A coalescent model for the effect of advantageous mutations on the genealogy of a population

by Jason Schweinsberg
University of California at San Diego

(joint work with Rick Durrett)

Outline of Talk

1. The model
2. A simple approximation
3. An improved approximation
4. Recurrent beneficial mutations
5. Applications
The model

Population has fixed size $2N$.

Consider two sites on the chromosomes:

- One site has an A or a allele, neither is advantageous.
- One site has a B or b allele, B is advantageous.

At time zero, $2N - 1$ chromosomes have the b allele and one has the B allele.

Each individual lives for an Exponential(1) time, then is replaced.

When a new individual is born:

- The B or b comes from a randomly chosen parent. A replacement of a B by a b is rejected with probability s.
- With probability $1 - r$, the A or a comes from the same parent.
- With probability r, the A or a allele comes from a parent chosen independently at random.

Eventually, the number of B's reaches 0 or $2N$. If the number of B's reaches $2N$, a selective sweep occurs. The probability of a selective sweep is

$$ \frac{s}{1 - (1 - s)^{2N}} \approx s. $$

The genealogy of a sample

Sample n individuals at the time τ when a selective sweep ends.

All n individuals in the sample inherited their B allele from the same individual at time 0.

Let Θ be a random partition of $\{1, \ldots, n\}$ such that i and j are in the same block of Θ if and only if the ith and jth individuals in the sample inherited their A/a allele from the same individual at time zero.

Goal: to describe the distribution of the random partition Θ.

$$\Theta = \{\{1, 2, 3\}, \{4\}\}.$$

If the A/a allele of one individual comes from an individual that had the b allele at time zero, we say the lineage escapes the selective sweep.
Estimating the probability p of failing to escape

There is a small probability that a given lineage is affected by recombination each time there is a change in the population.

$U_k =$ number of times the number of B’s goes from k to $k + 1$.
$D_k =$ number of times the number of B’s goes from k to $k - 1$.
$H_k =$ number of changes that leave the number of B’s at k.

Let p_k, q_k, and r_k be the probabilities of escape at times of the U_k, D_k, and H_k changes respectively.

$$ R = \sum_{k=1}^{2N-1} \left(p_k E[U_k] + q_k E[D_k] + r_k E[H_k] \right), \quad p \approx e^{-R}. $$

The probability that a lineage escapes the sweep at a time when the number of B’s goes from k to $k + 1$ is

$$ p_k \approx \frac{1}{k + 1} \cdot r \cdot \frac{2N - k}{2N}. $$

Calculate q_k, r_k similarly. Calculate $E[U_k]$, $E[D_k]$, $E[H_k]$ using properties of conditioned random walks.

$$ p \approx \exp \left(-\frac{r}{s} \log(2N) \right) = 2N^{-r/s}. $$

- Probability of two recombinations is $O(1/(\log N)^2)$.
- Probability of coalescence and recombination is $O(1/(\log N))$.
- If A_1, \ldots, A_n are the events that n lineages escape the sweep, then A_1, \ldots, A_n are approximately independent for large N.

4
A simple approximation

Define a random partition Θ_p of $\{1, \ldots, n\}$ as follows. Flip n independent coins that come up heads with probability p. One block of Θ_p is $\{i : \text{the } i\text{th coin is heads}\}$. The other blocks are singletons.

Theorem 1: Let $a = r \log(2N)/s$. Let $p = e^{-a}$. Suppose $r \leq A/(\log N)$ for some constant A. Then there exists a positive constant C such that

$$|P(\Theta = \pi) - P(\Theta_p = \pi)| \leq \frac{C}{\log N}$$

for all N and all partitions π of $\{1, \ldots, n\}$.

For simulations: keep track of the fraction of lineages that escape the sweep. Also, we have the following possibilities for two lineages:
Simulation results

Choose \(r \) so that \(1 - e^{-a} = 0.4 \), where \(a = r \log(2N)/s \).

<table>
<thead>
<tr>
<th>(N = 10,000; \ s = 0.03)</th>
<th>(b)</th>
<th>(B-b)</th>
<th>(BB)</th>
<th>(bb)</th>
<th>(b-b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulations</td>
<td>.295</td>
<td>.303</td>
<td>.553</td>
<td>.067</td>
<td>.077</td>
</tr>
<tr>
<td>Theorem 1</td>
<td>.400</td>
<td>.480</td>
<td>.360</td>
<td>.000</td>
<td>.160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N = 100,000; \ s = 0.03)</th>
<th>(b)</th>
<th>(B-b)</th>
<th>(BB)</th>
<th>(bb)</th>
<th>(b-b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulations</td>
<td>.318</td>
<td>.352</td>
<td>.505</td>
<td>.046</td>
<td>.096</td>
</tr>
<tr>
<td>Theorem 1</td>
<td>.400</td>
<td>.480</td>
<td>.360</td>
<td>.000</td>
<td>.160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N = 1,000,000; \ s = 0.01)</th>
<th>(b)</th>
<th>(B-b)</th>
<th>(BB)</th>
<th>(bb)</th>
<th>(b-b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulations</td>
<td>.308</td>
<td>.355</td>
<td>.515</td>
<td>.039</td>
<td>.091</td>
</tr>
<tr>
<td>Theorem 1</td>
<td>.400</td>
<td>.480</td>
<td>.360</td>
<td>.000</td>
<td>.160</td>
</tr>
</tbody>
</table>

The approximation based on Theorem 1 is poor. The error is \(O(1/\log N) \), which is not negligible if \(N = 1,000,000 \).

Dominant source of error (Barton, 1998): a recombination soon after the beneficial mutation may cause several lineages that have already coalesced to be descended from the same individual in the \(b \) population. Then \(\Theta \) has more than one large block.
The beginning of a selective sweep

The recombinations that cause additional large blocks in Θ are those that occur when the number of B's is small.

When the B-population is small, it is approximately a continuous-time branching process in which each individual dies at rate $1 - s$ and gives birth at rate 1.

The number of lineages with an infinite line of descent is a branching process with no deaths and births at rate s.

Define $0 = \tau_1 < \tau_2 < \ldots$ such that τ_k is the first time at which there are k individuals with an infinite line of descent.

If there is recombination along a lineage with an infinite line of descent between times τ_k and τ_{k+1}, descendants of that lineage will have a different ancestor at the beginning of the sweep than descendants of the other $k - 1$ lineages.

What fraction of the population is descended from this lineage?
Polya Urns and Branching Processes

Start with one "marked" lineage and $k - 1$ "unmarked" lineages. Mark individuals descended from the marked lineage. When there are x marked individuals and y unmarked,

$$P(\text{next individual is marked}) = \frac{x}{x + y}.$$

Polya urn: start with a white balls and b black balls. Repeatedly draw a ball at random, then return it to the urn along with another ball of the same color. When there are x white balls and y black balls, $P(\text{next ball is white}) = x/(x + y)$.

Equivalent description: let U have a Beta(a, b) distribution. Conditional on U, each ball is independently white with probability U, black with probability $1 - U$.

Limiting fraction of marked individuals: Beta$(1, k - 1)$ distribution.

Alternative approach: Let $(X(t), t \geq 0)$ be a Yule process, so $X(0) = 1$ and each individual gives birth at rate 1. Then

$$\lim_{t \to \infty} e^{-t} X(t) = W \quad \text{a.s.},$$

where W has an Exponential(1) distribution.

If W_1, \ldots, W_k are i.i.d. Exponential(1), the limiting fraction of marked individuals is

$$\frac{W_k}{W_1 + \cdots + W_k},$$

which has the Beta$(1, k - 1)$ distribution.
A second approximation

Stick-breaking (paintbox) construction (Kingman, 1978):

Let $M = \lfloor 2N s \rfloor$. For $k = M, M - 1, M - 2, \ldots, 3, 2$, we break off a fraction W_k of the interval that is left.

W_k corresponds to the fraction of lineages that escape the sweep between times τ_k and τ_{k+1}.

Expected number of recombinations between τ_k and τ_{k+1} is r/s. Assume the number is 0 or 1.

With probability r/s, W_k has the Beta$(1, k - 1)$ distribution.
With probability $1 - r/s$, $W_k = 0$.

Let U_1, U_2, \ldots, U_n be i.i.d. with the uniform distribution on $[0, 1]$. Let Π be the random partition of $\{1, \ldots, n\}$ such that i and j are in the same block if and only if U_i and U_j are in the same subinterval.

Theorem 2. If $r \leq A/\log(2N)$, then there exists a constant C such that for all N and all partitions π of $\{1, \ldots, n\}$, we have

$$|P(\Theta = \pi) - P(\Pi = \pi)| \leq \frac{C}{(\log N)^2}.$$
Simulation results

Choose \(r \) so that \(1 - e^{-a} = 0.4 \), where \(a = r \log(2N)/s \).

\[
\begin{array}{l|ccccc}
N = 10,000; s = 0.03 & b & B-b & BB & bb & b-b \\
\hline
\text{simulations} & .295 & .303 & .553 & .067 & .077 \\
\text{Theorem 2} & .301 & .318 & .540 & .059 & .082 \\
\end{array}
\]

\[
\begin{array}{l|ccccc}
N = 100,000; s = 0.03 & b & B-b & BB & bb & b-b \\
\hline
\text{simulations} & .318 & .352 & .505 & .046 & .096 \\
\text{Theorem 2} & .321 & .358 & .501 & .044 & .098 \\
\end{array}
\]

\[
\begin{array}{l|ccccc}
N = 1,000,000; s = 0.01 & b & B-b & BB & bb & b-b \\
\hline
\text{simulations} & .308 & .355 & .515 & .039 & .091 \\
\text{Theorem 2} & .308 & .358 & .513 & .038 & .091 \\
\end{array}
\]

Remarks

1. Stick-breaking approximation works much better than coin tossing approximation.

2. Theorems 1 and 2 hold for "strong selection" when the selective advantage \(s \) is \(O(1) \).

3. One can also consider "weak selection" when \(s \) is \(O(1/N) \). There is diffusion limit, studied by Krone-Neuhauser (1997), Donnelly-Kurtz (1999), Barton-Etheridge-Sturm (2004).

4. Etheridge-Pfaffelhuber-Wakolbinger (2005) show that same approximations work in the diffusion limit, if we set \(s = \alpha/N \) and then let \(\alpha \to \infty \).
Recurrent selective sweeps

Sample \(n \) individuals at time 0. Let \(\Psi_N(t) \) be the partition of \(\{1, \ldots, n\} \) such that \(i \) and \(j \) are in the same block iff the \(i \)th and \(j \)th individuals in the sample have the same ancestor at time \(-t\).

Consider the process \(\Psi_N = (\Psi_N(Nt), t \geq 0) \), which is a coalescent process taking its values in the set of partitions of \(\{1, \ldots, n\} \).

For the ordinary Moran model (no selective sweeps), \(\Psi_N \) is Kingman's coalescent (each pair of blocks merges at rate 1).

\[\{1, 2, 3, 4\} \]

\[\{1, 2\}, \{3, 4\} \]

\[\{1\}, \{2\}, \{3, 4\} \]

\[\{1\}, \{2\}, \{3\}, \{4\} \]

The duration of a selective sweep is approximately \((2/s) \log(2N)\). With strong selection, all of the lineages that coalesce during a selective sweep do so almost instantaneously for large \(N \).

Gillespie (2000) proposed that selective sweeps happen at times of a Poisson process. If selective sweeps happen at rate \(O(N^{-1}) \), then \(\Psi_N \) converges to a coalescent with multiple collisions (Pitman (1999), Sagitov (1999)) in which many blocks can merge at once.

A better approximation can be obtained using a coalescent with simultaneous multiple collisions (Möhle-Sagitov (2001), Schweinsberg (2000)) in which many mergers can occur simultaneously.
Coalescents with multiple collisions

Markov processes, take values in partitions of \(\{1, \ldots, n\}\).

Let \(\pi\) be a partition of \(\{1, \ldots, n\}\) into blocks \(B_1, \ldots, B_j\). Let \(p \in (0, 1]\). A \(p\)-merger of \(\pi\) is obtained as follows:

- Let \(\xi_1, \ldots, \xi_j\) be i.i.d. Bernoulli\((p)\).
- Merge the blocks \(B_i\) such that \(\xi_i = 1\).

Coalescents can be described in terms of a finite measure \(\Lambda\) on \([0, 1]\). Write \(\Lambda = a\delta_0 + \Lambda_0\), where \(\Lambda_0(\{0\}) = 0\). Transitions in the \(\Lambda\)-coalescent are as follows:

- Each pair of blocks merges at rate \(a\).
- Construct a Poisson point process on \([0, \infty) \times (0, 1]\) with intensity \(dt \times p^{-2}\Lambda_0(dp)\). If \((t, p)\) is a point of this Poisson process, then a \(p\)-merger occurs at time \(t\).

When there are \(b\) blocks, let \(\lambda_{b,k}\) denote the rate of a transition in which \(k\) blocks merge into one. Then, for \(2 \leq k \leq b\),

\[
\lambda_{b,k} = \int_0^1 p^{k-2}(1 - p)^{b-k} \Lambda(dp).
\]

Examples of limiting processes:

- No selection: \(\Lambda = \delta_0\) (Kingman’s coalescent).
- If the mutations all occur at one site, then \(\Lambda = \delta_0 + \alpha p^2 \delta_p\).
- If mutations and recombinations occur uniformly along the chromosome, then \(\Lambda(dx) = \delta_0 + \beta x \, dx\).
- Other \(\Lambda\) could arise under different assumptions.
Applications

Assume mutations occur along each lineage at rate $\theta/2$.

Assume the genealogy is given by a Λ-coalescent and either:

- Case 1: $\Lambda = \delta_0 + \alpha p^2 \delta_p$
- Case 2: $\Lambda(dx) = \delta_0 + \beta x \, dx$

Let λ_b be merger rate for the Λ-coalescent when there are b blocks.

Let $G_n(b) = P($coalescent has exactly b blocks at some time$)$.

1. Pairwise differences

- Let $\Delta_{i,j}$ be number of sites at which segments i and j differ.

- Let $\Delta_n = \binom{n}{2}^{-1} \sum_{i<j} \Delta_{i,j}$.

- $E[\Delta_n] = \theta \lambda_2^{-1}$.

2. Segregating sites

- Let S_n be the number of segregating sites.

- $E[S_n] = \frac{\theta}{2} \sum_{b=2}^{n} b \lambda_b^{-1} G_n(b)$

- Kingman: $E[S_n] = \frac{\theta}{2} \sum_{b=2}^{n} b \binom{b}{2}^{-1} = \theta \sum_{b=2}^{n} \frac{1}{b-1} = \theta h_{n-1}$.

- Cases 1 and 2: $\lim_{n \to \infty} (E[S_n] - \theta h_{n-1}) = -\rho$.
3. Number of singletons

- Let J_n be number of mutations that affect exactly one lineage.
- Kingman: $E[J_n] = \theta$.
- Case 1: $E[J_n] = \theta - O((\log n)/n)$.
- Case 2: $E[J_n] = \theta - O((\log n)^2/n)$.

Tajima’s (1989) D-statistic:

$$D = \frac{\Delta_n - S_n/h_{n-1}}{\sqrt{a_n S_n + b_n S_n^2}}.$$

Multiple mergers reduce Δ_n by $O(1)$ and S_n/h_{n-1} by $O(1/\log n)$, so D will be negative, consistent with simulations of Braverman-Hudson-Kaplan-Langley-Stephan (1995) and Simonsen-Churchill-Aquadro (1995).

Fu and Li’s D-statistic (1993):

$$D = \frac{S_n - h_{n-1} J_n}{\sqrt{c_n S_n + d_n S_n^2}}.$$

Expected value of numerator goes to $-\rho$ as $n \to \infty$.

Standard deviation of numerator is $O(\log n)$ for Fu and Li’s D-statistic but $O(1)$ for Tajima’s D-statistic, so Tajima’s D-statistic should be more powerful for detecting selective sweeps.
Site Frequency Spectrum

Let M_k be the number of mutations that affect k lineages.

The sequence $(M_1, M_2, \ldots, M_{n-1})$ is the site frequency spectrum. Δ_n, S_n, and J_n are functions of the site frequency spectrum.

The full site frequency spectrum is needed for Fay and Wu’s (2000)

$$H = \Delta_n - \sum_{k=1}^{n-1} \frac{2k^2 M_k}{n(n-1)}.$$

Kingman’s coalescent: $E[M_k] = \frac{\theta}{k}$ for all k.

A single selective sweep increases the number of high-frequency and low-frequency mutants (Fay-Wu, 2000; Kim-Stephan, 2002).

Recurrent selective sweeps lead to an excess of low-frequency mutants but not high-frequency mutants (Kim, 2006).

Analytical results for cases 1 and 2 have not yet been obtained.