Early warning signals of abrupt changes in ecosystems

Vishwesha Gutti1,2 and C. Jayaprakash2

1. Department of Ecology and Evolutionary Biology, Princeton University
2. Department of Physics, The Ohio State University

Probability Summer School, Cornell University, June 2008

Ecological question

- **Are we approaching the vicinity of a threshold?**
 - Can we identify "Universal features"?
 - That can be applied across several ecological systems?

- **Given time series data of a state variable at one site:**
 - How do we assess proximity to a transition?
 - Quick review of other indicators
 - Changing skewness: an early warning signal

- **Given time series of full/partial spatial data:**
 - Patches, Spatial variance, Spatial skewness can provide early warning signals.

Model for vegetation collapse

- **Dynamics of vegetation in semi-arid regions under (stochastic) grazing (May, 1977)**
 \[
 \frac{dV}{dt} = \alpha V - \gamma V \left(\frac{V}{K} \right)^2 - \left(V - \bar{V} \right) \eta(t)
 \]

 - Logistic Growth
 - Losses due to grazing

- **Bifurcation diagram for the deterministic model:**

Intuitive landscape picture

For simple models, we can define the landscape potential \(U(x) \) as follows

\[
U(x) = \int_{x}^{x_0} f(x) - g(x)g'(x) \frac{dx}{g(x)^2}
\]

Ref: Horsthemke and Lefever, 1984

Indicators of proximity to threshold

- **Increase in the recovery rate and variance**

- **"Critical fluctuations" of a phase transition**
 - \(\beta < K \approx 9.9 \): Moderate values of critical phenomena
 - \(x = \frac{\alpha}{\sqrt{2\alpha}} \) as well as we go towards bifurcation.

\[
x(t) = \frac{\alpha}{\sqrt{2\alpha}} e^{-\alpha x(t)}
\]

\[
x_{c} = \frac{1}{\alpha}
\]
Devising a new indicator

- Have a closer look at the potential landscape picture:

 ![Landscape diagram](image1)

 \[\dot{x} = -\alpha x + \beta x^2 + \eta(t) \]
 \[U(x) = \frac{1}{2}x^2 - \frac{\beta}{3}x^3. \]

- Pronounced asymmetry around the stable state
 - Nonlinear effects

Skewness: Quantifying asymmetry

\[\gamma = \frac{\int (x - \mu)^3 P(x)dx}{\sigma^3} \]

Skewness increases as the threshold is approached!

An increasing skewness, or more generally a changing skewness, can be an early warning signal of approaching a regime shift.

Asymmetry in time series distribution

![Time series graph](image2)

Outline

- Given a time series data of a state variable at one site:
 - How do we assess proximity to a transition?
 - Quick review of other indicators
 - **Changing skewness** is proposed to be an indicator

- Given a time series of full spatial data:
 - Patches, **Spatial variance, Spatial skewness**
 - Spatial variance, Spatial skewness can provide early warning signals.
 - Qualitative and quantitative improvements with spatial data

Model for collapse of vegetation: with space

\[\frac{\partial V(x, t)}{\partial t} = rV \left(1 - \frac{V}{V_c}\right) - \left(c + \eta(x, t)\right) \frac{V^2}{V^2 + V_0^2} + \nabla^2 V(x, t) \]

Diffusive seed dispersal

Regime shift with space

![Color map](image3)

Slowly increase the grazing rate towards the threshold.
- Red-Yellow: High vegetation density
- Blue : Low vegetation density
Animation of regime shift.

- Patch dynamics by itself can be an indicator of regime shift.
 - Studied in population dynamics literature
 - Can we quantify?

Spatial indicators:

- By year 48
 - Mean begins sharp decreasing.
- By year 46
 - 300% increase in spatial variance
 - 0 to 1 change in spatial skewness
- Temporal correlations between variance and skewness
 - Peaking spatial skewness with continued increase in spatial variance (by year 48)
 - Serves as an additional indicator

Different dispersal kernels

- Include generic kernel of dispersal: $k(x,y)$
 $$ \frac{\partial V(x,t)}{\partial t} = rV \left(1 - \frac{V}{V_c} \right) - (c + g(x,t)) \sqrt{V^2 + V_d^2} + \int dy k(x,y) |V(y,t) - V(x,t)| $$

- Mean field approximation:
 - Neighborhood -> Effective medium
 - Obtain the effective medium through self-consistent equations
 $$ E(v) = \int dv' P_{MF}(v,E(v)) $$
 $$ P_{MF}(v) = \frac{1}{N_v} \exp \left[\frac{2}{\sigma_d^4} \int dv' \left(E(v) - \sigma_d^2 g(v') g'(v) (1 - h_0) (E(v) - a) \right) \right] $$

- Results are independent of the dispersal kernel and the spatial dimensions within MFA (under some simple conditions)

Summary of early warning signals:

- Devised new early warning signals
 - Using simple models of bistable ecological models.
 - Suggested quantities are easy to measure.
 - Have the potential for applications in many systems.

- Given time series data
 - Increase in variance, Changing skewness and Increase in recovery time

- Given spatial data at regular time intervals (e.g. year)
 - Spatial variance and spatial skewness
 - Peaking skewness with increasing spatial variance

Further work

- False alarms, apply to data, etc.

Acknowledgements

- NSF Grant DEB-0410336 and Presidential Fellowship, OSU
Sahara vegetation collapse

- **Vegetation collapse in Sahara**
 - ~5500 yrs back

- **Skewness Behavior**
 - Statistically insignificant
 - Similar issues with variance

Simulation results

- **Regime shift at year 45**
 - Skewness for data from previous five years
 - Shows small fluctuations far from a regime shift
 - A sustained increasing trend (in comparison to background trend) occurs prior a regime shift.

- **Nearly 100% increase in skewness by year 40 - five years in advance**

- **Data constraint**
 - 100 (dense)
 - 33 measurements per year (sparse)

A nonpotential system

- **Effective potential need not exist multivariable systems**
 - Include soil water dynamics (w) (V Guttal ad C. Jayaprakash, 2007)

\[
\frac{dG}{dt} = \rho R - \eta_p G + \eta_{LP} (1) + \eta_{G2} (1)
\]

 - Rainfall
 - Evaporation
 - Plant uptake

- **Indicator was based on potentials**
 - Most results hold for more complex model systems.

- **Flow diagram**

Horstemke and Lefever, 1984; Gardiner, 2003; V Guttal and C Jayaprakash, 2007, Ecological Modeling