2κ

2
− 2− 1

1 + κ

)
EV = 0

and solving gives EV = α/h. Substitution into the first two equations gives
EU and EW , and shows

EW

EU
=

(5 +R+ 2κ)/4
(h+ 1)/(2 + 2κ)

which after a little algebra becomes the formula given.
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The quantity α cancelled out in the computation of σ2
d. For completeness,

we note that the formulas in Theorem 8.11 imply that

α = µ2 ·
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1
· ν2
µ2 + ν2

+ ν2 ·
ν1

µ1 + ν1
· 2µ1

2µ1 + 2ν1 + 1
· µ2

µ2 + ν2

+ µ1 ·
ν2

µ2 + ν2
· 2µ2

2µ2 + 2ν2 + 2
· ν1
µ1 + ν1

+ ν1 ·
ν2

µ2 + ν2
· 2µ2

2µ2 + 2ν2 + 1
· µ1

µ1 + ν1

so collecting terms, we have (10) of Ohta and Kimura (1969b)

α = ν2 ·
ν1

µ1 + ν1
· ν2
µ2 + ν2

· 4µ1

2µ1 + 2ν1 + 1

+ ν1 ·
ν2

µ2 + ν2
· ν1
µ1 + ν1

· 4µ2

2µ2 + 2ν2 + 2

since our α = 2NA.

8.3 Hill-Robertson interference

Hill and Robertson (1966) were among the first to try to quantify the observa-
tion that linked advantageous mutations interfere with each other. That is, if
an advantageous allele B arises while a second one A is on its way to fixation,
then the fixation probability of B is reduced. Let sA and sB be the fitness
advantages of the A and B alleles, and assume that fitnesses are additive.
There are two possibilities for the mutant chromosome (i) aB in which case
the fixation probability is decreased, and (ii) AB in which case the fixation
probability is increased.

To analyze this situation, we will, at the beginning, assume that there is
no recombination between the two loci. This gives us a three allele model in
which allele 1 is the type of the mutant chromosome, allele 2 is Ab and allele
3 is ab. If we write σi, i = 1, 2, 3 as the rescaled fitness advantages of the three
alleles then the limiting diffusion process has generator:

L =
1
2
x1(1− x1)D11 − x1x2D12 +

1
2
x2(1− x2)D22

+ x1

∑
j

xj(σj − σ1)D1 + x2

∑
j

xj(σj − σ2)D2 (8.11)

Suppose sA = sB = s. We want to compute ha(x1, x2) and hA(x1, x2),
which are the probability of F1 = { 1’s become fixed } when the initial fre-
quencies of alleles 1 and 2 are x1 and x2, and the subscript gives the back-
ground on which the B allele arose. That is, allele 1 is aB in the first case
and AB in the second.
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Dropping the subscript from h because the next calculation applies to
either situation, we have

Theorem 8.14. h(x) = Px(F1) is the unique solution of Lh = 0 with bound-
ary conditions h(0, x2) = 0 and h(1, 0) = 1.

Proof. If we let Ft be the information known at time t then the Markov
property implies

P (F1|Ft) = h(X1(t), X2(t))

In words, given the behavior of the process up to time t the fixation proba-
bility only depends on the current allele frequencies. The left-hand side is a
martingale, so the right-hand side is also and we conclude Lh = 0.

In addition to this differential equation for h, we have the boundary con-
ditions h(0, x2) = 0 and h(1, 0) = 1, which come from the fact that the B
allele has been lost in the first case, and fixed in the second. This is enough to
determine the function, because if the process hits x2 = 0, then it remains on
this side until it hits (0, 0) or (1, 0). Likewise, if the process hits x1 + x2 = 1
it will continue on that side until it hits (0, 1) or (1, 0).

Case 1. Suppose B arises on the a background, so σ1 = σ2 = σ, σ3 = 0. In this
case, if we consider the competition of the two fitter types against the 3’s, we
can use results for one dimensional diffusions to conclude that the probability
the 3’s die out is

1− e−2σ(x1+x2)

1− e−2σ

Since the competition of 1’s and 2’s is a fair game, we guess that

Theorem 8.15. The fixation probability when B arises on the a background
is

ha(x) =
1− e−2σ(x1+x2)

1− e−2σ
· x1

x1 + x2
(8.12)

Proof. Clearly ha(0, x2) = 0 and ha(1, 0) = 1, so it suffices to show that
Lha = 0. The drift term in (8.11) is

σx1(1− x1 − x2)D1 + σx2(1− x1 − x2)D2 (8.13)

To make computations easier, write fi = Dif , fij = Dijf , etc., and note that

Di(fg) = fig + fgi

Dii(fg) = fiig + 2figi + fgii

D12(fg) = f12g + f1g2 + f2g1 + fg12

so we have

L(fg) = gLf + fLg

+ x1(1− x1)f1g1 − x1x2(f1g2 + f2g1) + x2(1− x2)f2g2
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To see this, note that the first two terms contain all the situations when only
one function in the product is differentiated. What remains are the second
order terms with each function differentiated once.

Letting f = 1− e−2σ(x1+x2) and g = x1/(x1 + x2) = 1− x2/(x1 + x2)

fi = 2σe−2σ(x1+x2) fij = −4σ2e−2σ(x1+x2)

g1 =
x2

(x1 + x2)2
g2 =

−x1

(x1 + x2)2

g11 =
−2x2

(x1 + x2)3
g22 =

2x1

(x1 + x2)3

g12 =
1

(x1 + x2)2
− 2x2

(x1 + x2)3
=

x1 − x2

(x1 + x2)3

From this we get in the special case with drift (8.13)

Lf

2σe−2σ(x1+x2)
=
[
1
2
x1(1− x1)− x1x2 +

1
2
x2(1− x2)

]
(−2σ)

+σ(x1 + x2)(1− x1 − x2)
= −σ[x1(1− x1 − x2) + x2(1− x1 − x2)]

+σ(x1 + x2)(1− x1 − x2) = 0

To show that Lg = 0, we begin by observing that

σx1(1− x1 − x2)g1 + σx2(1− x1 − x2)g2 = 0

The second order terms in Lg are

1
2
x1(1− x1)

−2x2

(x1 + x2)3
− x1x2

x1 − x2

(x1 + x2)3
+

1
2
x2(1− x2)

2x1

(x1 + x2)3

= x1x2
−(1− x1)− (x1 − x2) + (1− x2)

(x1 + x2)3
= 0

Since f1 = f2, the last term we have to evaluate is

x1(1− x1)g1 − x1x2(g2 + g1) + x2(1− x2)g2

=
x1(1− x1)x2 − x1x2(x2 − x1)− x2(1− x2)x1

(x1 + x2)2
= 0

which completes the proof of (8.12).

Case 2. Suppose B arises on the A background, so σ1 = 2σ, σ2 = σ, σ3 = 0.
It is easy to determine what hA(x) = P ( 1’s fix ) does on the boundary of the
triangle but there does not seem to be a formula for the values on the interior.
Here, we will combine the analytical result from Case 1 with an observation
based on simulations to get a very accurate approximate formula.
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hA(0, x2) = 0

10

1

Fig. 8.3. Boundary conditions for hA

Theorem 8.16. Let g(x2) = x2hA(1/2N,x2) + (1 − x2)ha(1/2N,x2) be the
probability B becomes fixed when the mutation occurs on a randomly chosen
chromosome

g(x2) ≈
1− e−2σx2

2σx2
(x2[η0(1− x2) + η1x2] + (1− x2)) (8.14)

where η0 =
2(1− e−2σ)
1− e−4σ

and η1 =
2σ

1− e−2σ

Proof. The starting point is to note that

hA(1/2N, 0) ≈ 4σ/2N
1− e−4σ

hA(1/2N, 1− 1/2N) ≈ 2σ/2N
1− e−2σ

From the solution in (8.12) for Case 1, we see that if x1 + x2 is small

ha(x) ≈ 2σx1

1− e−2σ

while if x1 + x2 = 1, ha(x) = x1. From the last two results

ha(1/2N, 0) ≈ 2σ/2N
1− e−2σ

ha(1/2N, 1− 1/2N) = 1/2N

Thus, if we let HA(x2) = hA(1/2N,x2) and Ha(x2) = ha(1/2N,x2)

η0 ≡ lim
x2→0

HA(x2)
Ha(x2)

=
2(1− e−2σ)
1− e−4σ

η1 ≡ lim
x2→1

HA(x2)
Ha(x2)

=
2σ

1− e−2σ

A remarkable feature of the graphs in Figure 2 in McVean and Charles-
worth (2000) is that HA(x2)/Ha(x2) is almost linear. Combining this with our
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exact formula for Ha(x2) we can get an approximate formula for HA(x2) and
for the ratio of the success probability of a B mutant inserted on a random
chromosome to its success in the absence of the A mutation:

x2HA(x2) + (1− x2)Ha(x2)
Ha(0)

=
Ha(x2)
Ha(0)

(
x2
HA(x2)
Ha(x2)

+ (1− x2)
)

The approximate linearity implies HA(x2)/Ha(x2) ≈ η0(1 − x2) + η1x2. For
the first term we note

Ha(x2)
Ha(0)

=
ha(1/2N,x2)
ha(1/2N, 0)

=
1− e−2σ(x2+1/N)

1− e−2σ/N
· 1/N
1/N + x

Since (1/N)/(1− e−2σ/N ) → 2σ as N →∞, a little algebra gives the approx-
imation in (8.14).

The next figure shows the approximation when Ns = 1, 2, 4. The result is
very close to the simulated data given in Figure 1 of McVean and Charlesworth
(2000).
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Fig. 8.4. Plot of the approximation (8.14) for Ns = 1, 2, 4.

Results for strong selection

Barton (1995) considered the situation in which the rescaled selection co-
efficients 2NsA and 2NsB are large. In this case, we can suppose that the
frequency of the A locus is given by the solution to the logistic differential
equation:

u(t) =
1

1 + exp(−sAt)

Here time has been shifted so that u(0) = 1/2. The selective advantage of the
B allele depends on whether it arises linked to the A allele or a allele:
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sA(t) = sB + [1− u(t)]sA

sa(t) = sB − u(t)sA

Theorem 8.17. Let pA(t) and pa(t) be the probability that a B allele arising
at time t fixes depending on the background on which it arises.

−dpA

dt
= r(1− u(t))(pa(t)− pA(t)) + sA(t)pA(t)− pA(t)2

2

−dpa

dt
= ru(t))(pA(t)− pa(t)) + sa(t)pa(t)− pa(t)2

2
(8.15)

Proof. To get the same result as Barton has for Wright-Fisher dynamics, we
use a Moran model with 2N chromosomes, time run at rate N , and selection
coefficients multiplied by 2. If h is small, then we can ignore the probability
of more than one jump, and we will have

pA(t) = rh(1− u(t))(pa(t+ h)− pA(t+ h))

+
h

2
[2pA(t+ h)− pA(t+ h)2] + [1− (1− sA(t))h]pA(t, h) + o(h)

The first term comes from the B allele changing background due to recom-
bination. To explain the second and third, we note that when there is one B
allele, up jumps happen at rate 1/2 and down jumps at rate (1 − 2sA(t))/2
for a total rate 1− sA(t). A down jump means that fixation occurs with prob-
ability 0. After an up jump there are two copies and at least one will start a
successful branching process with probability 2pA(t+ h)− pA(t+ h)2 since

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2) = 2P (Ei)− P (Ei)2

Rearranging, we have

pA(t)− pA(t+ h)
h

= rh(1− u(t))(pa(t+ h)− pA(t+ h))

+ sA(t)pA(t+ h)− pA(t+ h)2

2

Letting h→ 0, we have the first equation. The second is similar.

To solve (8.15), it is convenient to change variables qc(t) = pc(t/sA)/sA

for c = A, a to get

−dqA
dt

=
r

sA
(1− u(t))(qa(t)− qA(t)) +

sA(t)
sA

qA(t)− qA(t)2

2

−dqa
dt

=
r

sA
u(t))(qA(t)− qa(t)) +

sa(t)
sA

qa(t)− qa(t)2

2

On this time scale u(t) = 1/(1+ e−t) and there are only two parameters r/sA

and sB/sA.
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To solve the equation, we need a boundary condition, which we can
theoretically take as qA(+∞) = 2sB/sA. That is, after the sweep is com-
plete, the B allele arises on a homogeneous background and has fixation
probability 2sB . To implement this numerically we will follow Barton and
set qA(+10) = 2sB/sA. The next figure shows results for v(t)/2sB where
v(t) = u(t)pA(t) + (1 − u(t))pa(t) is the probability of fixation of a mutant
that occurs on a randomly chosen individual.
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Fig. 8.5. Barton’s approximation for the scaled fixation probability v(t)/2sB plotted
versus the time of the mutation, for the indicated values of sB/sA.

The curve for sB/sA = 0.03 rises only slowly as we move to the left because
on this time scale the time for the sweep to be complete is O(sA/sB), so the
value will only return to 2sB if the sweep is complete before the A allele has
a significant frequency.
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Fig. 8.6. Quantities from the previous figure plotted versus the frequency of A’s.
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To compare with our previous result, we will plot (u(t), v(t)) in Figure 8.6
to show the reduction in the fixation probability as a function of the initial
frequency of A. As sB/sA decreases the region in which there is a change
shifts to the left, because otherwise B will not rise to a significant frequency
before the A sweep is over.

8.4 Gene duplication

Studies have shown that a surprisingly large number of duplicated genes are
present in all sequenced genomes, revealing that there is frequent evolution-
ary conservation of genes that arise through local events that generate tandem
duplications, larger-scale events that duplicate chromosomal regions or entire
chromosomes, or genome-wide events that result in complete genome dupli-
cation (polyploidization). Analyses of the human genome by Li et al. (2001)
have revealed that at least 15% of human genes are indeed duplicates, with
segmental duplications covering 5.2% of the genome, see Bailey et al. (2002).

Gene duplications have been traditionally considered to be a major evo-
lutionary source of new protein functions. The conventional view, pioneered
by Ohno (1970), holds that gene duplication produces two functionally re-
dundant copies, called paralogous genes, and thereby frees one of them from
selective constraints. To quote Kimura and Ohta (1974) “The crucial point
pertinent here is that the existence of two copies of the same gene allows one
of the copies to accumulate mutations and to eventually emerge as a new
gene, while another copy retains the old function required by the species for
survival through the transitional period.”

While this is an appealing idea, it is not supported by data. Hughes and
Hughes (1993) studied 17 pairs of duplicated genes in the tetraploid frog
Xenopus laevis and showed that both copies were subject to purifying selec-
tion. Lynch and Conrey (2000) examined duplicated genes in humans, mice,
Drosophila, yeast, C. elegans, and Arabidopsis and concluded that the vast
majority of gene pairs with a synonymous site divergence S of more than 10%
exhibit a ratio of replacement to silent substitutions R/S << 1.

More recently Kondrashov et al. (2002) examined data from 26 bacterial,
six archael, and seven eukaryotic genomes. They found that the ratio of non-
synonymous substitutions (Ka/Ks) in most paralogous pairs is << 1 and the
paralogs typically evolve at similar rates, without significant asymmetry, indi-
cating that both paralogs produced by a duplication are subject to purifying
selection.

Perhaps the most puzzling aspect of gene duplication is that duplicate
copies are preserved. Virtually all models predict that the usual fate of a
duplicate gene pair is the nonfunctionalization of one copy. The expected time
before a gene is silenced is thought to be relatively short, on the order of the
null mutation rate per locus, typically a few million years. However the rate
of retention of duplicated gene preservation following ancient polyploidization



342 8 Multidimensional Diffusions

Fig. 8.7. Ratios of replacement to synonymous substitutions plotted versus age of
duplicate in humans and mice.

events, e.g. in tetraploid fishes, is often suggested to be in the neighborhood
of 30% over tens to hundreds of millions of years.

For more background, see Prince and Pickett (2002), Zhang (2003), and
Taylor and Raes (2004). Fisher (1935) presented the first population genetic
model of the fate of duplicate genes, and the 1970s saw an explosion of work
on this topic. In this section and the next two, we will review some of the
more recent mathematical models of gene duplication. Walsh (2003) gives a
nice survey of the historical development of the topic.

Neofunctionalization

Walsh (1995) computed the probability that a duplicated gene would
evolve a new function rather than be lost to a deleterious mutation. Let µ
and ρµ be the per-copy, per-generation mutation rates of null and advanta-
geous alleles, respectively. Typically, we expect the ratio ρ of advantageous to
null mutations to be much less than 1. Null mutations in the duplicated copy
are assumed to be neutral while advantageous mutations are assumed to have
additive fitnesses. If we let S = 4Nes where s is the selective advantage then
by (6.3) the probability of fixation of the advantageous allele is 2s/(1− e−S).
Multiplying by the population size 2N and the relevant mutations rates, the
rates of fixation of null and advantageous alleles are

a = µ and b = µρ
S

1− e−S

The probability that a beneficial mutation fixates first is thus

uB =
b

a+ b
=
(
1 +

a

b

)−1

=
(

1 +
1− e−S

ρS

)−1

If S is very small 1− e−S ≈ 2S while if S is very large 1− e−S ≈ 1, so
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uB ≈


ρ/(1 + ρ) ≈ ρ S << 1
Sρ/(1 + Sρ) ≈ Sρ S >> 1 Sρ << 1
1− (ρS)−1 Sρ >> 1

If for example ρ = 10−4 then from the formula for uB

S 0.0316 0.1 0.316 1 3.16 10 31.6 100
100uB 0.102 0.105 0.117 0.158 0.333 1 3.15 9.9

or if you prefer a graph
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Fig. 8.8. Walsh’s formula for uB as a function of log10 S when ρ = 10−4.

These probabilities are small, reaching 10% only when S = 1000. However,
one has to remember that these are the probability of success per attempt
and evolution will provide for many attempts.

8.5 Watterson’s double recessive null model

In the absence of selection, how long does it take after gene duplication before
one gene is lost from the population? To answer this question, Watterson
considered a Wright-Fisher model with unlinked loci and diploid individuals.
He assumed that the duplication had already spread and become fixed in the
population, so in generation n we have 2N letters that are either A (working
copy of gene 1) or a (nonfunctional copy) and 2N letters that are either B
(working copy of gene 2) or b (nonfunctional copy). To build up generation
n+ 1, we repeat the following procedure until we have N successes:

• Pick with replacement two copies of gene 1 and two copies of gene 2.
• An A that is picked may mutate to a with probability µ. Likewise a B

that is picked may mutate to b with probability µ.
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• We think of mutation as changing one of the several hundred nucleotides
in the gene. Hence the reverse mutation, which corresponds to undoing a
specific nucleotide substitution is assumed to have probability 0.

• We assume that all individuals with at least one working copy have fitness
1, but aabb is lethal. In the model this translates into the rule: if the result
of our choices after mutation is not aabb then the new individual is added
to the collection.

Note that after forming the new individual we do not keep track of the copies
that reside in a single individual. This standard practice is referred to as the
assumption of a “random union of gametes.”

Letting x and y be the frequencies of a and b alleles, Kimura and King
(1979) derived the diffusion limit of this model to be

L1f =
1

4N
x(1− x)

∂2f

∂x2
+ (1− x)(µ− x2y2)

∂f

∂x

+
1

4N
y(1− y)

∂2f

∂y2
+ (1− y)(µ− x2y2)

∂f

∂y
(8.16)

Here we are writing the diffusion as they did with time run at rate 1. To
get the usual diffusion limit time is run at rate 2N , and the operator L1 is
multiplied by 2N .

To explain the coefficients in (8.16), we note that if we have a one locus
Wright-Fisher model in which mutation from A to a occurs at rate µ and
allele a has a selective disadvantage s, then, when time is run at rate 2N , the
diffusion approximation, by (7.3), is

1
2
x(1− x)

∂2f

∂x2
+ 2N [µ(1− x)− sx(1− x)]

∂f

∂x

In our case an A allele has fitness 1 and a allele has fitness 0 if it is paired with
another a and two b’s, so the selective disadvantage of an a allele is s = xy2.

This diffusion limit in (8.16) is unusual since it does not assume that s
and µ are of order 1/N . Since all individuals have fitness 1 or 0, it is not
sensible to make this assumption about s, but one can, as Watterson did,
assume 4Nµ → θ. By using arguments that were clever but not completely
rigorous, Watterson concluded that the mean time until loss of A or B had
mean approximately

N [log(2N)− ψ(θ/2)]

where ψ is the digamma function.

Sketch of proof. Watterson changes variables ρ = N1/2 and

η =
x− y

1−min{x, y}

ρ measures the distance from the curve of equilibria, while η is a function of
(1− y)/(1− x) and measures the position along it. Watterson’s calculation is
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based on the heuristic that ρ evolves much faster than η, so the evolution of
η can be computed by assuming that ρ is always in equilibrium. This reduces
the problem to studying a one dimensional distribution and the fixation time
can be computed using the methods described in Chapter 7.
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Fig. 8.9. Curve of equilibria in Watterson’s model and solutions to ODE.

Here we will take a different approach to the problem following Durrett
and Popovic (2007), who assume that µ is a constant. To state their results, we
begin by observing that solutions of the ordinary differential equation (ODE)

dx

dt
= (1− x)(µ− x2y2)

dy

dt
= (1− y)(µ− x2y2) (8.17)

have (1− yt)/(1− xt) constant, so the solution moves along the line through
(1, 1) until it hits the equilibrium curve xy =

√
µ. When time is run at rate 1,

the variance in the diffusion is O(1/N), so it should not be surprising that the
diffusion (i) first follows the solution of the ODE to reach the set of equilibria
and then (ii) wanders around near the curve xy =

√
µ.

Theorem 8.18. Let Zt = (Xt, Yt) be the diffusion in (8.16) and Z0
t the solu-

tion of (8.17) starting from (X0, Y0). Let 0 < ε <
√
µ. There is a constant γ,

which depends on ε so that if N is large then for all (X0, Y0) ∈ [ε, 1− ε]2

E

(
sup

0≤t≤γ log N
|Zt − Z0

t |2
)
≤ N−1/2

As the reader may have noticed, this is not what the frequencies in the discrete
Wright-Fisher model do on this time scale. They would move to the curve by
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a series of jumps. With more effort one could prove our results for the Wright-
Fisher model, however, for simplicity, we will, as Watterson did, consider the
diffusion process.

Since Theorem 8.18 shows that the frequencies come rapidly to the curve
of equilibria, it suffices to consider what happens when the diffusion starts
near the curve. To explain the assumption about the starting point in the
next result, we note that the ODE converges to equilibrium exponentially
fast, so at time γ logN the distance from the curve will be ≤ N−δ for some
δ > 0.

Given (x, y) define Φ(x, y) = (x∗, y∗) by (1− y∗)(1−x∗) = (1− y)/(1−x)
and x∗y∗ =

√
µ. In words, (x∗, y∗) is the point on the equilibrium curve that

we would reach by flowing according to the ODE starting from (x, y). Our
next result concerns the behavior of the process (X∗

t , Y
∗
t ) projected onto the

curve of equilibria.

Theorem 8.19. Consider the diffusion (Xt, Yt) in (8.16). Let τ = inf{t :
Xt = 1 or Yt = 1} be the time to loss of A or B.
(i) Let 0 < δ < 1/2. Suppose |µ − X2

0Y
2
0 | ≤ N−δ. Then if N is large, with

high probability we have |µ−X2
t Y

2
t | ≤ N−δ for all t ≤ τ .

(ii) If the diffusion process is run at rate 2N then the process X∗
t − Y ∗

t con-
verges in distribution to a diffusion process on the interval [−1 + µ, 1− µ].
(iii) E0τ ∼ 2Nc2(µ).

Sketch of proof. The coefficients of the limiting diffusion process can be ex-
plicitly calculated by applying the change of variables formula, Theorem 8.7
to h(Φ(Xt, Yt)) where h(x, y) = x− y. This is not very much fun since

x∗ = g

(
1− x

1− y

)
where g(u) =

1− u+
√

(1− u)2 + bu
√
µ

2

The coefficients have very complicated formulas, but they have the important
property that they are independent of N , since the function Φ is constant in
the direction of the strong push of the drift. Once we show that the diffusion
stays near the curve of equilibria, we can calculate the expected fixation time
using the methods of Chapter 7.

Figure 8.10 shows the drift b(z), the variance a(z) of the limiting process
and the quantity −2b(z)/a(z), which appears in the derivative of its natural
scale when µ = 10−4. From these we can compute the Green’s function using
(7.34). Recalling

E0τ = 2
∫ 1−µ

0

G(0, x) dx

and integrating numerically we see that in our concrete case c2(µ) = 6.993302,
so for the rate 1 diffusion we have E0τ ≈ 14N .
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Fig. 8.10. Coefficients of the limiting diffusion.

8.6 Subfunctionalization

Subfunctionalization proposes that, after duplication, the two gene copies ac-
quire complementary loss-of-function mutations in independent subfunctions,
so that both genes are required to produce the full complement of functions
of the ancestral genes. For example, a gene that is originally expressed in two
tissues may, after duplication, diverge into two copies, each being expressed
in one of the two tissues.

This general process has been described in detail in the duplication-
degeneration-complementation (DDC) model. For simplicity, consider a gene
with two independently mutable subfunctions, for example, because they are
controlled by two different regulatory regions, which are spatially nonoverlap-
ping with each other and with the coding region.

µr µr µc

In the drawing, the large rectangle is the gene, typically several hundred nu-
cleotides, while the two small rectangles are the transcription factor binding
sites, typically about 10 nucleotides. It is supposed that mutations which cause
loss of a regulatory site happen at rate µr while those which cause the gene
to completely lose function happen at rate µc.

Consider first what happens within one haploid individual. In order to have
the outcome called subfunctionalization in which the two genes specialize to
do different functions, the first event must be a loss of a regulatory unit.
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I

×

I S L L

After this occurs, mutations in the indicated regions lead to inactivation of
one gene copy, I, subfunctionalization, S, or are lethal L, since one of the
functions is missing. It follows that the probability of subfunctionalization in
one lineage is

Ps =
4µr

4µr + 2µc
· µr

2µr + µc
= 2

(
µr

2µr + µc

)2

(8.18)

This is equation (2) of Lynch and Force (2000). If we make the simple as-
sumption that µr = µc, this probability is 2/9, but if we observe that the
gene region may easily be 30 times as large as the regulatory elements and
set µc = 30µr then the probability is 1/512.

Lynch and Force (2000) investigated the probability of subfunctionaliza-
tion for diploid individuals for the cases of complete linkage which is appro-
priate for tandem duplicates, and for free recombination, which would occur
if the duplicates are on different chromosomes. They set µc = 10−5 and con-
sidered µr/µc = 3, 1, 0.3, 0.1. The qualitative behavior for the three ratios is
similar, so here we will follow Ward and Durrett (2004) and study only the
case µr = µc, taking µc = 10−4 to speed up the simulations by a factor of 10.
In addition to the diploid case, we will consider the haploid case, which has
the same qualitative behavior but is simpler to analyze.
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Fig. 8.11. Plot of log10 Ps versus n, where Ps is the subfunctionalization probability.
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Lynch and Force (2000), see their Figure 3, plotted the probability of
subfunctionalization, Ps, versus the logarithm of the population size, n. In
Figure 8.11, following Ward and Durrett (2004), we have instead plotted the
logarithm of Ps versus the population size revealing the exponential decay of
the probability with increasing n.

To compute the mean of T , the time to resolution (subfunctionalization or
loss of function), whenN = 1, we note that the mean time to the first mutation
is 1/(4µr +2µc). If the first mutation is complete lost of function for one gene
then the process is done. If not, an event of probability 2µr/(2µr + µc), then
the waiting time to the next event has mean 1/(2µr + µc). Adding the two
terms we have

ET =
1

2(2µr + µc)
+

2µr

2µr + µc

1
2µr + µc

=
6µr + µc

2(2µr + µc)2
(8.19)

When µr = µc = µ, this is 7/18µ = .3888/µ.
Lynch and Force (2000), see their Figure 2, plotted the average time to

resolution versus log population size. In Figure 8.12, following Ward and Dur-
rett (2004), we plot time to resolution versus population size, revealing the
linear increase with population size.
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Fig. 8.12. Plot of time to resolution ET versus n.

Linked loci

A common type of gene duplication is called tandem duplication when a
short segment of chromosome is duplicated resulting in two copies of the gene
that are close to each other, and to a first approximation, the probability of a
recombination between the two copies is 0. Simulations of Ward and Durrett
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(2004) show that the haploid and diploid linked models have almost identical
behavior, so we will consider the simpler haploid case. Using four digit binary
numbers to indicate the states of the subfunctions in the two genes, there are
nine possible states for viable individuals in the haploid model. To reduce the
dimension we have color coded them as follows:

white all working 1111
yellow 3 out of 4 functions 1110, 1101, 1011, 0111
green subfunctionalization 1001, 0110
red loss of function 1100, 0011

Simulations in Ward and Durrett (2004) show that as the population size
increases the stochastic model converges to the deterministic model in which
offspring are produced with the expected frequencies. Writing xw, xy, xg, and
xr for the frequencies of the different colors, and using a = µc and b = µr to
simplify notation the deterministic equations in discrete time are

x′w = xw(1− 2a− 4b)/z
x′y = [4bxw + xy(1− 2a− 3b)]/z
x′g = [bxy + xg(1− 2a− 2b)]/z
x′r = [2axw + (a+ b)xy + xr(1− a− 2b)]/z

where z = xw +(1−a−b)xy +(1−2a−2b)xg +(1−a−2b)x0 is a normalization
that makes the x′ sum to 1.

To solve these equations it is convenient to consider

X ′
w = Xw(1− 2a− 4b)

X ′
y = 4bXw + (1− 2a− 3b)Xy

X ′
g = bXy + (1− 2a− 2b)Xg

X ′
r = 2aXw + (a+ b)Xy + (1− a− 2b)Xr

Since the original equations are linear except for the renormalization, it follows
that if xi(n) andXi(n) are the values in generation n then xi(n) = Xi(n)/Z(n)
where Z(n) = Xw(n) +Xy(n) +Xg(n) +Xr(n). The second set of equations
is triangular, so they can be solved by starting with the first equation and
working down. Noting that Xw(0) = 1, Xy(0) = Xg(0) = Xr(0) and letting
λi,j = 1− ai− bj we have

Xw(n) = λn
2,4

Xy(n) = 4[λn
2,3 − λn

2,4]
Xg(n) = 2[λn

2,2 − 2λn
2,3 + λn

2,4]

Xr(n) =
(

2 +
4b

a+ 2b

)
λn

1,2 − 2λn
2,2 − 4λn

2,3 +
4(a+ b)
a+ 2b

λn
2,4

Xr(n) decays at the slowest rate so Z(n) ∼ Xr(n) and xr(n) → 1 as n→∞.
Ignoring lower order terms and constants, in a population of size n we will
have lost all of the first three types when
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1
N
≈ Xg(n)
Xr(n)

≈
(

1− a

1− a− 2b

)n

Approximating 1 − a − 2b in the denominator by 1, it follows that n ≈
(logN)/a.

Unlinked loci

Again simulations show that the haploid and diploid cases have similar
qualitative behavior, so we will study the simpler haploid case. To introduce
our model, consider first an infinitely large population for which the allele
frequency dynamics will be deterministic. Let 3 = 11, 2 = 10, 1 = 01, and
0 = 00 denote the four possible states of each gene copy, where 1 and 0
indicate presence or absence of the two functions, and let xi and yj denote
the frequencies of states i and j at the first and second copy with x0 =
1 − x3 − x2 − x1, and y0 = 1 − y3 − y2 − y1. To simplify, we will assume
µr = µc = b. Let

w = x3 + y3 − x3y3 + x1y2 + x2y1 (8.20)

be the mean fitness, i.e., the probability the new individual chosen to replace
the old one is viable. To explain the formula for w, we note that if either gene
is in state 3, an event of probability x3+y3−x3y3, then the offspring is always
viable, whereas if neither gene is in state 3, the only viable combinations are
(1,2) and (2,1). We are assuming the copies are unlinked, so the events are
independent.

The diffusion limit of this model is

L2f =
1

4N

∑
xi(1− xi)

∂2f

∂x2
i

+
∑ 1

4N
yi(1− yi)

∂2f

∂y2
i

+ F (x3, x2, x1, y3, y2, y1) · ∇f (8.21)

where F : R6 → R6 is the vector field determining the evolution of the ODE
system

dx3/dt = −x3w + x3 − 3bx3

dx2/dt = −x2w + x2(y3 + y1) + bx3 − 2bx2

dx1/dt = −x1w + x1(y3 + y2) + bx3 − 2bx1

dy3/dt = −y3w + y3 − 3by3 (8.22)
dy2/dt = −y2w + y2(x3 + x1) + by3 − 2by2
dy1/dt = −y1w + y1(x3 + x2) + by3 − 2by1

If we let α = 1− 3b, then the equations for x3 and y3 become

dx3

dt
= x3(α− w)

dy3
dt

= y3(α− w) (8.23)
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so the first and fourth equations for an equilibrium reduce to the single equa-
tion w = α. Thus, if things are nice we will have a one dimensional curve of
equilibria.

To find one set of solutions we can begin by investigating the case in which
x2 = x1 = x and y2 = y1 = y which gives us four equations:

dx3/dt = −x3w + x3 − 3bx3

dx/dt = −xw + x(y3 + y) + bx3 − 2bx
dy3/dt = −y3w + y3 − 3by3
dy/dt = −yw + y(x3 + x) + by3 − 2by

which after some algebra can be explicitly solved. See Durrett and Popovic
(2007) for this and other details. The next figure gives a graph of the solutions
in the special case b = 0.001. Because of symmetry we only show the part
where x3 ≤ y3.
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Fig. 8.13. Curve of equilibria for the haploid unliked model as a function of x3.

Equation (8.23) implies that if y3(0)/x3(0) = r then y3(t)/x3(t) = r for all
t. Given z = (x3, x2, x1, y3, y2, y1), let z∗ = Φ(z) be the point on the curve of
equilibria with y∗3/x

∗
3 = y3/x3. Numerical results show that starting from any

z the ODE will converge to Φ(z), but we do not know how to prove this for
the dynamical system, so we will only consider the situation when the process
starts close to the curve.

Theorem 8.20. Suppose b ≤ 0.01. Let τ = inf{t : X0(t) = 1 or Y0(t) = 1} be
the time to loss of gene 1 or gene 2.
(i) Suppose |Z0 − Z∗0 | ≤ 1/N1/4. Then if N is large, with high probability we
have |Zt − Z∗t | ≤ 2/N1/4 for all t ≤ τ .
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(ii) When run at rate 2N the process X∗
3 (t)− Y ∗

3 (t) converges in distribution
to a diffusion process.
(iii) E0τ ∼ 2Nc3(b).

The proof of this result is similar to the proof of Theorem 8.19. However, the
key step of proving that the diffusion stays close to the curve is more compli-
cated. In Watterson’s model (1− y)/(1− x) = r is a line and it is clear that
the ODE will move along the line to the equilibrium. In the subfunctional-
ization model, y3/x3 = r is five dimensional. Since we are only interested in
the behavior near the curve, it is enough to consider the linearization of the
ODE, but then we must show that all of the eigenvalues have negative real
part and use this to construct a suitable Lyapunov function which will allow
us to control the distance from the curve.

The coefficients of the limiting diffusion can again be computed in terms of
the derivatives of Φ(X3, X2, X1, Y3, Y2, Y1) and h = x3−y3. Figure 8.14 shows
the drift b(z), the variance a(z) of the limit of X∗

3 − Y ∗
3 and the quantity

−2b(z)/a(z), which appears in the derivative of the natural scale, when b =
10−3. Even though the model is quite different, the curves are similar to
those for Watterson’s model. The Green’s function can be computed from the
coefficients using (7.34). Integrating the Green’s function, we see that in our
concrete example c3(b) = 3.284906, so for the process run at rate 1 we have
E0τ ≈ 6.5N . In the case of Drosophila who have an effective population size
of N = 106 this is 6.5 million generations or 650,000 years.
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Fig. 8.14. Coefficients of the subfunctionalization diffusion.

In the last result τ is essentially the time until one of the two copies is
lost, since subfunctionalization has a very small probability. To see this note
that the curve of equilibria lie in the four dimensional space where x2 = x1
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and y2 = y1, while subfunctionalization corresponds to x1 = 1 and y2 = 1 or
x2 = 1 and y1 = 1. Since the diffusion stays close to the curve it has a very
small probability of ending up at one of the subfunctionalization outcomes.
Based on the theory of large deviations for random perturbations of dynamical
systems we would guess that the probability of subfunctionalization decays
exponentially fast with population size. However, we don’t have to guess.
Simulations given in Figure 8.11 show us that this is true.



9

Genome Rearrangement

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they certain, they do not refer to reality.” Albert Einstein

Up to this point, we have only considered the effect of small-scale processes:
nucleotide substitutions, insertions, and deletions. In this chapter, we will
consider a variety of large-scale processes, as well as the possibility of whole
genome duplication.

9.1 Inversions

Analysis of genome rearrangements in molecular evolutions was pioneered by
Dobzhansky and Sturtevant (1938), who introduced the notion of a breakpoint
(disruption of gene order) and published a milestone paper with a rearrange-
ment scenario for the species D. pseuodobscura and D. miranda.

Palmer and Herbon (1988) discovered that while the genes in the mitochon-
drial genomes of cabbage (Brassica oleracea) and turnip (Brassica campestris)
are 99% identical, the gene order is quite different. If the order of the segments
is 1, 2, 3, 4, 5 in turnip then the order in cabbage is 1, −5, 4, −3, 2, where the
negative numbers indicate that the segment in cabbage is reversed relative
to turnip. A little experimentation reveals that it is possible to turn cabbage
into turnip with three inversions. Here parentheses indicate the segment that
will be flipped.

1 −5 4 −3 (2)
1 −5 (4) −3 −2
1 (−5 −4 −3 −2)
1 2 3 4 5

9.1.1 Breakpoint graph

In this simple example, it is not hard to see that three inversions are necessary,
but to handle more complicated examples such as the comparison between
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cytomegalovirus (CMV) 1, 2, 3, 4, 5, 6, 7 and Epstein-Barr virus (EBV) 1,
−2, −3, −6, −5, 7, −4 studied by Hannenhalli et al. (1995), we will need to
develop some theory. Our first step is to define the breakpoint graph. To do
this, we first replace k by 2k − 1 2k, −k by 2k 2k − 1, and then add 0, at the
beginning and ,15 at the end to generate two strings

CMV 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15
EBV 0,1 2,4 3,6 5,12 11,10 9,13 14,8 7,15

The vertices separated by commas in EBV are connected by “black edges,”
the thick lines in the picture below. Those separated by commas in CMV are
connected by “gray edges,” the thin lines.

0 1 2 4 3 6 5 12 11 10 9 13 14 8 7 15

Each vertex in the breakpoint graph has degree 2 and is an endpoint of
one black edge and one gray edge. Starting with a black edge and following
the alternating sequence of black and gray edges, we can see that this graph
has three cycles: 0-1-0, 2-4-5-12-13-9-8-14-15-7-6-3-2, 11-10-11. When EBV
has been rearranged to match CMV there will be eight cycles.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A move corresponds to cutting two black edges and reversing the segment in
between. Since the best thing that can happen is that one cycle is cut into two,
this can at most increase the number of cycles by 1. Therefore, if we let d(π)
denote the minimum number of reversals to make the signed permutation π
into the identity and let c(π) be the number of cycles in the breakpoint graph,
then we have

Theorem 9.1. The reversal distance for a permutation π of n objects satisfies

d(π) ≥ n+ 1− c(π) (9.1)

In the current example, n = 7 and c(π) = 3, so this says that d(π) ≥ 5. Here,
and in what follows, we use inversion for what happens to chromosomes and
reversal for the corresponding change in permutations.

Another consequence of (9.1) is that if at each stage we can increase the
number of cycles by 1, then we can find a path of length 5. A reversal is called
proper if it increases the number of cycles by 1. A little thought shows this
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holds if and only if when the two black edges are eliminated, then the left end
of one black edge is connected to the left edge of the other black edge by the
edges that remain. An example of a proper reversal above is the one involving
the black edges 2-4 and 3-6. The result is

0 1 2 3 4 6 5 12 11 10 9 13 14 8 7 15

Using black edges 4-6 and 5-12 now leads to

0 1 2 3 4 5 6 12 11 10 9 13 14 8 7 15

At this point, if we tried the black edges 9-13 and 14-8, then the number
of cycles would not change. This happens whenever the left end of one black
edge is connected to the right end of the other. 6-12 and 7-15 is a proper
reversal and leads to

0 1 2 3 4 5 6 7 8 14 13 9 10 11 12 15

Using 8-14 and 12-15 now leads to

0 1 2 3 4 5 6 7 8 12 11 10 9 13 14 15

A fifth and final move using 8-12 and 9-13 puts all of the numbers in order.
The construction shows d(π) ≤ 5 so with (9.1) we can conclude that the
distance to the identity is indeed equal to 5.

The method above has been applied by Bafna and Pevzner (1995, 1996)
to a number of examples in the biology literature. In a few cases, the distance
they found was smaller than the most parsimonious path biologists found
by hand. The latter is not surprising. When the number of segments is 12,
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the number of permutations is 12! = 479,001,600 and the number of possible
reversals at each stage is

(
13
2

)
= 78.

Example 9.1. Human versus mouse X chromosome. All of the examples con-
sidered above have been mitochondrial, chloroplast, or viral genomes, where
there is a single chromosome. As we will see in Section 9.4, the situation is
much more complicated for multichromosome genomes, where nonhomologous
chromosomes exchange genetic material by a process called reciprocal translo-
cation. The sex chromosomes do not participate in this process, so the change
in their gene order is due only to reversals. Taking the order of conserved
blocks in mice to be 1, 2, 3, 4, 5, 6, 7, 8, the order in humans is −4, −6, 1, 7,
−2, −3, 5, 8. Ignoring block 8, the breakpoint graph is as follows

0 8 7 12 11 1 2 13 14 4 3 6 5 9 10 15

There are two cycles here: 0-8-9-5-4-14-15-10-11-1-0 and 7-12-13-2-3-6-7, so
d(π) ≥ 8 − 2 = 6. The following sequence shows that six moves suffice. Here
we have reinstated the final segment 8, and for reasons that will become clear
in a moment have introduced a 0 at the beginning. Parentheses mark the
segments that are reversed in going to the next line.

0 (−4 −6 1 7 −2 −3) 5 8
0 (3 2 −7 −1) 6 4 5 8
0 1 (7 −2) 3 6 4 5 8
0 1 2 −7 (3 6) 4 5 8
0 1 2 (−7 −6 3 4 5) 8
0 1 2 (−5 −4 −3) 6 7 8
0 1 2 3 4 5 6 7 8

A remarkable aspect of the reversal distance problem is the dramatic lack of
uniqueness of the minimal path. Bafna and Pevzner (1995) have computed
that there are 1872 scenarios that transform the human into the mouse X
chromosome with six reversals.

9.1.2 Hurdles

The point of this subsection is (i) to show that lower bound in (9.1) is not
always right answer, and then (ii) to describe how the distance is computed.
The graph theoretic complications are not needed in later sections and it will
turn out that the simple lower bound in (9.1) is the right answer is most
biological examples, so the reader should not feel compelled to go through all
of the details.
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The next example, which is the breakpoint graph for the permutation 3,
2, 1, shows that the lower bound is not sharp even when n = 3.

(?) 0 5 6 3 4 1 2 7

There are two cycles: 0-5-4-1-0 and 6-3-2-7-6. However, since in each case the
left end of one black edge is connected to the right end of the other, there is
no proper reversal. The reversal involving 0-5 and 4-1 does not decrease the
number of cycles. However, after this is done, the situation becomes

0 4 3 6 5 1 2 7

At this point, the reversal involving 3-6 and 2-7 has become proper. Per-
forming it leads to

0 4 3 2 1 5 6 7

Now the reversal involving 0-4 and 1-5 is proper. Doing it puts the numbers
in order. Since there are three segments in this example and two cycles in the
breakpoint graph, the bound that (2.1) gives is d(π) ≥ 4−2. However, on our
first move we could not increase the number of cycles, so we ended up with
d(π) = 3.

To explain the obstruction we encountered here, requires some terminol-
ogy. Let π be the current permutation. At the beginning of the example above,
i.e., in (?), we have

π0 = 0, π1 = 5, π2 = 6, π3 = 3, π4 = 4, π5 = 1, π6 = 2, π7 = 7

We say that a reversal ρ(i, j) acts on black edges (πi−1, πi) and (πj−1, πj).
Here i and j will always be odd numbers. A gray edge is said to be oriented
if the reversal acting on the two black edges incident to it is proper, and
unoriented otherwise. In (?) all gray edges are unoriented. A cycle is said to
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be oriented if it contains an oriented gray edge. Otherwise it is unoriented. In
(?) both cycles are unoriented.

Gray edges (πi, πj) and (πk, π`) are interleaving if the intervals [i, j] and
[k, `] overlap but neither contains the other. In (?), (0,1) and (6,7) are inter-
leaving but (0,1) and (5,4) are not. Two cycles, C1 and C2, are said to be
interleaving if there are gray edges gi ∈ Ci so that g1 and g2 are interleav-
ing. In (?), the two cycles are interleaving. Let Cπ be the set of cycles in the
breakpoint graph of a permutation π. Define the interleaving graph Hπ to
have vertices Cπ and edges connecting any two interleaving cycles. In (?) the
graph consists of two vertices connected by one edge.

A connected component of Hπ is said to be oriented if it contains an
oriented cycle and is unoriented otherwise. In (?), there is only one unoriented
cycle in the interleaving graph, so it is a hurdle. Hannenhalli and Pevzner
(1995a) have shown that if h(π) is the number of hurdles, then

d(π) ≥ n+ 1− c(π) + h(π) (9.2)

In (?), n = 3, c(π) = 2 and h(π) = 1, so this new lower bound 4− 2 + 1 = 3
gives the right answer.

To see the reason for distinguishing oriented from unoriented cycles we
need a more complicated example. Consider the permutation 3, −5, 8, −6, 4,
−7, 9, 2, 1, which has the following breakpoint graph.

0 5 6 10 9 15 16 12 11 7 8 14 13 17 18 3 4 1 2 19

E

D
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A

This time there are five cycles, as indicated in the figure. A is oriented but
the other four are not. Cycle A is interleaving with B and C but not with D
and E. Cycles B and C, and D and E, are interleaving, but the other pairs
we have not mentioned are not.

The interleaving graph consists of two components: a triangle ABC that
is oriented and an edge DE that is not. Again, there is only one unoriented
component, so the number of hurdles is 1. Since n = 9 and c(π) = 5, the lower
bound from (9.2) is 10−5+1 = 6. To see that this can be achieved, note that
if we start with the reversal that cuts the black edges 9-15 and 8-14, then we
increase the number of cycles by 1 and the result is

0 5 6 10 9 8 7 11 12 16 15 14 13 17 18 3 4 1 2 19

EB C

D
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The cycles B and C are now oriented. Reversals using 6-10 and 7-11 then
12-16 and 13-17 put the numbers 6 to 17 in order. The pair DE is equivalent
to (?) so it can be sorted in three moves for a total distance of 6.

To understand the final complexities in the general definition of hurdles
we need another more complicated example. Consider 5, 7, 6, 8, 1, 3, 2, 4, for
which the breakpoint graph is

0 9 10 13 14 11 12 15 16 1 2 5 6 3 4 7 8 17

A B

C

This time there are three cycles, as indicated in the figure. All three are
unoriented and no two of them are interleaving, so the interleaving graph Hπ

consists of three connected components that are isolated points, all of which
are unoriented. For a connected component U of Hπ, define the leftmost and
rightmost positions in U by

Umin = min
πi∈C∈U

i and Umax = max
πi∈C∈U

i

Here Amin = 2, Amax = 7, Bmin = 10, Bmax = 15, Cmin = 0, and Cmax = 17.
Consider the set of unoriented components, and define the containment partial
order U ≺ V if [Umin, Umax] ⊂ [Vmin, Vmax]. An unoriented component that
is minimal with respect to this order is a minimal hurdle.

There are also potential hurdles at the top of the partial order. We say that
a component U separates V and W if there is a gray edge (πi, πj) in U so that
[Vmin, Vmax] ⊂ [i, j] but [Wmin,Wmax] 6⊂ [i, j]. In our most recent example
C separates A and B by virtue of the edge (0,1). If U is a maximal oriented
component with respect to ≺ and it does not separate any two hurdles, then
U is called a maximal hurdle. This example has two minimal hurdles and no
maximal hurdle, so h(π) = 2. Since n = 8 and c(π) = 3, the lower bound that
results from (2.2) is 9− 3 + 2 = 8.

To see the reason for the no separation condition in the definition of max-
imal hurdle, we apply the reversal that involves black edges 12-15 and 2-5:

0 9 10 13 14 11 12 2 1 16 15 5 6 3 4 7 8 17

A

C
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The gray edges (0,1) and (16,17) in cycle C are now oriented. The cycles
A and B have merged into 1, but the gray edges (14,15) and (2,3) are now
oriented. The number of cycles is now 2 but both hurdles have been destroyed
so the lower bound from (9.2) is now 9− 2+0 = 7. With both cycles oriented
we can compute as before to find seven moves that bring this permutation to
the identity.

The bound in (9.2) is very close to the right answer. Hannenhalli and
Pevzner (1995a) showed that

Theorem 9.2. The reversal distance for a permutation π of n objects is given
by

d(π) = n+ 1− c(π) + h(π) + f(π) (9.3)

where c(π) is the number of cycles in the breakpoint graph, h(π) is the number
of hurdles, and f(π) = 1 if the permutation is a fortress and 0 otherwise.

The details of the definition of a fortress are somewhat complicated, so we
refer the reader to Chapter 10 of Pevzner (2000) for it and the proofs of (9.2)
and (9.3).

Computational complexity

All of the steps in the proof of (9.3) are constructive, so it leads to an
algorithm for computing the reversal distance in O(n4) time, where n is the
number of segments. The n4 makes this method somewhat painful for large
n. However, it was a remarkable achievement to find a polynomial time al-
gorithm. Subsequent work has produced more efficient algorithms. Kaplan,
Shamir, and Tarjan (2000) have an algorithm that runs in time O(n2). How-
ever if one wants to only know the distance without computing a sequence of
reversals that achieves it, Bader, Moret, and Yan (2000) can do this in time
O(n). This results are restricted to the case of signed permutations. Caprara
(1997, 1999a) has shown that the corresponding problem for unoriented per-
mutations is NP-hard. Much earlier, Even and Goldreich (1981) had shown
that the general problem of computing the distance to the identity for a given
set of generators of the permutation group is NP-hard.

While it is nice to have an algorithm that computes the exact distance,
all of the complications that come from considering hurdles are not really
necessary. Caprara (1999b) has shown that for a randomly chosen permutation
of nmarkers, the probability that the lower bound (9.1) is not the right answer
is of order 1/n5. For this reason, we will content ourselves with computing
the graph distance, which is very easy to compute. One can count the cycles
in the breakpoint graph in time O(n).

9.2 When is parsimony reliable?

Bourque and Pevzner (2002) approached this question by taking 100 markers
in order, performing k randomly chosen reversals to get a permutation πk,
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computing the minimum number of reversals needed to return to the identity,
d(πk), and then plotting the average value of d(πk)−k ≤ 0 for 100 simulations.
They concluded, based on their simulations, that the parsimony distance for
n markers was a good estimate as long as the number of reversals performed
was at most 0.4n. In Figure 9.1, we have repeated their experiment for the
graph distance d0(π) = n + 1 − c(π) and plotted with squares the average
value of k− d0(πk) ≥ 0 for 10,000 replications. Our curve is less random, but
close to data of Bourque and Pevzner (2002) for k − d(π), indicated in the
figure by crosses.

0 10 20 30 40 50 60 70 80 90 100
0
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25

 

 

reversals

transposiitons

expected

Pevzner

Fig. 9.1. Bourque and Pevzner’s data simulation compared with other computer
experiments on reversals and transpositions, and Theorem 9.5.

The biological question concerns the random reversals. However, it is also
an interesting mathematical problem to consider the analogous question for
random transpositions. In that case the distance from the identity can be
easily computed: it is the number of markers n minus the number of cycles
in the permutation. For an example, consider the following permutation of 14
objects written in its cyclic decomposition:

(1 7 4) (2) (3 12) (5 13 9 11 6) (8 10 14)

which indicates that 1 → 7, 7 → 4, 4 → 1, 2 → 2, 3 → 12, 12 → 3, etc.
There are five cycles so the distance from the identity is 9. If we perform a
transposition that includes markers from two different cycles (e.g., 7 and 9)
the two cycles coalesce into one, while if we pick two in the same cycle (e.g.,
13 and 11) it fragments into two.

The situation is similar but slightly more complicated for reversals. There
a reversal that involves edges in two different components of the breakpoint
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graph merges them into one, but a reversal that involves two edges of the same
cycle may or may not increase the number of cycles. One can attempt to couple
the components of the breakpoint graph for random reversals on n−1 markers
and the cycles of random transposition of n markers as follows: number the
edges between markers in the reversal chain (including the ends 0 and n);
when markers i and j are transposed, do the inversion of edges numbered i
and j. The result of the coupled simulation is given Figure 9.1. As expected,
time minus distance is smaller for reversals. However, the qualitative behavior
is similar. Thus, we will begin by considering the biologically less relevant case
of

Random transpositions

Let (σt, t ≥ 0) be the continuous-time random walk on the group of permu-
tations, starting at the identity, in which, at times of a rate 1 Poisson process,
we perform a transposition of two elements chosen uniformly at random, with
replacement, from {1, . . . , n}. Choosing with replacement causes the chain to
do nothing with probability 1/n, but makes some of the calculations a little
nicer.

Define the distance to the identity, Dt, to be the minimum number of
transpositions one needs to perform on σt to go back to the identity element.
It is clear that if Nt is the number of transpositions distinct from the identity
performed up to time t, a Poisson random variable with mean t(1−1/n), then
Dt ≤ Nt. As mentioned earlier Dt is given by Dt = n− |σt|, where |σt| is the
number of cycles in the cycle decomposition of σt. This formula allows us to
turn any question about Dt into a question about |σt|.

To study the evolution of the cycles in the random permutation, we con-
struct a random graph process G∗t . Start with the initial graph on vertices
{1, . . . , n} with no edge between the vertices. When a transposition of i and
j occurs in the random walk, we draw an edge between the vertices i and j,
even if one is already present. Elementary properties of the Poisson process
imply that if we collapse multiple edges in G∗t into one, then the resulting
graph Gt is a realization of the Erdös-Renyi random graph G(n, p), in which
edges are independently present with probability p = 1 − exp(−2t/n2). The
probability of picking an edge twice is ≤ (2t/n2)2 = O(1/n2) when t = cn/2,
so the expected number of multiple edges is O(1). Multiple edges are a nui-
sance, but not a real problem. We have to be careful in Theorem 9.3 where the
random variable of interest is also O(1), but in the other cases the quantities
of interest →∞, so multiple edges can be ignored.

It is easy to see that in order for two integers to be in the same cycle in
the permutation, it is necessary that they are in the same component of the
random graph. To estimate the difference between cycles and components, let
Ft denote the event that a fragmentation occurs at time t and note that

Dt = Nt − 2
∑
s≤t

1Fs (9.4)
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A fragmentation occurs in the random permutation when a transposition oc-
curs between two integers in the same cycle, so tree components in the random
graph G∗t correspond to unfragmented cycles in the random transposition ran-
dom walk.

9.2.1 Phase transition

We are now ready to state our results of Berestycki and Durrett (2006) which
explain Bourque and Pevzner’s (2002) simlulation results. As the reader will
see, it is convenient to write t = cn/2. There are three separate regimes based
on the value of c.

Theorem 9.3. Let 0 < c < 1. The number of fragmentations

Zc :=
∑

s≤cn/2

1Fs ⇒ Poisson(κ(c)) (9.5)

where κ(c) = (− log(1− c)− c)/2.

At c = 0.8, which corresponds to Bourque and Pevzner’s 0.4n this says that
the average number of fragmentations is (log(5)−0.8)/2 = 0.4047. Translating
back to discrete time 0.4n− E(D0.4n) → 0.4047 as n→∞.

In the critical case, c = 1, the discrepancy grows slowly with n.

Theorem 9.4. Let χ have a standard normal distribution. As n→∞,

(
6

log n

)1/2
 ∑

s≤n/2

1Fs −
1
6

log n

⇒ χ. (9.6)

The supercritical regime, c > 1, is the most interesting case.

Theorem 9.5. Let c > 0 be a fixed positive number. Then the number of
cycles in the random permutation at time cn/2, |Dcn/2|/n→ u(c)n, where

u(c) = 1−
∞∑

k=1

1
c

kk−2

k!
(ce−c)k (9.7)

In addition, there is a central limit theorem

Dcn/2 − u(c)
√
n

⇒ χ

Note that the last theorem is valid for all regimes. The large fluctuations
here for c < 1 are due to the fact that the number of inversions Nt is a
Poisson process and hence has (Nt − t)/

√
t ⇒ χ. Although it is not obvious

from formula (9.7), u(c) = c/2 for c < 1 and u(c) < c/2 when c > 1. Using



366 9 Genome Rearrangement

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Fig. 9.2. Graph of the limit u(c) in Theorem 9.5.

Stirling’s formula, k! ∼ kke−k
√

2πk, it is easy to check that g′ exists for all c
and is continuous, but g′′(1) does not exist.

Why is this true? We begin with Cayley’s result that there are kk−2 trees
with k labeled vertices. For a proof of this fact and more on random graphs,
see Bollobás (2001). At time cn/2 each edge is present with probability 1 −
exp(−c/n) ∼ c/n so the expected number of trees of size k present is

∼
(
n

k

)
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)+(k
2)−k+1

(9.8)

since each of the k − 1 edges needs to be present and there can be no edges
connecting the k point set to its complement or any other edges connecting
the k points other than the k − 1 that make up the tree. For fixed k, (9.8) is
asymptotic to

n
kk−2

k!
ck−1

(
1− c

n

)kn

The quantity in parentheses at the end converges to e−ck so we see that the
sum in (9.7) gives the asymptotics for the number of tree components at time
cn/2. The number of nontree components is o(n), so recalling the formula for
the distance we can guess that |Dcn/2|/n→ u(c)n. The central limit theorem
can be proved using Pittel’s (1990) central limit theorem for the number of
components of the random graph. In the both cases, the main difficulty is
showing that the result of the coagulation-fragmentation process of cycles in
the random permutation is close to the random graph.

Results for reversals

The law of large numbers for the distance in Theorem 9.5 extends easily to
the reversal chain. Recall that the main difference lies in the fact that a reversal
involving edges from different components in the breakpoint graph always
yields a coagulation, but one involving two edges in the same component may
or may not cause a fragmentation. The proof of Theorem 9.5 for transpositions
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is based on showing that fragmentations can be ignored, so this difference is
unimportant and these results extend to reversals.

This is not true for the more precise results in Theorems 9.3 and 9.4. For
example, the underlying data shows that up to c = 1, an average of 23% of
the reversals have caused no change in the distance. For our purposes this is
not important. In the subcritical and critical regimes, t−Dt ≥ 0 is small for
transpositions, and is even smaller for reversals.

9.2.2 Bayesian approach

As the previous results show, the actual number of inversions that have oc-
curred in the history of two chromosomes may not be equal to the minimum
number. York, Durrett, and Nielsen (2002) have developed a Bayesian ap-
proach. Assuming that the same N markers are present on both chromosomes,
the arrangements are given as signed permutations, and that rearrangements
are only due to inversions, they model the process of chromosome rearrange-
ment as follows:

• The occurrence of inversions is a Poisson process with unknown mean λ;
the probability of exactly L inversions is e−λλL/L!.

• A uniform prior distribution u(λ) for 0 ≤ λ ≤ λmax is assumed.
• Each of the N(N + 1)/2 inversions occurs with equal probability.

There are (N(N + 1)/2)L(X) inversion sequences X of length L(X), each
of which has probability

P (X|λ) = e−λ λ
L(X)

L(X)!
·
(
N(N + 1)

2

)L(X)

Let Ω be the set of inversion sequences of any length, and let D be the
data consisting of the marker order on the two chromosomes. In order to
approximately calculate P (X|D) and P (λ|D), they define a Markov chain on
Ω × [0,∞) with stationary distribution P (X,λ|D).

They use a Metropolis-Hastings scheme in which λ and X are alternately
updated. A Gibbs step is used to update λ, i.e., P (λ|X,D) = ce−λλL(X)u(λ).
The new path X ′ is generated as follows:

• Choose ` ≤ L(X) with probability q(`) and then a starting point uniformly
at random from 0 ≤ j ≤ L− `. In practice they use

q(`) = c

[
1− tanh

(
ξ

(
`

αN
− 1
))]

where e.g., α = 0.65 and ξ = 8. This formula is used so that all lengths
small with respect to N have roughly equal probability.

• Generate a new path to replace the segment from πj to πj+` as follows:
Use the breakpoint graph to choose inversions at random but so that each
step decreases the distance to the target by 1 with high probability.
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One must run the chain long enough to reach equilibrium before generating
a sample points. York et al. (2002) use the method of Gelman and Rubin
(1992) to decide when the Markov chain has converged. This involves running
m ≥ 2 chains for the same data starting from much different initial states. Let
Xi,j be the ith element of the jth Markov chain and Li,j its length. Define
the between and within variances by

B =
1

m− 1

∑
j

(< L >j − < L >)2

W =
1
m

∑
j

1
n− 1

∑
i

(Li,j− < L >j)2

where < L >j= (1/n)
∑

i Li,j and < L >= 1/(mn)
∑

i,j Li,j . Convergence is
indicated when

(R̂)1/2 =

√
n− 1
n

+
B

W
≈ 1

Analysis of two data sets

Fig. 9.3. Posterior distribution of X chromsome inversions for human-cattle com-
parison.

We begin by considering a data set with 14 markers that is a comparison
of human and cattle X chromosomes. Assuming the human arrangement is
the identity, the cattle data may be written as follows:

1 2 3 4 5 7 8 − 6 9 − 11 − 10 − 14 − 13 − 12

In this case it is easy to see that the distance is 4: flip −14 − 13 − 12 then
−11 − 10. At this point only −6 is out of place, which can be fixed by

7 8 − 6 → 6 − 8 − 7 → 6 7 8
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Figure 9.3 gives the posterior distribution of the number of inversions. Even
in this simple case, the parsimony solution has probability ≈ 0.36.

Ranz, Casals, and Ruiz (2001) have constructed a comparative map be-
tween chromosome 2 of D. repleta and chromosome 3R of D. melanogaster
with 79 markers. Numbering the markers on the D. repleta chromosome by
their order on D. melanogaster we have

36 37 17 40 16 15 14 63 10 9 55 28
13 51 22 79 39 70 66 5 6 7 35 64
33 32 60 61 18 65 62 12 1 11 23 20
4 52 68 29 48 3 21 53 8 43 72 58
57 56 19 49 34 59 30 77 31 67 44 2
27 38 50 26 25 76 69 41 24 75 71 78
73 47 54 45 74 42 46

Translocations and pericentric inversions (which contain the centromere) are
rare so we can assume chromosome arms are conserved and compute the
inversion distance. We do not know the signs of the markers so we let the
starting permutation given above wander over the 279 choices of sign by using
moves that flip a single marker and accept the move with high probability if
it reduces the distance.

By flipping markers as described in the previous sentence one can find a
path that achieves a distance of 54, which provides an upper bound on the
parsimony distance. The parsimony distance lies outside the 95% credible in-
terval of [71, 118] that comes from the Bayesian estimate. Indeed the posterior
probability of 54 is so small that this value that it was never seen in the 258
million MCMC updates in the simulation run.

An alternative and simpler approach to estimating the number of inver-
sions introduced by Durrett (2002) comes from considering φ(η) = −2 + the
number of conserved adjacencies (places where two adjacent markers differ
by 1). A simple calculation shows that φ is an eigenfunction of the random
reversal Markov chain with eigenvalue (n − 1)/(n + 1). That is, a randomly
chosen inversion decreases the average value of this statistic by (n−1)/(n+1).
In our case the number of markers is n = 26 and the number of conserved
adjacencies (indicated with italics) is 11 so our moment estimate is

m =
ln(9/80)
ln(78/80)

= 86.3

This agrees with the Bayesian analysis above where the mode of the poste-
rior distribution is 87. However these two numbers differ drastically from the
parsimony analyses. The breakpoint distance is (80 − 11)/2 = 35, while the
parsimony distance is ≤ 54.

Unequal inversion rates

The analysis above assumes that all inversions occur at the same rate.
However, inversions between an inverted and a wild type chromosome result
in one with some genetic material omitted and some duplicated.
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When a large amount of DNA is absent from a chromosome, the offspring is
typically not viable, so we would expect longer inversions to occur at a lower
rate. York, Durrett, and Nielsen (2007) have developed a Bayesian method
that takes the lengths of the inversions into account. Analysis of data from
Drosophila melanogaster and D. yakuba finds an inversion tract length of 4.8
megabytes with shorter inversions occuring more frequently.

9.3 Nadeau and Taylor’s analysis

As mentioned earlier, genomes evolve by inversions within chromosomes, re-
ciprocal translocation of genetic material between autosomes, i.e., the nonsex
chromosomes, and fissions and fusions of chromosomes. In this section we give
an account of a remarkable paper of Nadeau and Taylor (1984), who developed
a method to estimate the number of breakpoints caused by these events.

In the mid 1980’s when the paper was written, there was very little genetic
data compared to what exists today. However, there were 54 loci in humans
whose chromosomal locations were also known in mice. These data gave rise
to 13 conserved segments where the genes were adjacent in both species. The
genes involved, the length of the segment in centiMorgans, and the chromo-
some locations in mice and humans are given in the next table. The p’s and
q’s in the Human column refer to the chromosome arms on which the genes
are located.

Genes length Mouse Human
B2m, Sdh-1 1 2 15q
Galt, Aco-1 5 4 9p
Pgm-2, Pgd, Gpd-1 24 4 1p
Pgm-1, Pep-7, Alb-1 12 5 4q
Gus, Mor-1 11 5 7q
Got-2, Prt-2 4 7 19
Ups, Es-17 10 8 16q
Mpi, Pk-3 6 9 15q
Pgm-3, Mod-1 3 9 6q
Acy-1, Trf, Bgl 10 9 3p
Igh, Pi 12 12 14q
Glo-1, H-2, C-4, Upg-1 9 17 6p

The lengths in the table above are the distances between the genes at the
end of the segment. The actual conserved segment will be larger than this
measurement. To estimate how much larger, we note that
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Theorem 9.6. If n genes are put randomly in a segment of length m, then
the expected distance r between the leftmost and rightmost gene is

r = m(n− 1)/(n+ 1) (9.9)

Here, and in what follows, we use the notation of Nadeau and Taylor (1984),
even though in some cases it will look strange to probabilists. To explain (9.9)
we will draw a picture:

Here the n = 4 genes define n + 1 = 5 segments. Symmetry implies that the
segments have the same average length so the average distance between the
leftmost and rightmost gene is (n− 1)/(n+ 1) times the total length m. For
the reader who does not like the appeal to symmetry in the last argument,
we give the following

Proof. We can suppose without loss of generality that m = 1. The probability
that none of the genes fall in [0, x] is (1−x)n. Differentiating, we find that the
location of the leftmost gene Y1 has density function P (Y1 = x) = n(1−x)n−1.
Integrating by parts, we have

EY1 =
∫ 1

0

x · n(1− x)n−1 dx =
∫ 1

0

(1− x)n dx = − (1− x)n+1

n+ 1

∣∣∣∣1
0

=
1

n+ 1

Reflection symmetry implies that if Yn is the location of the rightmost gene,
then E(1− Yn) = 1/(n+ 1). Combining these two facts, we have

E(Yn − Y1) = 1− E(1− Yn)− EY1 =
n− 1
n+ 1

Inverting the relationship in (9.9), we have

m̂ = r
(n+ 1)
n− 1

In words, the estimated length is the observed range multiplied by (n+1)/(n−
1). In the data above, segments with 2, 3, and 4 genes have their lengths
multiplied by 3, 2, and 5/3. A little arithmetic then shows that the average
length of conserved segments observed is 20.9 cM.

Because conserved segments were identified by the presence of two or more
linked homologous markers, segments lacking identifiable markers and seg-
ments with a single identifiable marker were necessarily excluded in estimates
of the conserved segment length. As a result, the estimate of the mean length
of conserved segments is biased toward long segments. To correct for this, we
prove
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Theorem 9.7. Let T be the total number of mapped homologous markers, G
be the genome size in centiMorgans, D = T/G be the density of markers, let
L be the mean length of conserved segments, and x′ be the average length of
observed segments with at least two markers.

Ex′ = L · LD + 3
LD + 1

Proof. If we assume that breakpoints are distributed “at random,” then their
locations will follow a Poisson process and the lengths will have an exponential
distribution with mean L:

f(x) =
1
L
e−x/L

We assume that markers are also distributed “at random,” so the proba-
bility that a segment of length x will have at least two markers is

1− e−Dx −Dxe−Dx

and the relative frequency of segments of length x in the sample is

S(x) = [1− e−Dx −Dxe−Dx] f(x)

=
1
L

[
e−x/L − e−Bx −Dxe−Bx

]
where B = D+L−1. Normalizing this relative frequency to integrate to 1, we
see that the expected value of observed lengths is

Ex′ =

∫∞
0
xS(x) dx∫∞

0
S(x) dx

Recalling
∫∞
0
e−λx dx = 1/λ,

∫∞
0
xe−λx dx = 1/λ2, and

∫∞
0
x2e−λx dx =

2/λ3, we have∫ ∞

0

S(x) dx = 1− 1
L(D + L−1)

− D

L(D + L−1)2∫ ∞

0

xS(x) dx = L− 1
L(D + L−1)2

− 2D
L(D + L−1)3

Combining the last three formulas, we have

Ex′ =
[L2(D + L−1)3 − (D + L−1)− 2D]/(D + L−1)3

[L(D + L−1)2 − (D + L−1)−D]/(D + L−1)2

Expanding out the cube in the numerator and the square in the denominator,
a lot of cancellation occurs, leaving us with

Ex′ =
L2[D3 + 3D2L−1]
LD2 · (D + L−1)

= L · LD + 3
LD + 1

which is the desired result.
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In the case under consideration, the total number of markers T = 54
and the genome size of mouse is G = 1600 centiMorgans, so D = 0.338
markers/cM. Setting

20.9 =
L2D + 3L
LD + 1

and solving, we have 0.338L2 + (3 − 20.9 · 0.338)L − 20.9 = 0, which gives
L = 8.1. To calculate the number of segments, we divide 1600/8.1 = 197.53.
However, 18 of the breakpoints are caused by the ends of the 19 mouse chromo-
somes, so our estimate of the number of breakpoints caused by translocations
is 179.53.

The final step in Nadeau and Taylor’s (1984) analysis is to assign an uncer-
tainty to the estimate. If the uncertainty in the estimation of x′ were small,
then the relationship between L and x′ could be approximated by a linear
function with slope dL/dx′. Using var (cx′) = c2 var (x′), we have

var (L) ≈ var (x′) ·
(
dL

dx′

)2

The standard deviation of the transformed lengths of the 13 conserved seg-
ments in our sample is 12.8 cM. This leads to an estimate of (12.8)2/13 = 12.6
for var (x′). To evaluate the second term, we use calculus to conclude that

dx′

dL
=

(2DL+ 3)(LD + 1)−D(L2D + 3L)
(LD + 1)2

and dL/dx′ = 1/(dx′/dL). Substituting the numerical values of L, D, and
V (x′), we estimate the standard deviation of our estimate of L to be 1.6 cM.
Dividing this leads to an estimate of 178±39 breakpoints or 89±20 inversions
and translocations between the genomes of man and mouse.

More data confirms the theory

Over time the number of markers in the comparative map between mouse
and man has grown but the estimates of the average length of conserved
segments (in centiMorgans) based on the theory in Nadeau and Taylor (1984)
have remained roughly constant.

source markers segments estimate
Nadeau and Taylor (1984) 54 13 8.1
Nadeau (1989) 157 27 10.1
Copeland et al. (1993) 917 101 8.8
DeBry and Seldin (1996) 1416 181 7.7

A more direct test of the theory is to look at the distribution of the number
of genes per conserved segment. If breakpoints were a Poisson process with
rate n and genes were a Poisson process with rate m, then the number of
genes in a segment would have a shifted geometric distribution with success
probability n/(m+ n). That is the probability of r genes would be
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m

m+ n

)r

· n

m+ n
for r = 0, 1, 2, . . . (9.10)

Taking a different approach to this question, Sankoff and Nadeau (1996) have
shown:

Theorem 9.8. Consider a linear interval of length 1, with n > 0 uniformly
distributed breakpoints that partition the interval into n+1 segments. Suppose
that there are m genes also uniformly distributed on the interval between 0
and 1, and independently of the breakpoints. For an arbitrary segment, the
probability that it contains r genes, 0 ≤ r ≤ m, is

P (r) =
nm!(n+m− r − 1)!

(n+m)!(m− r)!
(9.11)

To make the connection with (9.10) we can write (9.11) as

m

n+m
· m− 1
n+m− 1

· · · m− r + 1
n+m− r + 1

· n

n+m− r

Proof. The segment length between two adjacent breakpoints has probability
density f(x) = n(1 − x)n−1. For a segment of length x, the probability that
it has r genes is given by the binomial distribution. Thus

P (r) =
∫ 1

0

n(1− x)n−1

(
m

r

)
xr(1− x)m−r dx

Repeated integration by parts shows that∫ 1

0

xa(1− x)b−a dx =
b− a

a+ 1

∫ 1

0

xa+1(1− x)b−a−1 dx

=
(b− a) · (b− a− 1) · · · 1

(a+ 1) · (a+ 2) · · · b

∫ 1

0

xb dx =
(b− a)!a!
(b+ 1)!

Using this result with a = r and b = n+m− 1 shows

P (r) = n · m!
r!(m− r)!

· (n+m− r − 1)!r!
(n+m)!

which is the indicated result.

Sankoff, Parent, Marchand, and Ferretti (1997) applied this result to the
human/mouse map that was available at the time their paper was written.
Since one cannot observe n0 the number of segments having no genes, they
had to compare f(r) = nr/

∑
k>0 nk with Q(r) = P (r)/(1 − P (0)). They

found that the fit was generally pretty good, but f(1) was much larger than
Q(1).
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Genome sequence data raises doubts

The draft human and mouse sequences revealed many undiscovered syn-
teny blocks, a total of 281 of size at least 1 megabase and put the random
breakage model to a new test, see Pevzner and Tesler (2003a). Although the
number of synteny blocks is higher than the Nadeau-Taylor predictions, the
lengths of these blocks still fit an exponential distribution. However the finer
resolution data also revealed 190 short synteny blocks that are not consistent
with the exponential distribution.

Pevzner and Tesler (2003b,c) argued that the surprisingly large number
of breakpoints in clumps was an argument in favor of a different model of
chromosome evolution that they called the fragile breakage model. This model
postulates that the breakpoints mainly occur within relatively short hot spots
of rearrangement. They observed that the existence of such fragile regions was
supported by previous studies of cancer and infertility.

9.4 Genomic distance

As in the case of inversions, one can ask how many moves (inversions, translo-
cations, fissions, and fusions) are needed to transform the autosomes of the
mouse genome into those of the human genome. Hannenhalli and Pevzner
(1995b) extended their earlier work on the reversal distance to compute the
genomic distance, that is, the minimal number of moves needed to transform
one genome into another one. The answer is in terms of seven parameters
capturing different combinatorial properties of the sets of strings, so we will
not go into the details here.

9.4.1 Graph distance

Instead, we will describe how to compute a lower bound on the distance from
the breakpoint graph, which, in most applications, gives the right answer. To
explain the method, we will consider an example

genome A genome B
1, −6 1, 2, 3
3, 5, −4 4, 5, 6
2

The first step is to double the markers. A signed marker +x, becomes 2x−1, 2x
and −x becomes 2x, 2x−1. Doubling the markers in the A genome and adding
A’s at the ends (which we consider to be distinct vertices) gives edges

A− 1, 2− 12, 11−A

A− 5, 6− 9, 10− 8, 7−A

A− 3, 4−A
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which are drawn as in Figure 9.4 as thick lines (black edges). Adding an
empty chromosome to genome B to make the number of chromosomes equal,
and drawing thin lines (gray edges) for adjacencies in the B genome gives
the breakpoint graph. Note that, except for the special vertices A and B,
which always have degree 1, all the other vertices in the breakpoint graph are
incident with one gray and one black edge.

B B B B

A 1 2 12 11 A

A 4 3 A B

A 5 6 9 10 8 7 A

B

Fig. 9.4. Breakpoint graph for our simple example.

We have two types of connected components in the breakpoint graph, one
without special vertices x1, x2, . . . x2r that we call cycles, and a second type
that begins and ends with special vertices that we call paths. We can write
the breakpoint graph in a unique way a union of paths and cycles.

Let c(A,B) be the number of components, i.e., paths and cycles, including
empty chromosomes. Let #(A,A) be the number of paths that start with A
and end with A. In the example drawn above the components are

A− 1−B, A− 4− 5−A, A− 3− 2− 12−B

A− 11− 10− 8− 9− 6−B A− 7−B B −B

the number of components c(A,B) = 6, and the number of same genome
cycles #(A,A) = #(B,B) = 1.

Let n be the number of makers and k the number of chromosomes. The
graph distance between two genomes A and B is defined as

d(A,B) = n+ k − c(A,B) + #(A,A). (9.12)

The graph distance for our example is 6 + 3− 6 + 1 = 4. Again one can check
that any move can only decrease d(A,B) by at most 1, so the graph distance
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is a lower bound on the genomic distance. It is easy to check in the example
we are considering that we can transform A into B in four rearrangements by
using the following steps

1, −6 1, 2 1, 2 1, 2, 3 1, 2, 3
3, 5, −4 → 3, 5, −4 → −6, 5, −4 → 4, −5, 6 → 4, 5, 6
2 6 3

where in the third step, flipping the second chromosome does not count as a
move.

9.4.2 Bayesian estimation

Following Durrett, Nielsen, and York (2003), we will assume that inversions
and translocations arise in the genome at constant rates λI and λT , and that
the process of inversions and translocations forms a Markov chain with state
space ΩO given by the set of all possible orderings of the markers on ordered
chromosomes. Assuming all markers are signed indicating their orientation on
the chromosome, there are

|ΩO| = 2N (M +N − 1)!
(M − 1)!

orderings of N signed markers on M numbered chromosomes, allowing empty
chromosomes, i.e., chromosomes containing no markers. In our representation,
transitions between neighboring states (states differing by only a single inver-
sion or a single translocation) in ΩO occur at rate λI if the two states differ
by an inversion and at rate λT if they differ by a translocation. Because of
the symmetry of the transition rates, the Markov chain is reversible and has
a uniform stationary distribution, i.e.,

πO(x) = 2−N (M − 1)!
(M +N − 1)!

for all x ∈ ΩO.

Because the ordering of chromosomes is not of interest, we also consider a
Markov chain with a collapsed state space (ΩU ) that ignores the numbering of
chromosomes. An element of ΩU , with M0 empty chromosomes, corresponds
to 2M−M0M !/M0! elements of ΩO. The stationary probability assigned to an
element of ΩU with M0 empty chromosomes is then

πU (x) = 2−N+M−M0
M !(M − 1)!

M0!(M +N − 1)!
for all x ∈ ΩU .

Transitions between neighboring states in this collapsed Markov chain occur
at rates λI if the two states differ by an inversion and λT if they differ by a
translocation, except for events involving a chromosomal fission. When there
are M0 empty chromosomes, these transitions occur at rate 2M0λT , since they
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correspond to a translocation with an empty chromosome. With these rates
the transition probabilities of the Markov chain obey the detailed balance
equations and the Markov chain is reversible. In the following we will use the
representation based on the Markov chain with state space on ΩU .

Consider the genome of two organisms. The genomic marker data from
one species x1 can be transformed into the genomic marker data from another
species x2 through a sequence of inversions and translocations. Because the
process we have defined is reversible we can write the sampling probability as

P (x1, x2|Θ) = P (x1)P (x1 → x2|Θ)

where Θ is the vector of parameters and P (x1 → x2|Θ) is the transition prob-
ability for the transformation from x1 to x2. Because a model parameterized
in terms of t, λT and λI is not identifiable, we arbitrarily set t = 1 and define
Θ = (λT , λI). Therefore, λT and λI can be interpreted as the expected num-
ber of translocations and inversions per marker pair in the history of the two
species. P (x1) does not depend on Θ, so the likelihood function is, therefore,
simply given by

L(Θ) = Pr(x1 → x2|Θ).

Let Ψ be the (countably infinite) set of all possible evolutionary paths from
x1 to x2. We notice

P (x1 → x2|Θ) =
∑
y∈Ψ

P (y|Θ)

To estimate Θ we define a Markov chain with state space on [0,∞)2×Ψ with
stationary distribution given by the joint posterior distribution of parameters
and evolutionary path, y,

π(y, λT , λI) = P (y, λT , λI |x1, x2)

To ensure the posterior is proper and biologically meaningful, the supports of
λT and λI are restricted to the intervals (0, λTmax) and (0, λImax) respectively,
and uniform priors uT and uI are used.

The Markov chain is simulated using the Metropolis-Hastings algorithm
similarly to the method used in York et al. (2003). In brief, the posterior
distribution is proportional to

P (y|λT , λI)uT (λT )uI(λI)

The Markov chain is then simulated by iteratively proposing new values of
y, λT and λI , and accepting these new values according to the appropriate
Metropolis-Hastings acceptance probabilities, see Section 9.2 or York et al.
2003 for more details.

One new complication is that if at time t there are IT (t) possible transloca-
tions and II(t) possible inversions that can occur, the total rate of transloca-
tions and inversions is IT (t)λT +II(t)λI . This rate is not constant in time and
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the probability of a path depends on the times between the events. To avoid
keeping track of the interevent times, Durrett, Nielsen, and York (2003) used
a method based on uniformization to ensure that the total rate of change is
constant in time. In brief, they allowed pseudoevents of evolutionary change,
which have no effect on marker order, to make the total rate of evolutionary
change kept constant.

Analysis of three data sets

Tomato vs. eggplant. Doganlar et al. (2002) constructed a compara-
tive map of tomato and eggplant consisting of 233 markers. Thinning their
data set to choose one marker from each group in which the order was not
resolved, leads to a data set with 170 markers. Analyzing the data by hand
they concluded: “Overall, eggplant and tomato were differentiated by 28 re-
arrangements, which could be explained by 23 paracentric inversions and five
translocations during evolution from the species’ last common ancestor.”

Six of the chromosomes are conserved between species, so the interesting
part of the data can be written as

Eggplant Tomato
E3. 1, 2, 3, 4, 5, 6 T3. 1, −5, 2, 6
E4. 7, 8 T4. 21, −22, −20, 8
E5. 9, 10 T5. −4, 14, 11, −15, 3, 9
E10. 11, 12, 13, 14, 15, 16, 17, 18 T10. 7, 16, −18, 17
E11. 19, 20, 21, 22 T11. −19, 24 −26, 27, 25
E12. 23, 24, 25, 26, 27 T12. −12, 23, 13, 10

Doubling the markers and defining the breakpoint graph, which we do not
have to draw to compute the components, we find that there are seven shared
ends in the two genomes which lead to short paths: E − 1 − T , E − 12 − T ,
E − 13− T , E − 16− T , and E − 20− T . The other paths are

E − 17− 6− 7− 27− 26− 19− 18− T

E − 21− 28− 29− 5− 4− 11− 10− 2− 3− 9− 8− T

E − 36− 32− 33− 35− 34− T

E − 37− 47− 46− 25− 24− T

E − 44− 42− 43− 40− 41− T

E − 45− 23− 22− 30− 31− 14− 15− 39− 38− T

E − 54− 49− 48− 52− 53− 51− 50

The number of markers n = 27, chromosomes k = 6, components c(E, T ) =
12, and the number of same genome paths is #(E,E) = #(T, T ) = 0 so using
(9.12) the distance

d(E, T ) = 27 + 6− 12 + 0 = 21
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Adding to this seven inversions for the other six chromosomes we arrive at a
distance of 28, in agreement with Doganlar et al. (2002).

Durrett, Nielsen, and York’s Bayesian analysis produced 95% credible in-
tervals of [5,7], [21,31], and [28,37] for the number of translocations, inversions,
and total number of events (respectively) separating tomato and eggplant.
Figure 9.5 gives the posterior distribution for the number of inversions.

Fig. 9.5. Posterior distribution of inversions for tomato vs. eggplant.

Human vs. cat. Murphy et al. (2000) created a radiation hybrid map of
the cat genome integrating 424 genes with 176 microsatellite markers. Using
resources on the NCBI home page, http://www.ncbi.nlm.nih.gov, Durrett,
Nielsen, and York (2003) were able to locate the position of 281 of the genes
in the human genome. From this set they deleted 12 singleton disruptions,
i.e., isolated genes that map to a chromosome different from their neighbors.
In support of this practice they noted that none of the regions deleted are
observed in the chromosome painting experiments of Weinberg et al (1997)
and those techniques are thought to be capable of detecting segments as small
as 5 megabases.

Parsimony analysis shows that the marker order in the human genome can
be transformed into the cat genome in 78 moves (14 translocations and 64 in-
versions). Bayesian analysis gives 95% credible intervals of [12,15], [71,89], and
[85,102] for the number translocation, inversions, and total number of events
respectively. Note that the parsimony distance is not in the 95% credible in-
terval for the total number of events. In fact, the posterior probability of a
total of 78 events is approximately 2 × 10−5. The posterior distribution for
the number of translocations assigns probability

12 13 14 ≥ 15
0.5967 0.3451 0.0531 0.0050
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so this time the smallest value is the most likely. The posterior distribution of
the number of inversions is given in the next figure, with the mode being 79.

Fig. 9.6. Posterior distribution of inversions for human vs. cat.

Finally we would like to compare our estimates with those of Nadeau and
Taylor, described in Section 9.3. There are 83 conserved segments with 2 or
more markers with an average length of 16.3 megabases, which results in
an estimated average length of 18.2 megabases. Using 3.2 gigabases for the
length of the human genome yields an estimate of 175.8 segments. Subtracting
22 chromosomes in the human genome, we arrive at an estimate of 155.8
disruptions or an estimate of 77.9 events. This is almost exactly the parsimony
distance of 78, but is this lower than the Bayesian estimates. On the other
hand, the method of Nadeau and Taylor includes events that are not visible
with our set of markers.

Human vs. cattle. Band et al. (2000) constructed a radiation hybrid
map of cattle (Bos taurus) with a total of 638 genes. For the data see http://
bos.cvm.tamu.edu/htmls. Using resources on the NCBI home page, Durrett,
Nielsen, and York (2003) were able to locate the position of 448 of the genes in
the human genome. Deleting 24 singleton disruptions for the reasons indicated
above results in a map with 422 markers. Again the reduced map is consistent
with the results of chromosome painting, see Hayes 1995 and Chowdhary et
al (1996).

Parsimony analysis shows that the marker order in the human genome can
be transformed into the cattle genome in 155 moves (20 translocations and
135 inversions). The Bayesian approach experienced convergence problems in
this example. In the case of translocations there is a considerable difference
between the chains indicating convergence problems. The qualitative differ-
ences between chains in the number of inversions are not as great as in the case
of translocations. The modes are all in the range 185–191, but the variance
differs somewhat from run to run.
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We cannot make statements with much confidence about the number of
inversions and translocations. However two things are clear: (i) the number
of events is roughly twice that in the human cat comparison even though the
divergence times are similar and (ii) our conclusions differ considerably from
those of Band et al. (2000), who say that their “comparative map suggests that
41 translocation events and a minimum of 54 internal rearrangements have
occurred.” They do not explain how they reached this conclusion. However,
we would require a larger number of translocations if we had not deleted the
singletons and they would underestimate the number of inversions if they used
the breakpoint distance.

To estimate distances using the methods of Nadeau and Taylor we note
that there are 125 conserved segments with two or more markers with an av-
erage length of 7.19 megabases, which results in an estimated average length
of 7.57 megabases. Using 3.2 gigabases for the length of the human genome
yields an estimate of 422.7 segments. Subtracting 22 chromosomes in the hu-
man genome gives an estimate of 400.7 disruptions, or an estimate of 200
events. This is somewhat larger than our Bayesian estimate, but that is con-
sistent with the fact that our estimate is restricted to the events that can be
detected by the 422 markers in our map.

9.5 Midpoint problem

Given that there are many paths that achieve the minimum distance, it is
natural to use information about gene order for several species to identify the
sequence of events that occurred. Here we are thinking of examples where the
phylogeny is known. Simon and Larget (2001) and Larget et al. (2002) have
used genome rearrangements to estimate phylogenetic relationships.

Hannenhalli et al. (1995) were the first to do this for three species: Herpes
Simplex virus (H), Epstein Barr virus (E), and Cytomegalovirus (C). Com-
paring the gene orders in these viruses leads to the following segments:

H 1, 2, 3, 4, 5, 6, 7
E 1, 2, 3,−5, 4, 6,−7
C 1,−2,−3, 7,−4, 5, 6

Constructing the breakpoint graph for the H-E comparison

0 1 2 3 4 5 6 10 9 7 8 11 12 14 13 15

and using (9.1), we have d(H,E) ≥ 8−5 = 3. For the other direction, we note
that performing the reversal involving the black edges 6-10 and 8-11 leaves a
situation where two more reversals will put the numbers in order.
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0 1 2 3 4 5 6 8 7 9 10 11 12 14 13 15

At the beginning of the section, we showed that d(E,C) = 5. The break-
point graph for the H-C comparison is

0 1 2 4 3 6 5 13 14 8 7 9 10 11 12 15

(9.1) implies that d(H,C) ≥ 8− 3 = 5. We leave it to the reader to show that
d(H,C) = 5.

If we connect the three genomes in an unoriented tree, then there will be
one intermediate genome M , the midpoint.

M
aC ����

��
b

HH
HHHH

c

E

H

If we let a, b, and c be the number of changes on the indicated edges, then

a+ b ≥ d(C,E) = 5
a+ c ≥ d(C,H) = 5
b+ c ≥ d(E,H) = 3

Adding the three inequalities, we have

a+ b+ c ≥ d(C,E) + d(C,H) + d(E,H)
2

=
13
2

(9.13)

so a+ b+ c ≥ 7. There are three triples (a, b, c) with sum 7 that satisfy these
inequalities: (4, 2, 1), (4, 1, 2), and (3, 2, 2). To check this note that (i) b+c ≥ 3
implies a ≤ 4, and (ii) b, c ≥ 5 − a implies a + b + c ≥ 10 − a, so a ≥ 3. If
a = 4, b ≥ 1, and c ≥ 1, while if a = 3, b ≥ 2, and c ≥ 2.

For a given triple, say (4, 2, 1), Hannenhalli et al. (1995) used a computer
to generate all permutations that were distance 4 from C, distance 2 from E,
and distance 1 from H. There is one that is in all three sets 1, 2, 3,−4, 5, 6, 7,
so it represents one possibility for the midpoint M . Considering (4, 1, 2) leads
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to another possibility: 1, 2, 3,−4, 5, 6,−7. The third (3, 2, 2) does not lead to
any scenario with seven inversions, so we have only two most parsimonious
scenarios.

More recent approaches

Sankoff and Blanchette (1997, 1998a,b , 2000) have considered our problem
for the “breakpoint” distance, which is 1/2 the number of markers adjacent
in one genome that fail to be adjacent in the other, rounded up to the next
integer. That is, given n genomes G1, . . . , Gn having a known phylogeny, one
seeks genomes H1, . . . ,Hn−2 for the internal nodes of the tree, so that the
sum of the breakpoint distance between endpoints of edges of the tree is mini-
mized. Blanchette et al. (1999) used BPANALYSIS, an implementation of the
breakpoint analysis of Blanchette et al. (1997) on a problem with 11 genomes
and 35 markers. More recently, an improvement of the BPANALYSIS, call
GRAPPA has been developed by Moret et al. (2001).

Bourque and Pevzner (2002) developed an approach called the Multiple
Genome Rearrangement Median (MGR-MEDIAN) algorithm based on the
genomic distance which applies to n species. When n = 3 the algorithm works
in two stages. In the first stage, rearrangement events in a genome that bring
it closer to each of the other two of the three genomes are carried out “in
a carefully selected order.” In the second stage, moves are accepted if they
bring two genomes closer together. For more on the computer implementation
of this approach, see Tesler (2002).

Durrett and Interian (2006) have recently developed a new approach to the
median problem. Given three genomes A, B, and C, they seek a genome M
that minimizes d(A,M)+d(B,M)+d(C,M), where d is the graph distance. To
do this, they initialize the search process with a proposed midpoint and then
proceed by iteratively making small changes in the midpoint. The proposed
change is always accepted if it reduces the total number of moves, and with a
fixed probability if it does not. This work is not yet published, but a paper and
the computer code for the algorithm, MEDBYLS (Median by Local Search),
can be found at http://www.cam.cornell.edu/~interian/MEDbyLS_code.
html

Four data sets

Human-lemur-tree shrew. The first data set we will consider is a three
way comparison of human (Homo sapiens) , lemur (Eulemer macaco macaco)
and tree shrew (Taupaia belangeri). The reason for interest in this compari-
son is that the midpoint should provide an estimate for genome arrangement
in the ancestor of all primates. Müller et al. (1997) did a reciprocal chro-
mosome painting between human and lemur, and Müller et al. (1999) did a
reciprocal painting between human and tree shrew, and a painting of lemur
chromosomes with tree shrew paints. There are 37 segments in the compar-
ison with lemur and 39 with tree shrew. Subdividing to obtain a common
collection of segments, we arrive at the 41 homologous segments given in the
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table. Chromosome painting does not give information about orientation, so
we have assigned signs to segments to minimize the distance.

Human Lemur Tree shrew
1. 1,2,3 1. -22, -7,-6,-9,-8,39 1. 32,23,22 21. 15
2. 4,5 2. -5, -21, -31 2. -26, -38 22. 13
3. 6,7,8,9 3. 18, -14 3. 36 23. 11
4. 10,11,12,13 4. -29,-26,-25 4. 18,19 24. 7
5. 14,15 5. -24,27,-40 5. -37,-33 25. 10
6. 16,17 6. -38,10, 4 6. 9 26. 12
7. 18,19 7. 33,-36,30 7. -5,-39,8 27. 6
8. 20,21 8. -35,16,12 8. 17 28. -28,41
9. 22 9. 1 9. 27,-40 29. 16
10. 23,24 10. 32,-34 10. 1 30. 31
11. 25,26 11. 17 11. 30
12. 27,28 12. -37,13 12. 4
13. 29 13. -28,41 13. 20,21
14/15. 30,31 14. 2 14. 14
16. 32,33 15. 15 15. 35
17. 34 16. 20 16. 24
18. 35 17. 23 17. 29
19. 36,37 18. 3 18. 34
20. 38 19. 19 19. 2,3
21. 39 20. -11 20. 25
22. 40,41

The distances between the three genomes are d(L,H) = 21, d(L, T ) = 19,
and d(H,T ) = 16. Using (9.13), the total number of events

≥ d(L,H) + d(L, T ) + d(H,T )
2

= 28

The next table gives the midpoint M computed by local search, which has
d(L,M) = 12, d(TS,M) = 10, d(H,M) = 10 for a total of 32 events. This is 4
more than the lower bound, but it is possible to show that 32 is the minimum.
The numbering of the chromosomes is to facilitate comparison with the next
midpoint.

1a. 1 10 7. 18, 19 12a/22a. 27, -40
1b. 2, 3 11 9. 22 12b/22b. -28, 41
2a. 4 . -12, -16 10. 23, 24 13. 29
-5,-21,-20 -13, 37 11. 25, 26 14/15. 30, 31
3a. 6, 7 14 17. 34
3b/21. -9, -8, 39 15 18. 35

17 16/19a. 32, 33, -36 20. 38

Müller et al. (1999) have proposed that the primitive primate karyotype
consists of human autosomes 1a, 1b, 2a, 2b, 3/21, 4 to 11, 12a/22a, 12b/22b,
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13, 14/15, 16a, 16b, 17, 18, 19a, 19b, and 20. Our interpretation of this mid-
point N in terms of our segments is given in the next table. We have performed
two inversions in human chromosome 3 since this improves the performance
of their solution: d(L,N) = 17, d(T,N) = 14, d(H,N) = 7 for a total of 38
events, 6 more than the minimum.

1a. 1 4.10 11 12 13 7. 18 19 12a/22a. 27,-40
1b. 2 3 5. 14 15 9. 22 12b/22b. -28,41
2a. 4 6. 16 17 10. 23 24 13. 29
2b. 5 11. 25 26 14/15. 30 31
8. 20 21 19b. 37 17. 34
3/21.-7 -6 -9 -8 39 16a. 32 18. 35

16b. 33 20. 38
19a. 36

Note that the expert solution has many fewer events in the human genome,
while the one found by local search distributes the changes almost equally
over the three lineages. It is interesting to note that the two solutions share
many features in common even though the expert solution is informed by
comparisons with other primate genomes while the computer generated solu-
tion only uses the three given as data. For an interesting expert analysis of
rearrangements within primates, see Haig (1999).

Human-cow-cat. Our second data set is a comparison of human, cat,
and cattle constructed by Murphy et al. (2003). They have 300 markers on
autosomes. We have deleted 12 markers whose position is in conflict with chro-
mosome painting experiments of Hayes (1995) and Chowdhary et al. (1996)
that compared human and cattle or work of Weinberg et al. (1997), and Mur-
phy et al. (1999, 2000) that used chromosome painting results and a radiation
hybrid map to compare humans and cats. In addition we deleted 3 markers
to make block boundaries coincide and to allow the creation of smaller data
set. The first step is to omit chromosomes that don’t tangle with the others

I. Human 17 Cat E1 Cow 19
II. Human 14,15 Cat B3 Cow 10, 21
III. Human 6 Cat B2 Cow 9, 23
IV. Human: 11 Cat D1 Cow 15, 29.

The second is to reduce to syntenic segments, i.e., blocks of markers tha are
the same but in a different order. This produces a data set small enough so
that one can try to visualize the changes
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Human Cow Cat
1: 1,2,3,4,5,6,7 1: -35, 11 A1: 28,-15,-14
2: 8,9 2: 9, -2 A2: 32,-10,16
3: 10,11 3: -4,-3 A3: -34,-8
4: 12,13 4:16 B1:18,-13,-12
5: 14,15 5: 26,-37,-25,38 B4: 22,25,26,37,38
7: 16,17 6:12 C1: 1,2,3,9
8: 18,19 7: -32,-15 C2:-35,11
9: 20,21 8:20 D2:-7,-23,24
10: 22,23,24 11:-8,21 D3: -27,36,31
12: 25,26,27 12:28 D4:20,21
13: 28 13:-22,34 E2:-33,30
16: 29,30 14:-19 E3:17,-29
18: 31 16:6,5,1 F1:5,-4,6
19: 32,33 17: -13,27,36 F2:19
20: 34 18:-30,33
21: 35 20:14
22: 36,37,38 22:10

24:31
25:29,-17
26:24
27:18
28:7,-23

Since cow and cat both begin with C, we will use B for bovine and F
for feline as the one letter abbreviations of those genomes. d(F,H) = 51,
d(F,B) = 82, and d(H,B) = 72 so the lower bound from (9.13) is 103. The
local search method produces a midpoint with d(H,M) = 18, d(F,M) = 36,
d(B,M) = 56 for a total of 110 events. Murphy et al. (2003) have analyzed
this data using the MGR-MEDIAN algorithm. This method has a parameter
G that is a distance threshold used to filter out spurious markers that occur
at isolated points. When G = 4 singletons are deleted, while increasing G
allows for more complex microrearrangments. The solution they present in
their Figure 2 has G = 6 uses 276 of the 300 markers. They find distances
d(H,M) = 16, d(F,M) = 21, d(B,M) = 27 for a total of 64 events.

It is confusing to compare these answers, which assign a much different
fraction of moves to the three branches. Murphy et al. (2003) presented their
solution as the answer. However, it is now common to explore a wide range of
alternative midpoints to see which features of the midpoint in which one can
have confidence, see e.g., the supplementary material of Murphy et al. (2005).

Human-mouse-rat. The third data set is a comparison of human, mouse,
and rat constructed by Colin Dewey and Lior Pachter which appeared in the
April 1, 2004 issue of Nature devoted to the sequencing of the rat genome,
see page 498. In our final example we will concentrate on the inference of
the number of events rather than trying to reconstruct the changes. For re-
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constructions of the midpoint, see Bourque et al. (2004, 2005), or Murphy
et al. (2005). The local search method produced 100 midpoints in which the
total distance was 347 in 98 cases and 346 in 2. The average distance to the
midpoint is 43.01 for mouse, 62.75 for rat, and 241.22 for human, in contrast
to the distances of 50, 56 and 247 and a total of 353 reported by the Rat
Genome Sequencing Project Consortium (2004). See Bourque, Pevzner, and
Tesler (2004) for details of the computation.

If we use 15 million years for the divergence of mouse and rat, and 90
million years for their divergence from human, then the human to midpoint
branch is 165 million years and the estimates of events per million years from
local search are 3.01 for mouse, 4.33 for rat and 1.48 for human. This contrasts
with the estimates of 2.25 for mouse and 1.25 for rat from Figure 3 of Murphy
et al. (2005). It is interesting to note that the answer to the question: ”do
rats have more frequent rearrangements than mice?” is different. Murphy et
al. (2005) give an estimate of 0.39 events per year for the 90 million years
since divergence, and 2.11 per year on the branch from the divergence to the
mouse-rat split. The local search method cannot estimate rates separately for
the two branches but weighting the rates by the interval lengths (0.39)(90/165)
+ (2.11)(75/165) = 1.17, gives a rate smaller than 1.48.

Seven species comparison. The results of Murphy et al. (2005) quoted
in the last two paragraphs come from a paper that compares human, mouse,
rat, cat, dog, pig, and cow. Using sequenced genomes and radiation hybrid
maps they constructed a map with 307 blocks. The pairwise distances between
the species based on this map are

Mouse Rat Cat Cattle Dog Pig
Human 153 149 61 115 108 78
Mouse 60 169 209 184 172
Rat 164 203 180 170
Cat 130 114 87
Cattle 157 135
Dog 124

The most parsimonious solution involved 487 rearrangements. As the following
recreation of their Figure 3 shows there is a great heterogeneity in the rates
of rearrangements
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9.6 Genome duplication

In this section, we will consider three examples where DNA sequence data
indicate that the whole genome has undergone duplication: yeast (Saccha-
romyces cerevisiae), maize, and Arabidopsis thaliana.

9.6.1 Yeast

Smith (1987) was the first to suggest that the yeast genome had undergone
duplication based on the fact that the core histone genes occur as duplicate
pairs. A few years later, Lalo et al. (1993) showed that there was a large du-
plication between chromosomes III and XIV covering the centromeric regions
of these two chromosomes.

The completion of the sequencing of the yeast genome in 1997 made it
possible for Wolfe and Shields (1997) to study this question in more detail.
To look for duplicated blocks, they used the BLASTP to compare the amino
acid sequences of all genes in the yeast genome. A BLASTP score of ≥ 200
(which will occur randomly with probability p = 10−18 or less) was taken as
evidence that two genes are homologues. The process of looking for duplicated
blocks is complicated by the fact that after genes are duplicated, it is often
the case that one member of the pair loses function and similarity is erased
by the accumulation of mutations. For this reason, Wolfe and Shields defined
a duplicate region when there were (i) at least three pairs of homologues with
intergenic distances of at most 50 kb, and (ii) conservation of gene order and
orientation (with allowance for small inversions within some blocks). With
these criteria they found 55 duplicate regions containing 376 pairs of homolo-
gous genes. The duplicated regions were an average of 55 kb long and together
they span about 50% of the yeast genome.



390 9 Genome Rearrangement

How did these 55 duplicated regions arise? They were formed either by
many successive independent duplications (each involving dozens of kilobases)
or simultaneously by a single duplication of the entire genome (tetraploidy)
followed by reciprocal translocation between chromosomes to produce a mo-
saic of duplicated blocks. In support of the tetraploidy and translocation
model, one can observe that for 50 of the 55 blocks, the orientation of the
entire block with respect to the centromere is the same in the two copies.
Block orientation is expected to be conserved if the blocks were formed by re-
ciprocal translocation between chromosomes, whereas if each block was made
by an independent duplication event, the orientation should be random. Since
50 heads or 50 tails in 55 tosses of a fair coin is extremely unlikely, this is
evidence for the tetraploidy explanation.

To obtain more evidence for duplication and to estimate the age of the
event, Wolfe and Shields (1987) compared 12 S. cerevisiae duplicate pairs
with homologues in Kluveromyces and an outgroup. In 9 of these pairs, there
was strong bootstrap support (≥ 89%) for a branching order that places
the two S. cerevisiae sequences together; in the others there was no strong
support for any order. They then estimated the ages of the duplications in S.
cerevisiae compared with the divergence from Kluveromyces. Three of the gene
pairs yield very young ages, indicating that they have been involved in recent
gene duplications. Of the five pairs for which there were sufficient data to
calculate a confidence interval based on bootstrapping, the mean relative age
of duplication is 0.74 (with a standard deviation of 0.12). Since the divergence
of Kluveromyces and S. cerevisiae has been estimated at 1.5× 108 years ago,
this places the genome duplication in yeast at roughly 108 years ago. For more
on the comparison of gene order in Kluveromyces and S. cerevisiae, see Keogh,
Seoighe, and Wolfe (1998).

Seoighe and Wolfe (1998, 1999) followed up on this work by using simula-
tion and the analytical methods of Nadeau and Taylor (1984) to investigate the
extent of genome rearrangement after duplication in yeast. To simplify things
they took the distance between two genes to be the number of genes between
them rather than the distance in kilobases. In their simulations, an original
genome with eight chromosomes was duplicated and genes were deleted at
random until something resembling present-day yeast remained: 5790 genes
on 16 chromosomes. Reciprocal translocations were then made between ran-
domly chosen points in the genome, and blocks of duplicated genes were iden-
tified by using criteria similar to those in Wolfe and Shields (1997): three
homologues with a maximum distance of 45 genes between them. Of all the
parameter combinations they considered, a probability of 8% for retaining a
duplicate pair and 75 reciprocal translocations produced the best fit to what
was observed. It produced 62 duplicate blocks spanning 54% of the genome
and containing 350 duplicate pairs. This was the only case in which all three
statistics were within two standard deviations of their means.

To explain Seoighe and Wolfe’s use of results of Nadeau and Taylor (1984),
we need to distinguish between chromosomal regions demarcated by reciprocal
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translocations, called segments, and the number of duplicate regions that could
be identified, called blocks. If we let L be the mean length of segments, then,
as in Section 5.3, segment lengths have an exponential distribution:

1
L
e−x/L

The reader should not be too hasty to accept this generalization of the pre-
vious results since segment lengths are now numbers of genes rather than kb.
However, our estimate of L will turn out to be 16.45, so we probably do not
make much of an error approximating the geometric here by the exponential
and the binomial in the next step by the Poisson distribution.

Having pointed out this slight inaccuracy, we now return to performing the
computation as Seoighe and Wolfe (1998) have done and using their notation.
The probability that a segment of length x contains three or more homologues
is

1− e−Dx −Dxe−Dx − (Dx)2

2
e−Dx

where D is the density of homologous pairs in the whole genome. Thus the
fraction of the genome covered by segments has expected value

F = N

∫ ∞

0

(
1− e−Dx −Dxe−Dx − (Dx)2

2
e−Dx

)
1
L
xe−x/L dx

where N is the number of segments. Replacing N by 5790/L and recalling∫ ∞

0

xke−λx dx = k!/λk+1 (9.14)

where 0! = 1, we have

F =
5790
L

(
L− 1

L(D + L−1)2
− 2D
L(D + L−1)3

− 3D2

L(D + L−1)4

)
(9.15)

As in Nadeau and Taylor (1984), if m is the expected length of a segment
that contains n paralogues separated by a total distance r then

m = r(n+ 1)/(n− 1)

Using this, the fraction of the genome covered by blocks, 0.496, translates
into a fraction 0.686 of the genome in identified segments. Using this in (9.14)
we have L = 5790/16.45 = 352 segments organized as 176 pairs. Eight of
these breakpoints are chromosome ends, yielding an estimate of 84 reciprocal
translocations.

As a further check on the predictions of the calculations above we can
observe that the probability that a segment of length x contains y homologues
is e−Dx(Dx)y/y!, so the expected number of segments of length x with y
homologues is
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N

∫ ∞

0

e−Dx (Dx)y

y!
· 1
L
e−x/L dx =

NDy

L(D + L−1)y+1
(9.16)

where we have used (9.14) to evaluate the integral. Comparing the expected
values from (9.16) with the data gives the result in the following table. Here
simulation refers to a model with 446 pairs of retained duplicates and 84
reciprocal translocations, and the intervals in this column are the mean ± 2
standard deviations. Since the simulation parameters are closely related to
the parameters used in evaluating (9.16), it should come as no surprise that
(9.16) agrees well with the simulation. The agreement between the data and
simulation is not so good. In six cases (3, 5, 8, 10, 12, 13) the data lie outside
the approximate 95% confidence interval based on the simulation. Since blocks
are defined by the occurrence of 3 or more homologues, there are no data for
0, 1, or 2. The additional number of two-member blocks found in the real data
is 34. This is larger than the theoretical prediction, but might reflect the fact
that there have been some small-scale duplications since the whole genome
duplication event.

y data (9.16) simulation
0 49.6 49.4
1 35.6 35.9± 5.9
2 25.6 26.2± 5.2
3 10 18.4 18.5± 4.3
4 10 13.2 13.2± 3.5
5 6 9.5 9.6± 3.1
6 4 6.8 6.8± 2.5
7 6 4.9 4.8± 2.1
8 6 3.5 3.3± 1.7
9 1 2.5 2.4± 1.4
10 4 1.8 1.8± 1.2
11 2 1.3 1.3± 1.1
12 1 0.9 0.9± 1.0
13 4 0.7 0.6± 0.7
14 0 0.5 0.4± 0.6
15 0 0.3 0.3± 0.6

16–20 1 0.8 0.6± 2.6
21–25 0 0.1 0.0

Having estimated the number of reciprocal translocations since genome
duplication, it is natural to inquire about the minimum number of transloca-
tions needed to rearrange the duplicated genes on the 16 chromosomes so that
the yeast genome consists of two sets of 8 chromosomes with identical gene or-
der. Seoighe and Wolfe found that after three initial inversions were performed
to correct the orientation of the five blocks whose orientation relative to the
centromere is opposite to their copies, this could be done in 41 steps. This is
considerably smaller than the estimate of 84 given above. However, the reader
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should note that this only requires that the conserved blocks be brought into
a symmetrical arrangement, while simulations in Seoighe and Wolfe (1998)
show that the number of moves required to do this can be much smaller than
the number performed to scramble the genome. El-Marbrouk, Bryant, and
Sankoff (1999) attacked this problem using Hannenhalli’s breakpoint graph.
They did not use any inversions and found that a duplication followed by
45 translocations is necessary and sufficient to produce the current order of
duplicated genes. For more on genome halving problems, see El-Marbrouk,
Nadeau, and Sankoff (1999).

Recently, Friedman and Hughes (2000) have taken another look at dupli-
cated genes in yeast. They used a cutoff score of p = 10−50 to define homolo-
gous genes. By comparing the number of matches in windows of fixed size for
the yeast genome with that of a randomly scrambled version, they determined
that for their fixed window size 4 matches disregarding order were needed to
define a block. With this criterion, they identified 39 blocks. To test the hy-
pothesis of a single genome duplication they looked at the distribution of the
fraction of synonymous substitutions, ps. They found that the distribution of
ps was distinctly bimodal, indicating that some duplications were recent but
a subset of 28 duplications occurred in the distant past. For the more ancient
duplications they estimated an age of 200–300 million years in contrast to
Wolfe and Shield’s estimate of 100 million years.

9.6.2 Maize

Ahn and Tanksley (1993) constructed genetic linkage maps for rice and maize.
They found that in some instances entire chromosomes or chromosome arms
were nearly identical with respect to gene content and gene order. Their anal-
ysis also revealed that most (> 72%) of the single-copy loci in rice were du-
plicated in maize, suggesting the presence of a polyploidization event. This
pattern extends to many other cereals. Moore et al. (1995) showed that the
genomes of rice, wheat, maize, foxtail millet, sugar cane, and sorghum could
be aligned by dissecting the individual chromosomes into segments and rear-
ranging the linkage blocks into similar structures. Further work by Devos and
Gale (1997) and Gale and Devos (1998) has brought more detail to the picture.
However, their circular comparative maps are hard for us to interpret so we
will stick with the simple linear picture in Moore et al. (1995). Using numbers
and letters to indicate segments of rice chromosomes, the maize genome can
be written as follows

M3 = 12a 1a 1b M8 = 1a 5a 5b 1b
M6 = 6a 6b 5a 5b M9 = 6a 6b 8 3c
M1 = 3c 8 10 3b 3a M5 = 2 10 3b 3a
M4 = 11a 2 M7 = 11a 9 7
M2 = 4a 4b 9 7 M10 = 4a 4b 12a
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The underlined groups are conserved between the two sets of chromosomes,
so we will call them segments. Making choices about the orientation of the
segments of length one that will minimize the distance leads to the following:

M3 = +1 + 2 + 3 M8 = −2 +5 +3
M6 = +4 +5 M9 = +4 −6
M1 = +6 +7 M5 = −9 +7
M4 = +8 +9 M7 = +8 +11
M2 = +10 +11 M10 = +10 −1

If we invert −2, 5 in M8, then M8 = −5 +2 +3 and the resulting genomes are
cotailed in the terminology of Hannenhalli. That is, the same blocks appear
on the ends. The reader may notice that +6 is on the front end of M1 while
−6 is on the back end of M9. However, this is exactly what we want. If we
flip M9, then it has +6 on the front.

To construct the breakpoint graph, we follow the procedure in Section 9.1,
but now we use 0’s for the chromosome ends:

0 1 2 3 4 5 6 0

0 7 8 9 10 0

0 11 12 13 14 0

0 15 16 17 18 0

0 19 20 21 22 0

Q
Q

When M8, M9, M5, M7, and M10 are rearranged to match the order in the
other five chromosomes, there will be 16 cycles. Now there are 12, so a mini-
mum of 4 translocations is needed. It is easy to see that this is sufficient. We
first make M8 match M3, then make M9 match M6, etc., and we are done
in four moves.

The solution to undoubling the maize genome is elegant and parsimonious.
Unfortunately, it is also wrong. The absence of duplicated blocks in millets,
sorghum, and sugarcane locates the duplication at the indicated place in the
phylogeny. Comparing with the haploid chromosome number x of closely re-
lated species makes it appear unlikely that the progenitor maize genome had
five chromosomes. Wilson et al. (1999) have suggested that the progenitor
maize genome had eight chromosomes, even though this requires six fusions
after duplication to reduce the number to the current ten. Their suggestion
for the makeup of the predoubling genome can be found in Figure 4 of their



9.6 Genome duplication 395

paper. It requires six inversions and one insertion to produce the current maize
genome.
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The tetraploid event in the evolution of maize could be an autotetraploid
event (the doubling of one genome) or an allotetraploid event (the hy-
bridization of two closely related species). Hexaploid bread wheat (Triticum
aestivum) is an allopolyploid with genome construction AABBCC, formed
through hybridization of T. uratu with a B genome of unknown origin, and
subsequent hybridization only about 8000 years ago with C genome diploid,
T. tauschii. In order to distinguish between these two scenarios, Gaut and
Doebley (1997) examined the ages of 14 duplicate genes in maize.

loci distance
orp1, orp2 0.298(1.44)
ant1, ant2 0.277(1.32)
ohp1, ohp2 0.254(1.19)
r, b 0.241(0.83)
cpna, cpnb 0.186(0.55)
cdc2a, cdc2b 0.177(1.04)
whp1, c2 0.169(0.66)
fer1, fer2 0.168(1.44)
cI, plI 0.159(1.05)
ibp1, ibp2 0.150(0.36)
tbp1, tbp2 0.147(1.20)
vpl4a, vpl4b 0.121(0.29)
obf1, obf2 0.104(0.48)
pgpa1, pgpa2 0.102(0.39)

In an autotetraploid, the divergence of the gene copies will all start at
the time the species returns to being a diploid. In an allotetraploid, during
the time of tetrasomic inheritance, genetic drift (or selection) could bring the
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alleles of one parent species to fixation. These genes would begin to diverge
at the time of the shift to disomic inheritance, while loci that retain alleles
from both parents would date to the time of the divergence of the two species
that combined to make the allotetraploid. Thus the presence of two distinct
age classes would be evidence for allotetraploidy. The previous table gives
the synonymous distance between the duplicated loci with the variance times
1000 in parentheses. A χ2 test soundly rejects (p < 0.0001) the hypothesis
that all of these random variables have the same mean. The group above the
line (group A) and the group below the line (group B) have 95% confidence
intervals that don’t overlap. A χ2 homogeneity test was not significant for
either group (group A, p = 0.65, and group B, p = 0.08).

Having demonstrated the existence of two groups of duplicated sequence
pairs, Gaut and Doebley’s next step was to explore how the duplication events
are related to the divergence of maize and sorghum. To do this we first need an
estimate of the rate of nucleotide substitutions. Gaut et al. (1996) estimated
the synonymous substitution rate between the Adh1 and Adh2 loci of grasses
at 6.5 × 10−9 substitutions per synonymous site per year. Given this rate,
sequences in group A diverged roughly

0.267
2 · 6.5× 10−9

= 20, 500, 000 years ago

and pairs of duplicated sequences in group B diverged approximately 11.4
million years ago. Quite remarkably the average divergence between maize
and sorghum falls between the group A distance and the group B distances,
suggesting that the sorghum genome is more closely related to one of the
maize sub genomes than to the other one. For more on this topic, see Gaut
et al. (2000).

9.6.3 Arabidopsis thaliana

This plant was chosen as a model diploid plant species because of its compact
genome size. Thus it was surprising when a 105 kilobase bacterial artificial
chromosome clone from tomato sequenced by Ku et al. (2000) showed conser-
vation of gene order and content with four different segments in chromosomes
2–5 of Arabidopsis. This pattern suggests that these four segments were de-
rived from a common ancestral segment through two or more rounds of large
scale genome duplication events, or by polyploidy. Comparison of the diver-
gence of the gene copies suggested that one of the duplication events is ancient
and may predate the divergence of Arabidopsis and tomato approximately 112
million years ago, while the other is more recent.

When the complete sequence of Arabidopsis was later published (see Na-
ture 408, 796–815), dot-matrix plots of genic similarities showed that much of
the genome fell into pairs. These plots provide compelling evidence in support
for one polyploidy event, which the authors of Arabidopsis Genome Initiative
took to be the more recent event proposed by Ku et al. (2000). A significantly
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different conclusion was made by Vision, Brown, and Tanksley (2000), who
analyzed the duplications in the completed genome sequenced. Their results
suggest that there were three rounds of duplications where 25, 36, and 23
blocks were duplicated 100, 140, and 170 years ago. An independent analysis
of the duplicated genes by Lynch and Conrey (2000) suggested that there was
one whole genome duplication 65 million years ago.
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its Applications, Springer, New York

Griffiths, R.C., and Pakes, A.G. (1988) An infinite-alleles version of the simple
branching process. Adv. Appl. Prob. 20, 489–524

Griffiths, R.C., and Tavaré, S. (1994a) Ancestral inference in population ge-
netics. Statist. Sci. 9, 307–319
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Joyce, P., and Tavaré, S. (1987) Cycles, permutations and the structure of the
Yule process with immigration. Stoch. Proc. Appl. 25, 309–314

Kaj, I., and Krone, S.M. (2003) The coalescent process in a population of
varying size. J. Appl. Prob. 40, 33–48

Kaneko, M., Satta, Y., Matsura, E.T., and Chigusa, S. (1993) Evolution of
the mitochondrial ATPase 6 gene in Drosophila: Unusually high level of poly-
morphism in D. melanogaster. Genet. Res. 61, 195–204

Kaplan, H., Shamir, R., and Tarjan, R.E. (2000) Faster and simpler algorithm
for sorting signed permutations by reversal. SIAM Journal on Computing. 29,
880–892



9.6 Genome duplication 411

Kaplan, N.L., Darden, T., and Hudson, R.R. (1988) The coalescent in models
with selection. Genetics. 120, 819–829

Kaplan, N.L., and Hudson, R.R. (1985) The use of sample genealogies for
studying a selectively neutral m-locus model with recombination. Theor. Pop.
Biol. 28, 382–396

Kaplan, N.L., Hudson, R.R., and Langley, C.H. (1989) The “hitchhiking ef-
fect” revisited. Genetics. 123, 887–899

Karlin, S., and Levikson, B. (1974) Temporal fluctuations in selection inten-
sities: Case of small population size. Theor. Pop. Biol. 6, 383–412

Kauppi, L., Jeffreys, A.J., and Keeney, S. (2004) Where the crossovers are:
recombination distributions in mammals. Nature Reviews Genetics. 5, 413–
424

Ke, X., et al. (2004) The impact of SNP density on fine-scale patterns of
linakge disequilibrium. Human Mol. Genetics. 13, 577-588

Keightley, P.D. (1994) The distribution of mutation effects on viability in
Drosophila melanogaster. Genetics. 138, 1315–1322

Keogh, R.S., Seoighe, C., and Wolfe, K.H. (1998) Evolution of gene order
and chromosome number in Saccharomyces, Kluyveromyces, and related fungi.
Yeast. 14, 443–457

Kim, Y., and Stephan, W. (2000) Joint effects of genetic hitchhiking and
background selection on neutral variation. Genetics. 155, 1415–1427

Kim, Y., and Stephan, W. (2002) Detecting a local signature of genetic hitch-
hiking along a recombining chromosome. Genetics. 160, 765–777

Kimura, M. (1953) “Stepping stone” model of population. Ann. Rep. Nat.
Inst. Genetics Japan. 3, 62–63

Kimura, M. (1954) Process leading to quasi-fixation of genes in natural pop-
ulations due to random fluctuation of selection intensities. Genetics. 39, 280–
295

Kimura, M. (1955) Solution of a proces of random genetic drift with a con-
tinuous model. Proc. Natl. Acad. Sci. USA 41, 144–150

Kimura, M. (1962) On the probability of fixation of mutant genes in a popu-
lation. Genetics. 47, 713–719

Kimura, M. (1964) Diffusion models in population genetics. J. Appl. Prob. 1,
177–232

Kimura, M. (1969) The number of heterozygous nucleotide sites maintained
in a finite population due to a steady flux of mutations. Genetics. 61, 893–903

Kimura, M. (1971) Theoretical foundations of population genetics at the
molecular level. Theor. Pop. Biol. 2, 174–208



412 9 Genome Rearrangement

Kimura, M., and King, J.L. (1979) Fixation of a deleterious allele at one of
two “duplicate” loci by mutation pressure and random drift. Proc. Natl. Acad.
Sci. USA 76, 2858–2861

Kimura, M., and Maruyama, T. (1966) The mutational load with epistatic
gene interactions in fitness. Genetics. 54, 1337–1351

Kimura, M., and Maruyama, T. (1971) Patterns of neutral polymorphism in
a geographically structured population. Genet. Res. Camb. 18, 125–131

Kimura, M., and Ohta, T. (1969a) The average number of generations until
the fixation of a mutant gene in a finite population. Genetics. 61, 763–771

Kimura, M., and Ohta, T. (1969b) The average number of generations until
extinction of an individual mutant gene in a finite population. Genetics. 63,
701–709

Kimura, M., and Ohta, T. (1973) The age of a neutral mutant persisting in a
finite population. Genetics. 75, 199–212

Kimura, M., and Ohta, T. (1974) On some principles governing molecular
evolution. Proc. Nat. Acad. Sci. USA, 7, 2848–2852

Kimura, M., and Weiss, G.H. (1964) The stepping stone model of population
structure and the decrease of genetic correlation with distance. Genetics. 49,
561–576

Kingman, J.F.C. (1978) The representation of partition structures. J. London
Math. Soc. 18, 374–380

Kingman, J.F.C. (1982a) The coalescent. Stoch. Proc. Appl. 13, 235–248

Kingman, J.F.C. (1982b) Exchangeability and the evolution of large popula-
tions. Pages 97–112 in Exchangeability in Probability and Statistics. Edited by
G. Koch and F. Spizzichino. North-Holland, Amsterdam

Kondrashov, A.S. (1988) Deleterious mutation and the evolution of sexual
reproduction. Nature. 336, 435–440

Kondrashov, F., Rogozin, I.B., Wolf, Y.I., and Koonin, E.V. (2002) Selection
in the evolution of gene duplications. Genome Biology. 3(2):research0008.1-9

Kreitman, M. (1983) Nucleotide polymorphism at the alcohol dehydrogenase
locus of Drosophila melanogaster. Nature. 304, 412–417

Kreitman, M. (2000) Methods to detect selection in populations with appli-
cations to the human. Annu. Rev. Genomics Hum. Genet. 1, 539–559
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