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Outline
The Dualistic Context of This Discourse:

Tradition: English Empiricism
Universe of Hypotheses: Popper’s Falsifiability
Internal Consistency : Aristotelean Logic(s)
Subject: Mathematizable Statistical Genetics
Engineering Constraints: Resource-limited Info. Proc.
Title: Exactly Approximate Bayesian Computation

Approximate Bayesian Computation

A Coalescent Model and Associated Sample Spaces

An Exactly Approximate Bayesian Computation –
Rejection Methods I (Tavare’s notes p. 3)

Some Results, Summary, Extensions
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Approximate Bayesian Computation – Motivation

Full likelihood methods are computationally prohibitive:

Evaluation of the full likelihood function over the
parameter space Ψ from n = 90 DNA sequences do is
computationally intense – up to 4 hours per ψ ∈ Ψ for
the standard coalescent using Sequential Importance
Sampling methods (Griffiths and Tavare, 1994)

Computational time is prohibitive for complex models,
for e.g. demographically structured coalescent
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Full likelihood methods are computationally prohibitive:

Evaluation of the full likelihood function over the
parameter space Ψ from n = 90 DNA sequences do is
computationally intense – up to 4 hours per ψ ∈ Ψ for
the standard coalescent using Sequential Importance
Sampling methods (Griffiths and Tavare, 1994)

Computational time is prohibitive for complex models,
for e.g. demographically structured coalescent

A Practical Solution: Inference from Summaries:

Let b′o be a summary of the full data do

Infer ψ from P (ψ|b′o) � P (ψ|do)

b′o NOT sufficient for ψ =⇒ ABC (Marjoram et al., 2003).
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Approximate Bayesian Computation – A Simple Algorithm

(a) DRAW parameter ψ from the PRIOR P (ψ)

(b) SIMULATE an ancestral recombination graph (ARG) a
with mutations m according to ψ and obtain data d

(c) SUMMARIZE d by b′

(d) ACCEPT ψ IF ||b′, b′o|| ≤ ε, ELSE REJECT ψ

ITERATE (a)-(d) until you have enough accepted samples
from an ε-specific approximation of P (ψ|b′o) � P (ψ|do).
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Approximate Bayesian Computation – A Simple Algorithm

(a) DRAW parameter ψ from the PRIOR P (ψ)

(b) SIMULATE an ancestral recombination graph (ARG) a
with mutations m according to ψ and obtain data d

(c) SUMMARIZE d by b′

(d) ACCEPT ψ IF ||b′, b′o|| ≤ ε, ELSE REJECT ψ

ITERATE (a)-(d) until you have enough accepted samples
from an ε-specific approximation of P (ψ|b′o) � P (ψ|do).

Variants on this basic theme include:

Reweighting and smoothing through local regressions

Bootstrap Filters, GLM, PCA, Projection Pursuits, ...

Metropolis-Hastings, importance sampling, SMC, ...

Raazesh Sainudiin, Department of Statistics, University of Oxford www.stats.ox.ac.uk/˜sainudii – p.4/24



Approximate Bayesian Computation – The ε Dilemma ! ⇒ PCR !

The acceptance radius ε should be small, but not too small !

Algorithm: Any ψ proposed from P (ψ) is accepted if
||b′, b′o|| ≤ ε. NOTE: When ε = 0 we exactly get P (ψ|b′o)
... BUT: ε ⇒ ↓ acceptance rate and ε⇒ P (ψ|b′o) = P (ψ)

... TUNE ε under the appropriate metric || · || to obtain
the optimal trade-off between efficiency and accuracy
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Approximate Bayesian Computation – The ε Dilemma ! ⇒ PCR !

The acceptance radius ε should be small, but not too small !

Algorithm: Any ψ proposed from P (ψ) is accepted if
||b′, b′o|| ≤ ε. NOTE: When ε = 0 we exactly get P (ψ|b′o)
... BUT: ε ⇒ ↓ acceptance rate and ε⇒ P (ψ|b′o) = P (ψ)

... TUNE ε under the appropriate metric || · || to obtain
the optimal trade-off between efficiency and accuracy

Question: Can we make ε to be exactly 0 ?

Answer : YES! for several classical summaries
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Model – ψ � (θ, ν) ∈ Ψ, θ = 4Neµ (scaled mutation rate), ν (exponential growth rate)

Figure 6. of M. Nordburg, Coalescent Theory, 2000
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Coalescent Sample Spaces
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Coalescent Sample Spaces – Partially Ordered Experiments Graph

10/3

   0        0     1 1  1 
   1        1     0 0  1 
   0        0     0 0  0 

( 4 , 1 )

5

aacctgtgcgatggtggggtggggg
aacTtgtgcgatAgtggggtgggCg
aacctgtgcgatggtgggTtAggCg

5

E111 � (S111,F111,P111)

C1111

C1112

C1113

C111

C11

C111

E1 � (S1,F1,P1)

C11

E11 � (S11,F11,P11)

E1112 � (S1112,F1112,P1112)

C1112

C1113

E1111 � (S1111,F1111,P1111)

C1111

E1113 � (S1113,F1113,P1113)

S

π

SFS

BIM

η1

MSA

Pα � {Pαψ : ψ ∈ Ψ}, where Fα � FSα , Cβ : Sα → Sβ and Eα ≥ Eβ ⇔ ∃ Cβ : Sα → Sβ .
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Two Popular Linear Summaries of SFS x � (x1, . . . , xn−1)

Let b = (S,Π) for fixed sample size n,

S �
n−1∑
i=1

xi, π � 1(n
2

) n−1∑
i=1

i(n − i)xi, Π =

(
n

2

)
π.

Inference based on S and Π depends on the kernel of:

B �
(

1 . . . 1 . . . 1

1(n − 1) . . . i(n − i) . . . n − 1(n − (n − 1))

)
.

Consider the set of all SFS that exactly satisfy b.
It is the bounded non-empty polytope:

Γb
B � {x ∈ Z

n−1
+ : Bx = b}
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Integrating over Γb
B

Question: Can we somehow sample from Γb
B ?

If we could, then we can do exactly ABC with ε = 0.
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Integrating over Γb
B

Question: Can we somehow sample from Γb
B ?

If we could, then we can do exactly ABC with ε = 0.
Answer: YES! via computational commutative algebra.

Definition 0 (Markov Basis) Let M be a finite subset of
the kernel of B ∩ Z

n−1. Consider the undirected graph Gb
B,

such that (1) all nodes are lattice points in Γb
B and (2) edges

between a node x and a node y are possible ⇐⇒
x − y ∈ M. If the graph Gb

B is connected for all b, then M is
called a Markov basis.
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Integrating over Γb
B

Question: Can we somehow sample from Γb
B ?

If we could, then we can do exactly ABC with ε = 0.
Answer: YES! via computational commutative algebra.

Definition 0 (Markov Basis) Let M be a finite subset of
the kernel of B ∩ Z

n−1. Consider the undirected graph Gb
B,

such that (1) all nodes are lattice points in Γb
B and (2) edges

between a node x and a node y are possible ⇐⇒
x − y ∈ M. If the graph Gb

B is connected for all b, then M is
called a Markov basis.

Sampling Implication:
Monte Carlo Markov chains constructed with local moves
from M are irreducible and can be made aperiodic, and are
therefore ergodic on the finite state space Γb

B.
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Some elements of a Markov Basis

A Markov basis for Γb
B with n = 30, computed using the software package for computational

algebra Macaulay 2 (Grayson and Stillman, 2004), had 520 elements.

Five of them are:

+0 +0 +0 +0 +0 +0 +0 +0 +0 -1 +1 +1 +0 +0 -1 +0 ... +0 +0

+2 -2 -2 +1 +0 +2 +0 -1 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

-3 +1 +4 -1 +0 +0 +0 +0 -1 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

+7 -9 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

+1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 -1
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Some elements of a Markov Basis – BUT, where are the ARGs ?

A Markov basis for Γb
B with n = 30, computed using the software package for computational

algebra Macaulay 2 (Grayson and Stillman, 2004), had 520 elements.

Five of them are:

+0 +0 +0 +0 +0 +0 +0 +0 +0 -1 +1 +1 +0 +0 -1 +0 ... +0 +0

+2 -2 -2 +1 +0 +2 +0 -1 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

-3 +1 +4 -1 +0 +0 +0 +0 -1 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

+7 -9 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 +0

+1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 ... +0 -1

OK, we can run MCMCs in Γbo
B if we initialize at xo

BUT, what is the target density over Γbo
B ? Where are the

ARGs in this picture ?

ARG-specific targets on Γbo
B are Poisson-Multinomials!
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Sufficient Compression of An to Cn
Let a ∈ An be an ARG and ψ = (θ, ν). Let C map a into its total length l

and relative lengths pi that dictate mutations in SFS x :

C(a) = (l, p) : An → Cn � R+ ⊗
n−1

A3: TREE SPACE FOR n = 3 SAMPLES C3: TREE LENGTH l ⊗ p1
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The Exactly Approximate Posterior

P (b|ψ) = P (b, ψ)/P (ψ) =
∫

(l,p)∈Cn

∑
x∈Γb

B

PM(x|ψ, l, p)P (l, p|ψ),

where, PM(x|ψ, l, p) = e−θl(θl)S
n−1∏
i=1

pi
xi/

n−1∏
i=1

xi!.
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The Exactly Approximate Posterior

P (b|ψ) = P (b, ψ)/P (ψ) =
∫

(l,p)∈Cn

∑
x∈Γb

B

PM(x|ψ, l, p)P (l, p|ψ),

where, PM(x|ψ, l, p) = e−θl(θl)S
n−1∏
i=1

pi
xi/

n−1∏
i=1

xi!.

Therefore, P (ψ|b) ∝ P (b|ψ)P (ψ)

≈ 1
N

N∑
j=1

1
M

M∑
h=1:x∈Γb

B

PM(x(h)|ψ, l(j), p(j)), (l(j), p(j)) ∼ P (l, p|ψ)P (ψ).

where, the sum over M x(h)’s are obtained through a Metropolis-Hastings Markov chain (or

an annealed SIS/popMCMC) on Γb
B with the ARG-specific target distribution PM(x|ψ, l, p)

and the Monte Carlo sum over N ARGs can be obtained from simulation under ψ.
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Adding More Summaries of SFS x

It is straightforward to add other popular linear
summaries of the SFS x.

For example, including η1 � x1 + xn−1 to the previous
two summaries S and Π yields the following matrix B′:

B′ �

⎛⎜⎝ 1 . . . 1 . . . 1

1(n − 1) . . . i(n − i) . . . n − 1(n − (n − 1))

1 0 . . . 0 1

⎞⎟⎠ .

The cardinality of a Markov basis for Γb
B′ is 440 (smaller

when compared to 520 for Γb
B conditioned by S and Π)

when n = 30.
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Estimating the scaled mutation rate θ
MSES AND BIAS FROM 1000 REPLICATES SIMULATED UNDER θ = 10.0

MSE OF VARIOUS ESTIMATORS

n θ̂W θ̂π ABCS,Π EABCS,Π SISBIM

10 23.19 31.86 26.30 19.13 12.57

30 12.88 25.81 14.83 10.54 6.94

90 7.90 24.98 7.45 6.33 4.07

BIAS OF VARIOUS ESTIMATORS

n θ̂W θ̂π ABCS,Π EABCS,Π SISBIM

10 −0.10 −0.20 1.49 −0.58 −0.61

30 0.18 0.21 0.73 −0.13 −0.33

90 −0.12 0.011 0.21 −0.51 −0.55

EABCS,Π is the Mean Tree Tajima-Waterson Estimator of θ given S and Π

Just the first moment on Cn, ie. mean tree length and mean relative time leading to
singletons, doubletons, ..., ‘(n − 1)tons for each ν

Raazesh Sainudiin, Department of Statistics, University of Oxford www.stats.ox.ac.uk/˜sainudii – p.16/24

Estimating θ and growth rate ν

MSES AND BIAS FROM 1000 REPLICATES SIMULATED UNDER

θ = 10.0, ν = 0.0, n = 30

MSE (BIAS) OF THREE ESTIMATORS OF θ AND ν

parameter ABCS,Π EABCS,Π EABCS,Π,η1

θ 82.41(6.57) 50.18(4.14) 46.20(4.06)

ν 26.24(4.08) 11.75(2.13) 13.67(2.37)

ABC algorithm with smoothing and reweighting through local regressions was used
with an acceptance radius ε = 0.001.

Computationally prohibitive to compare with SIS methods based on BIM

Bottom line: Do exactly ABC when possible

Rigorous ‘zoning in’ technique for intensive SIS methods
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Approximate Posterior Density.
P (θ, ν|S,Π) P (θ, ν|S,Π, η1)
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Shannon’s information (Expected Negative Entropy � EP (log(P ))) measure for P (θ, ν|S,Π)

and P (θ, ν|S,Π, η1) are −7.50989 and −7.49071, respectively. Thus, η1 adds more informa-

tion (0.0191824) by making P (θ, ν|S,Π, η1) more concentrated than P (θ, ν|S,Π) .
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Independent M-H Sampling on An – A Poisson-Dirichlet Shave

≈ 1
N

N∑
j=1

1
M

M∑
h=1:x∈Γb

B

PM(x(h)|ψ, l(j), p(j)), (l(j), p(j)) ∼ P (l, p|ψ)P (ψ).

Can use N independent M-H samples of ARGs with independent proposal given by

simulation under ψ and the target specified by the posterior distribution on Cn � R+ ⊗�n−1

– a Poisson Dirichlet posterior based on observed S and xo.
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Topological Unfolding of SFS and Tajima’s D when n = 4
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Simulated Vs. Gen. Fisher’s Exact Test with Tajima’s D

P�values for Simulated Vs. Exact Tajima’s D Test �theta � 1, 10, 50�
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Simulated Vs. Exact Tajima’s D Test �corr. � �0.0045�

Left panel: Distribution of p-values from the simulated test (left) and the generalized Fisher’s
exact test (right) for three values of θ = {1, 10, 50} per 1000 bp with n = 30.

Right panel: The almost zero correlation of p-values between the two tests.
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Summary
.
.
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Full likelihood methods can be impractical

Practical summary-based ABC methods: εε ε
Using a Markov basis for linear summaries of SFS
we can do exactly ABC or ABCε=0

Can compute MB with standard algebraic software

MSEs are smaller – the exponential growth model

Helps ‘zone in’ prior to intensive SIS methods

Decide between alternate sets of summaries
through information measures – adding η1 helps

Can incorporate more information via
Poisson-Dirichlet Shave

Topological unfolding of SFS and D ⇒ Tree-less
Genome Scans

A Decision-theoretic formalism – partially-ordered
experiments graph
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Discussion and Extensions
Need not restrict to linear summaries of the SFS;
structure (2D SFS), recombination (blocks of SFS ⊗
ARG Summaries)

Hybrid Methods – add ε > 0 ABC summaries

Particle Filtering (SMC) along the filtration induced by
the Partially-Ordered Experiments Graph (POEG)

Disadvantage – for large n > 200 the Markov bases
computations are exponentially slow (BUT only once!)

FIRST learn about optimal paths toward ‘root’ on POEG with smaller n – THEN
do ABC with ε > 0.

Information only grows logarithmically fast – n > 200 adds little information

EG allows for (1) ‘co-existence’ of many methods, (2)
analysis through LeCam’s theory of experiments, (3)
saves electricity and slows down global warming!
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