Outline

- The Dualistic Context of This Discourse:
- Tradition: English Empiricism
- Universe of Hypotheses: Popper's Falsifiability
- Internal Consistency : Aristotelean Logic(s)
- Subject: Mathematizable Statistical Genetics
- Engineering Constraints: Resource-limited Info. Proc.
- Title: Exactly Approximate Bayesian Computation
- Approximate Bayesian Computation
- A Coalescent Model and Associated Sample Spaces
- An Exactly Approximate Bayesian Computation Rejection Methods I (Tavare's notes p. 3)
- Some Results, Summary, Extensions

Approximate Bayesian Computation - Motivation

Full likelihood methods are computationally prohibitive:

- Evaluation of the full likelihood function over the parameter space Ψ from $n=90$ DNA sequences d_{o} is computationally intense - up to 4 hours per $\psi \in \Psi$ for the standard coalescent using Sequential Importance Sampling methods (Griffiths and Tavare, 1994)
- Computational time is prohibitive for complex models, for e.g. demographically structured coalescent
A Practical Solution: Inference from Summaries:
- Let b_{o}^{\prime} be a summary of the full data d_{o}
- Infer ψ from $P\left(\psi \mid b_{o}^{\prime}\right) \simeq P\left(\psi \mid d_{o}\right)$
- b_{o}^{\prime} NOT sufficient for $\psi \Longrightarrow \mathrm{ABC}$ (Marjoram et al., 2003).

Approximate Bayesian Computation - A Simple Algorithm
(a) DRAW parameter ψ from the PRIOR $P(\psi)$
(b) SIMULATE an ancestral recombination graph (ARG) a with mutations m according to ψ and obtain data d
(c) SUMMARIZE d by b^{\prime}
(d) ACCEPT ψ IF $\left\|b^{\prime}, b_{o}^{\prime}\right\| \leq \epsilon$, ELSE REJECT ψ

ITERATE (a)-(d) until you have enough accepted samples from an ϵ-specific approximation of $P\left(\psi \mid b_{o}^{\prime}\right) \simeq P\left(\psi \mid d_{o}\right)$.

Variants on this basic theme include:

- Reweighting and smoothing through local regressions
- Bootstrap Filters, GLM, PCA, Projection Pursuits, ...
- Metropolis-Hastings, importance sampling, SMC, ...

Approximate Bayesian Computation - The ϵ Dilemma ! \Rightarrow PCR !
The acceptance radius ϵ should be small, but not too small!

- Algorithm: Any ψ proposed from $P(\psi)$ is accepted if $\left\|b^{\prime}, b_{o}^{\prime}\right\| \leq \epsilon$. NOTE: When $\epsilon=0$ we exactly get $P\left(\psi \mid b_{o}^{\prime}\right)$
- ... BUT: $\epsilon \Rightarrow \downarrow$ acceptance rate and $\boldsymbol{E} \Rightarrow P\left(\psi \mid b_{o}^{\prime}\right)=P(\psi)$
- ... TUNE ϵ under the appropriate metric $\|\cdot\|$ to obtain the optimal trade-off between efficiency and accuracy

Approximate Bayesian Computation - The ϵ Dilemma ! \Rightarrow PCR !
The acceptance radius ϵ should be small, but not too small!

- Algorithm: Any ψ proposed from $P(\psi)$ is accepted if $\left\|b^{\prime}, b_{o}^{\prime}\right\| \leq \epsilon$. NOTE: When $\epsilon=0$ we exactly get $P\left(\psi \mid b_{o}^{\prime}\right)$
- ... BUT: $\epsilon \Rightarrow \downarrow$ acceptance rate and $\mathcal{E} \Rightarrow P\left(\psi \mid b_{o}^{\prime}\right)=P(\psi)$
- ... TUNE ϵ under the appropriate metric $\|\cdot\|$ to obtain the optimal trade-off between efficiency and accuracy
- Question: Can we make ϵ to be exactly 0 ?
- Answer : YES! for several classical summaries

Coalescent Sample Spaces

Raazesh Sainudiin, Department of Statistics, University of Oxiord www. stats .ox.ac.uk/-sainudii -p.7/2.

Two Popular Linear Summaries of SFS $x \triangleq\left(x_{1}, \ldots, x_{n-1}\right)$
Let $b=(S, \Pi)$ for fixed sample size n,

$$
S \triangleq \sum_{i=1}^{n-1} x_{i}, \quad \pi \triangleq \frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} i(n-i) x_{i}, \quad \Pi=\binom{n}{2} \pi
$$

Inference based on S and Π depends on the kernel of:

$$
B \triangleq\left(\begin{array}{ccccc}
1 & \ldots & 1 & \ldots & 1 \\
1(n-1) & \ldots & i(n-i) & \ldots & n-1(n-(n-1))
\end{array}\right)
$$

Consider the set of all SFS that exactly satisfy b.
It is the bounded non-empty polytope:

$$
\Gamma_{B}^{b} \triangleq\left\{x \in \mathbb{Z}_{+}^{n-1}: B x=b\right\}
$$

Integrating over Γ_{B}^{b}

Question: Can we somehow sample from Γ_{B}^{b} ?
If we could, then we can do exactly ABC with $\epsilon=0$.

Integrating over Γ_{B}^{b}

Question: Can we somehow sample from Γ_{B}^{b} ? If we could, then we can do exactly ABC with $\epsilon=0$.
Answer: YES! via computational commutative algebra.
Definition 0 (Markov Basis) Let \mathcal{M} be a finite subset of the kernel of $B \cap \mathbb{Z}^{n-1}$. Consider the undirected graph \mathcal{G}_{B}^{b}, such that (1) all nodes are lattice points in Γ_{B}^{b} and (2) edges between a node x and a node y are possible \Longleftrightarrow $x-y \in \mathcal{M}$. If the graph \mathcal{G}_{B}^{b} is connected for all b, then \mathcal{M} is called a Markov basis.

Integrating over Γ_{B}^{b}

Question: Can we somehow sample from Γ_{B}^{b} ?
If we could, then we can do exactly ABC with $\epsilon=0$.
Answer: YES! via computational commutative algebra.
Definition 0 (Markov Basis) Let \mathcal{M} be a finite subset of the kernel of $B \cap \mathbb{Z}^{n-1}$. Consider the undirected graph \mathcal{G}_{B}^{b}, such that (1) all nodes are lattice points in Γ_{B}^{b} and (2) edges between a node x and a node y are possible \Longleftrightarrow $x-y \in \mathcal{M}$. If the graph \mathcal{G}_{B}^{b} is connected for all b, then \mathcal{M} is called a Markov basis.
Sampling Implication:
Monte Carlo Markov chains constructed with local moves from \mathcal{M} are irreducible and can be made aperiodic, and are therefore ergodic on the finite state space Γ_{B}^{b}.

Some elements of a Markov Basis - BUT, where are the ARGs?

- OK, we can run MCMCs in $\Gamma_{B}^{b_{o}}$ if we initialize at x_{o}
- BUT, what is the target density over $\Gamma_{B}^{b_{0}}$? Where are the ARGs in this picture?
- ARG-specific targets on $\Gamma_{B}^{b_{o}}$ are Poisson-Multinomials!

```
A Markov basis for \(\Gamma_{B}^{b}\) with \(n=30\), computed using the software package for computational algebra Macaulay 2 (Grayson and Stillman, 2004), had 520 elements.
Five of them are:
\(+0+0+0+0+0+0+0+0+0-1+1+1+0+0-1+0 \ldots+0+0\)
\(+2-2-2+1+0+2+0-1+0+0+0+0+0+0+0+0 \ldots+0+0\)
\(-3+1+4-1+0+0+0+0-1+0+0+0+0+0+0+0 \ldots+0+0\)
\(+7-9+0+0+1+0+0+1+0+0+0+0+0+0+0+0 \ldots+0+0\)
\(+1+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 \ldots+0-1\)
```

Some elements of a Markov Basis

A Markov basis for Γ_{B}^{b} with $n=30$, computed using the software package for computational algebra Macaulay 2 (Grayson and Stillman, 2004), had 520 elements.

Five of them are:

$+0+0+0+0+0+0+0+0+0-1+1+1+0+0-1+0 \ldots+0+0$
$+2-2-2+1+0+2+0-1+0+0+0+0+0+0+0+0 \ldots+0+0$
$-3+1+4-1+0+0+0+0-1+0+0+0+0+0+0+0 \ldots+0+0$
$+7-9+0+0+1+0+0+1+0+0+0+0+0+0+0+0 \ldots+0+0$
$+1+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 \ldots+0-1$

Sufficient Compression of \mathcal{A}_{n} to \mathcal{C}_{n}

Let $a \in \mathcal{A}_{n}$ be an ARG and $\psi=(\theta, \nu)$. Let C map a into its total length l and relative lengths p_{i} that dictate mutations in $\operatorname{SFS} x$:
$C(a)=(l, p): \mathcal{A}_{n} \rightarrow \mathcal{C}_{n} \triangleq \mathbb{R}_{+} \otimes \triangle_{n-1}$

The Exactly Approximate Posterior

$P(b \mid \psi)=P(b, \psi) / P(\psi)=\int_{(l, p) \in \mathcal{C}_{n}} \sum_{x \in \Gamma_{B}^{b}} \mathfrak{P M}(x \mid \psi, l, p) P(l, p \mid \psi)$,
where, $\quad \mathfrak{P M}(x \mid \psi, l, p)=e^{-\theta l}(\theta l)^{S} \prod_{i=1}^{n-1} p_{i} x_{i} / \prod_{i=1}^{n-1} x_{i}!$.

The Exactly Approximate Posterior

$$
\begin{aligned}
& P(b \mid \psi)=P(b, \psi) / P(\psi)=\int_{(l, p) \in \mathcal{C}_{n}} \sum_{x \in \Gamma_{B}^{b}} \mathfrak{P M}(x \mid \psi, l, p) P(l, p \mid \psi) \\
& \text { where, } \mathfrak{P M}(x \mid \psi, l, p)=e^{-\theta l}(\theta l)^{S} \prod_{i=1}^{n-1} p_{i}^{x_{i}} / \prod_{i=1}^{n-1} x_{i}! \\
& \text { Therefore, } P(\psi \mid b) \propto P(b \mid \psi) P(\psi) \\
& \approx \frac{1}{N} \sum_{j=1}^{N} \frac{1}{M} \sum_{h=1: x \in \Gamma_{B}^{b}}^{M} \mathfrak{P M}\left(x^{(h)} \mid \psi, l^{(j)}, p^{(j)}\right),\left(l^{(j)}, p^{(j)}\right) \sim P(l, p \mid \psi) P(\psi)
\end{aligned}
$$

where, the sum over $M x^{(h)}$'s are obtained through a Metropolis-Hastings Markov chain (or an annealed SIS/popMCMC) on Γ_{B}^{b} with the ARG-specific target distribution $\mathfrak{P M}(x \mid \psi, l, p)$ and the Monte Carlo sum over N ARGs can be obtained from simulation under ψ.

Estimating the scaled mutation rate θ

MSEs and Bias from 1000 Replicates simulated under $\theta=10.0$

n	$\widehat{\theta}_{W}$	$\widehat{\theta}_{\pi}$	$\mathrm{ABC}_{S, \Pi}$	$\mathrm{EABC}_{S, \Pi}$	$\mathrm{SIS}_{B I M}$
10	23.19	31.86	26.30	19.13	12.57
30	12.88	25.81	14.83	10.54	6.94
90	7.90	24.98	7.45	6.33	4.07

BIas of Various estimators

n	$\widehat{\theta}_{W}$	$\widehat{\theta}_{\pi}$	$\mathrm{ABC}_{S, \Pi}$	$\mathrm{EABC}_{S, \Pi}$	$\mathrm{SIS}_{B I M}$
10	-0.10	-0.20	1.49	-0.58	-0.61
30	0.18	0.21	0.73	-0.13	-0.33
90	-0.12	0.011	0.21	-0.51	-0.55

- $\mathrm{EABC}_{S, \Pi}$ is the Mean Tree Tajima-Waterson Estimator of θ given S and Π
- Just the first moment on \mathcal{C}_{n}, ie. mean tree length and mean relative time leading to singletons, doubletons, ..., '($n-1$)tons for each ν

Estimating θ and growth rate ν

MSEs and Bias from 1000 Replicates simulated under $\theta=10.0, \nu=0.0, n=30$
MSE (BIAS) OF THREE ESTIMATORS of θ AND ν

parameter	$\mathrm{ABC}_{S, \Pi}$	$\mathrm{EABC}_{S, \Pi}$	$\mathrm{EABC}_{S, \Pi, \eta_{1}}$
θ	$82.41(6.57)$	$50.18(4.14)$	$46.20(4.06)$
ν	$26.24(4.08)$	$11.75(2.13)$	$13.67(2.37)$

- $A B C$ algorithm with smoothing and reweighting through local regressions was used with an acceptance radius $\epsilon=0.001$.
- Computationally prohibitive to compare with SIS methods based on BIM
- Bottom line: Do exactly ABC when possible
- Rigorous 'zoning in' technique for intensive SIS methods

Approximate Posterior Density.

$P(\theta, \nu \mid S, \Pi)$

$P\left(\theta, \nu \mid S, \Pi, \eta_{1}\right)$

Shannon's information (Expected Negative Entropy $\triangleq E_{P}(\log (P))$) measure for $P(\theta, \nu \mid S, \Pi)$ and $P\left(\theta, \nu \mid S, \Pi, \eta_{1}\right)$ are -7.50989 and -7.49071 , respectively. Thus, η_{1} adds more information (0.0191824) by making $P\left(\theta, \nu \mid S, \Pi, \eta_{1}\right)$ more concentrated than $P(\theta, \nu \mid S, \Pi)$.

Independent M-H Sampling on \mathcal{A}_{n} - A Poisson-Dirichlet Shave
$\approx \frac{1}{N} \sum_{j=1}^{N} \frac{1}{M} \sum_{h=1: x \in \Gamma_{B}^{b}}^{M} \mathfrak{P M}\left(x^{(h)} \mid \psi, l^{(j)}, p^{(j)}\right),\left(l^{(j)}, p^{(j)}\right) \sim P(l, p \mid \psi) P(\psi)$.
Can use N independent $\mathrm{M}-\mathrm{H}$ samples of ARGs with independent proposal given by simulation under ψ and the target specified by the posterior distribution on $\mathcal{C}_{n} \triangleq \mathbb{R}_{+} \otimes \triangle_{n-1}$ - a Poisson Dirichlet posterior based on observed S and x_{o}.

Topological Unfolding of SFS and Tajima's D when $n=4$

Summary

Discussion and Extensions

- Need not restrict to linear summaries of the SFS; structure (2D SFS), recombination (blocks of SFS \otimes ARG Summaries)
- Hybrid Methods - add $\epsilon>0$ ABC summaries
- Particle Filtering (SMC) along the filtration induced by the Partially-Ordered Experiments Graph (POEG)
- Disadvantage - for large $n>200$ the Markov bases computations are exponentially slow (BUT only once!)
- FIRST learn about optimal paths toward 'root' on POEG with smaller n - THEN do ABC with $\epsilon>0$.
- Information only grows logarithmically fast $-n>200$ adds little information
- EG allows for (1) 'co-existence' of many methods, (2) analysis through LeCam's theory of experiments, (3) saves electricity and slows down global warming!

References

Grayson, D. R. and M. E. Stillman (2004). Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

Griffiths, R. C. and S. Tavare (1994). Ancestral inference in population genetics. Statistical Science 9, 307319.

Marjoram, P., J. Molitor, V. Plagnol, and S. Tavare (2003). Markov chain Monte Carlo without likelihoods.
Proc. Natl. Acad. Sci. USA 100, 15324-15328.

[^0]
[^0]: - NSF/NIGMS grant DMS-02-01037 to Durrett, Aquadro, and Nielsen and
 - Research Fellow of the Royal Commission for the Exhibition of 1851.

