Weak and strong survival for branching random walks on weighted graphs

Fabio Zucca
Politecnico di Milano - Milan, Italy
fabio.zucca@polimi.it

4th Cornell Probability Summer School
June 23 - July 4, 2008, Ithaca, USA

Outline
1 BRW on weighted graphs
 • Setting the frame
 • Asymptotic degrees

2 Our main results
 • The local behavior
 • The global behavior

Paper source
Daniela Bertacchi, F.Z.,

- Critical behaviors and critical values of branching random walks on multigraphs,

- Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes,
 arXiv:0804.0224

The colleague I share responsibility with

Daniela Bertacchi, F.Z.,

- Critical behaviors and critical values of branching random walks on multigraphs,

- Characterization of the critical values of branching random walks on weighted graphs through infinite-type branching processes,
 arXiv:0804.0224
Space and weights

Set: \(X \) (at most countable) set of **vertices**.

Rates: nonnegative matrix \(K = (k_{xy})_{x,y \in X} \),
s.t. \(k(x) := \sum_{y \in X} k_{xy} < +\infty \) for all \(x \in X \).

Edges: \(E(X) := \{(x,y) : k_{xy} > 0\} \)

© Fabio Zucca
Space and weights

- **Set**: \(X \) (at most countable) set of **vertices**.
- **Rates**: nonnegative matrix \(K = (k_{xy})_{x,y \in X} \), s.t. \(k(x) := \sum_{y \in X} k_{xy} < +\infty \) for all \(x \in X \).
- **Edges**: \(E(X) := \{(x,y) : k_{xy} > 0\} \)

Birth rate \(\lambda k_{xy} \)

\(x \) \(y \) \(z \)

Examples: Edge breeding vs. Site breeding
- \(k_{xy} \) is the number of bonds from \(x \) to \(y \) in a multigraph
- \(K \) is a transition probability matrix
Weak and strong survival for BRW

Space and weights

Set: X (at most countable) set of vertices.
Rates: nonnegative matrix $K = (k_{xy})_{x,y \in X}$
s.t. $k(x) := \sum_{y \in X} k_{xy} < +\infty$ for all $x \in X$.
Edges: $E(X) := \{(x, y) : k_{xy} > 0\}$

Examples: Edge breeding vs. Site breeding
- k_{xy} is the number of bonds from x to y in a multigraph
- K is a transition probability matrix

Space and weights

Set: X (at most countable) set of vertices.
Rates: nonnegative matrix $K = (k_{xy})_{x,y \in X}$
s.t. $k(x) := \sum_{y \in X} k_{xy} < +\infty$ for all $x \in X$.
Edges: $E(X) := \{(x, y) : k_{xy} > 0\}$

Examples: Edge breeding vs. Site breeding
- k_{xy} is the number of bonds from x to y in a multigraph
- K is a transition probability matrix

Space and weights

Set: X (at most countable) set of vertices.
Rates: nonnegative matrix $K = (k_{xy})_{x,y \in X}$
s.t. $k(x) := \sum_{y \in X} k_{xy} < +\infty$ for all $x \in X$.
Edges: $E(X) := \{(x, y) : k_{xy} > 0\}$

Examples: Edge breeding vs. Site breeding
- k_{xy} is the number of bonds from x to y in a multigraph
- K is a transition probability matrix
Space and weights

- **Set**: X (at most countable) set of vertices.
- **Rates**: nonnegative matrix $K = (k_{xy})_{x,y \in X}$.

 s.t. $k(x) := \sum_{y \in X} k_{xy} < +\infty$ for all $x \in X$.

- **Edges**: $E(X) := \{(x, y) : k_{xy} > 0\}$

Examples: Edge breeding vs. Site breeding
- k_{xy} is the number of bonds from x to y in a multigraph
- K is a transition probability matrix

Outline

1. **BRW on weighted graphs**
 - Setting the frame
 - Asymptotic degrees

2. **Our main results**
 - The local behavior
 - The global behavior
Asymptotic degrees

Define recursively

\[
\begin{align*}
k^{n+1}_{xy} &= \sum_{z \in X} k^n_{xz} k^0_{zy}, \quad \forall x, y \in X \\
k^0_{xy} &= \delta_{xy}
\end{align*}
\]

- \(M_s := \limsup_n \sqrt[n]{k^n_{xy}}\) strong (or local) degree
- \(M_w := \liminf_n \sqrt[n]{\sum_{y \in X} k^n_{xy}}\) weak (or global) degree

They do not depend on the choice of \(x \in X\) since \((X, E(X))\) is connected.

Clearly \(M_s \leq M_w\)

If \(K\) is the adjacency matrix of a graph this is the number of paths of length \(n\) from \(x\) to \(x\)
Asymptotic degrees

Define recursively
\[
\begin{cases}
k_{xy}^{n+1} &= \sum_{z \in X} k_{xz}^n k_{zy}, \\
k_y^0 &= \delta_{xy},
\end{cases}
\forall x, y \in X
\]

- \(M_s := \limsup_n \sqrt[n]{k_{xx}^n} \) \quad \text{(strong or local degree)}
- \(M_w := \liminf_n \sqrt[n]{\sum_{y \in X} k_{xy}^n} \) \quad \text{(weak or global degree)}

If \(K \) is the adjacency matrix of a graph this is the number of paths of length \(n \) from \(x \) ending anywhere.

Fabio Zucca
Weak and strong survival for BRW

Outline

1. BRW on weighted graphs
 - Setting the frame
 - Asymptotic degrees

 Our main results
 - The local behavior
 - The global behavior

 The strong critical value

 Let \(\{\eta_t\} \) be a BRW starting with one particle at some site \(x_0 \).

 strong critical value
 \[\lambda_s := \inf \{ \lambda : \Pr(\eta_t(x) > 0 \text{ for arbitrarily large } t > 0) \} \]

 It does not depend on \(x \in X \) since \((X, E(X))\) is connected.

 Fabio Zucca
Weak and strong survival for BRW
The strong critical value

Let \(\{\eta_t\}_t \) be a BRW starting with one particle at some site \(x_0 \).

strong critical value

\[
\lambda_s := \inf \{ \lambda : \mathbb{P}(\eta_t(x) > 0 \text{ for arbitrarily large } t) > 0 \}
\]

Theorem

For every weighted graph \((X, K)\) we have that \(\lambda_s = 1/M_s \).

If \(\lambda > 1/M_s \) there is local survival

The colony survives (with positive probability) returning infinitely often in any site.

If \(\lambda < 1/M_s \) there is a.s. local extinction

Do we know what happens if \(\lambda = 1/M_s \)?
Let $\{\eta_t\}_t$ be a BRW starting with one particle at some site x_0.

Strong critical value

$$\lambda_s := \inf\{\lambda : \mathbb{P}(\eta_t(x) > 0 \text{ for arbitrarily large } t) > 0\}$$

Theorem

For every weighted graph (X,K) we have that $\lambda_s = 1/M_s$.

Let $\{\eta_t\}_t$ be a realization of the BRW.

Weak critical value

$$\lambda_w := \inf\{\lambda : \mathbb{P}(\sum_{x \in X} \eta_t(x) > 0 \text{ for all } t) > 0\}$$

Theorem

For every weighted graph (X,K) we have that $\lambda_w = \inf\{\lambda \in \mathbb{R} : \exists v \in [0,1]^X, v > 0, \lambda Kv > v/(1-v)\}$
The weak critical value

Let \(\{ \eta_t \}_{t \geq 0} \) be a realization of the BRW.

weak critical value

\[
\lambda_w := \inf \{ \lambda : P(\sum_{x \in X} \eta_t(x) > 0 \text{ for all } t > 0) \}
\]

Theorem

Let \((X, K)\) be any weighted graph.

- The \(\lambda \)-BRW survives globally if and only if there exists \(v \in [0,1]^X \), \(v > 0 \) such that \(\lambda K v \geq v/(1 - v) \).
- \(\lambda_w := \inf \{ \lambda \in \mathbb{R} : \exists v \in [0,1]^X, v > 0, \lambda K v \geq v/(1 - v) \} \)

Corollary

For every weighted graph \((X, K)\) we have that \(\lambda_w \geq 1/\inf K \wedge \).

The weak critical value

Let \(\{ \eta_t \}_{t \geq 0} \) be a realization of the BRW.

weak critical value

\[
\lambda_w := \inf \{ \lambda : P(\sum_{x \in X} \eta_t(x) > 0 \text{ for all } t > 0) \}
\]

Theorem

Let \((X, K)\) be any weighted graph.

- The \(\lambda \)-BRW survives globally if there exists \(v \in [0,1]^X \), \(v > 0 \) such that \(\lambda K v \geq v/(1 - v) \).
- \(\lambda_w := \inf \{ \lambda \in \mathbb{R} : \exists v \in [0,1]^X, v > 0, \lambda K v \geq v/(1 - v) \} \)

When is there an equality here?

For every weighted graph \((X, K)\) we have that \(\lambda_w \geq 1/\inf K \wedge \).
We say that \((X, K)\) is an \(\mathcal{F}\)-weighted graph if there exists a weighted graph \((Y, \tilde{K})\) and a surjective map \(f : X \rightarrow Y\) such that
- \(Y\) is finite;
- \(\sum_{z \in f^{-1}(y)} k_{xz} = \tilde{k}_{f(x)y}\) for all \(x \in X\) and \(y \in Y\).

Meaning of the definition
Fix a vertex \(x\) and a label \(y\)

We say that \((X, K)\) is an \(\mathcal{F}\)-weighted graph if there exists a weighted graph \((Y, \tilde{K})\) and a surjective map \(f : X \rightarrow Y\) such that
- \(Y\) is finite;
- \(\sum_{z \in f^{-1}(y)} k_{xz} = \tilde{k}_{f(x)y}\) for all \(x \in X\) and \(y \in Y\).
We say that \((X, K)\) is an \(\mathcal{F}\)-weighted graph if there exists a weighted graph \((Y, \tilde{K})\) and a surjective map \(f : X \to Y\) such that
\[
\begin{align*}
&Y \text{ is finite;} \\
&\sum_{z \in f^{-1}(y)} k_{xz} = \tilde{k}(x) y \quad \text{for all } x \in X \text{ and } y \in Y.
\end{align*}
\]

Meaning of the definition
This total rate depends only on the labels \(f(x)\) and \(y\).

\((X, K)\) “inherits” from \((Y, \tilde{K})\) its \(M_w\).

The \(\lambda\)-BRWs on \((X, K)\) and on \((Y, \tilde{K})\) have the same global behavior.

Examples of BRWs on \(\mathcal{F}\)-weighted graphs

Edge-breeding BRWs on quasi-transitive graphs are BRWs on \(\mathcal{F}\)-weighted graphs.

Site-breeding BRWs are BRWs on \(\mathcal{F}\)-weighted graphs.
BRW on weighted graphs
Our main results
The local behavior
The global behavior

Examples

Weighted graph Y

Graph X

Weak and strong survival for BRW

Fabio Zucca

Weak and strong survival for BRW
Examples

Weighted graph Y

Graph X

Theorem

For every F-weighted graph (X,K) we have that $\lambda_w = 1/M_w$.}

Theorem

For every F-weighted graph (X,K) we have that the (critical) λ_w-BRW dies out globally a.s.

Example of critical global survival

Let $X := \mathbb{N}$ and K be defined by $k_{0,1} := 2$, $k_{n,n+1} := (1 + 1/n)^2$, $k_{n+1,n+1} := 1/3^{n+1}$ and 0 otherwise.

It is possible to find examples of BRWs on weighted graphs which survive globally with positive probability at the critical value λ_w.

Example of critical global survival

Let $X := \mathbb{N}$ and K be defined by $k_{01} := 2$, $k_{n+1} := (1 + 1/n)^2$, $k_{n+1,n} := 1/3^{n+1}$ and 0 otherwise.

(very) quick sketch

- No solutions in $l^\infty(X)$ of $\lambda K v \geq v$ with $v > 0$ if $\lambda < 1$

Note that this is the non linear inequality

$\lambda K v \geq v/(1 - v)$ with $\lambda = 1$

(very) quick sketch

- No solutions in $l^\infty(X)$ of $\lambda K v \geq v$ with $v > 0$ if $\lambda < 1$
- Explicit solution in $[0, 1]^X$ of $K v \geq v/(1 - v)$ with $v > 0$
Let $X := \mathbb{N}$ and K be defined by

\[k_0 := 2, \quad k_{n+1} := \frac{1 + 1/n^2}{n^{1/3}}, \quad k_{n+2} := \frac{1/3}{n+1} \quad \text{and} \quad 0 \text{ otherwise.} \]

Example of critical global survival

Let $X := \mathbb{N}$ and K be defined by

\[k_0 := 2, \quad k_{n+1} := \left(1 + \frac{1}{n}\right)^2, \quad k_{n+1} := \frac{1}{3n+1} \quad \text{and} \quad 0 \text{ otherwise.} \]

We look now for a pure weak phase of the BRW.

\[
\begin{array}{cccc}
(0, \lambda_w) & (\lambda_w, \lambda_s) & (\lambda_s, +\infty) \\
\text{global extinction} & \text{global survival} & \text{global survival} \\
\text{local extinction} & \text{local extinction} & \text{local survival}
\end{array}
\]

(very) quick sketch

~ No solutions in $l^\infty(X)$ of $\lambda K v \geq v$ with $\nu > 0$ if $\lambda < 1$

~ Explicit solution in $[0, 1]^X$ of $K v \geq \nu/(1 - \nu)$ with $\nu > 0$

\[
\begin{array}{cccc}
\lambda_w > 1 & \text{global survival if} & \lambda = 1, \text{ hence} & \lambda_w \leq 1
\end{array}
\]

We look now for a pure weak phase of the BRW, that is $\lambda_w < \lambda_s$.

\[
\begin{array}{cccc}
(0, \lambda_w) & (\lambda_w, \lambda_s) & (\lambda_s, +\infty) \\
\text{global extinction} & \text{global survival} & \text{global survival} \\
\text{local extinction} & \text{local extinction} & \text{local survival}
\end{array}
\]

Theorem

Let (X, K) be a \mathcal{F}-weighted graph such that $k_{xy} = k_{yx}$ for all $x, y \in X$. Then $\lambda_w < \lambda_s$ if and only if (X, K) is nonamenable.
Pure weak phase

We look now for a pure weak phase of the BRW, that is $\lambda_w < \lambda_s$.

Theorem

Let (X, K) be a \mathcal{F}-weighted graph such that $k_{xy} = k_{yx}$ for all $x, y \in X$. Then $\lambda_w < \lambda_s$ if and only if (X, K) is nonamenable.

In general nonamenability is not equivalent to the existence of a pure weak phase.

Open questions

Is it true that $\lambda_w = 1/M_w$ for every weighted graph?

Is it possible to find an edge-breeding BRW (that is, K with nonnegative integer elements) on a graph which survives globally (with positive probability) at the critical value λ_w?

Amenable weighted graphs

A weighted graph is nonamenable if

$$\inf \left\{ \frac{\sum_{x \in S, y \notin S} k_{xy}}{|S|} : S \subseteq X, |S| < \infty \right\} =: \iota_X > 0.$$