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Transverse knots

M cooriented contact 3-manifold with contact structure ξ = ker α.
Standard example: M = R3, αstd = dz − y dx .

Definition

A knot K in (M, ξ) is transverse if α > 0 along K (in particular,
K ⋔ ξ). Two transverse knots are transversely isotopic if they are
isotopic through transverse knots.

Transverse classification problem

Classify transverse knots of some particular topological type.

We’ll restrict our attention to (R3, ξstd = ker αstd).
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Relation to Legendrian knots

There is a one-to-one correspondence

{transverse knots} ←→{Legendrian knots}/

(+ Legendrian stabilization/destab).

In R3, the classical invariant (self-linking number) of T and
the classical invariants (Thurston–Bennequin number and
rotation number) of L are related by

sl(T ) = tb(L) − rot(L).
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Braids and transverse knots

Theorem (Bennequin 1983)

Any braid (conjugacy class) can be closed in a natural way to
produce a transverse knot in (R3, ξstd), and every transverse knot
is transversely isotopic to a closed braid.
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Braids and transverse knots

Theorem (Bennequin 1983)

Any braid (conjugacy class) can be closed in a natural way to
produce a transverse knot in (R3, ξstd), and every transverse knot
is transversely isotopic to a closed braid.

Transverse Markov Theorem (Orevkov–Shevchishin 01, Wrinkle 02)

Two braids represent the same transverse knot iff related by:

conjugation in the braid groups

positive stabilization B ←→ Bσn:

B B

Cf. usual Markov Theorem: topological knots/links are equivalent
to braids mod conjugation and positive/negative stabilization.
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Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking
number of T is

sl(T ) = w(B) − n(B)

where w(B) = algebraic crossing number of B and n(B) = braid
index of B.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.
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Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking
number of T is

sl(T ) = w(B) − n(B)

where w(B) = algebraic crossing number of B and n(B) = braid
index of B.

Definition

A topological knot is transversely simple if its transverse
representatives are completely determined by self-linking number;
otherwise transversely nonsimple.

Examples of transversely simple knots:

unknot (Eliashberg 1993)

torus knots (Etnyre 1999) and the figure 8 knot
(Etnyre–Honda 2000)

some twist knots (Etnyre–N.–Vértesi 2010)
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Transverse nonsimplicity

Examples of transversely nonsimple knots:

(2, 3)-cable of (2, 3) torus knot (Etnyre–Honda 2003) and
other torus knot cables (Etnyre–LaFountain–Tosun 2011)

some closed 3-braids (Birman–Menasco 2003, 2008)

some twist knots (Etnyre–N.–Vértesi 2010): number of
crossings in shaded region is odd and ≥ 5
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Transversely nonsimple knots: Birman–Menasco examples

Birman–Menasco 2008: family of knots with braid index 3 that are
transversely nonsimple. More precisely, they show that the
transverse knots given by the closures of the 3-braids
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2 ,

which are related by a “negative flype”, are transversely
nonisotopic for particular choices of (a, b, c).
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Effective transverse invariants

Definition

A transverse invariant is effective if it can distinguish different
transverse knots with the same self-linking number and topological
type (i.e., prove that some topological knot is transversely
nonsimple).

Not known to be effective:

Plamenevskaya 2004: distinguished element in Khovanov
homology

Wu 2005: distinguished elements in Khovanov–Rozansky sln

homology

N.–Rasmussen 2007: distinguished element in
Khovanov–Rozansky HOMFLY-PT homology (known not to
be effective)
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Effective transverse invariants, continued

Known to be effective:

Ozsváth–Szabó–Thurston 2006: HFK grid invariant:
distinguished element in knot Floer homology via grid
diagrams

Lisca–Ozsváth–Stipsicz–Szabó 2008: LOSS invariant:
distinguished element in knot Floer homology via open book
decompositions

Ekholm–Etnyre–N.–Sullivan 2010: transverse homology:
filtered version of knot contact homology
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The conormal construction

Idea: use the cotangent bundle to turn smooth topology into
symplectic/contact topology.

M smooth manifold Ã unit cotangent bundle ST ∗M, which is
naturally a contact manifold

K ⊂ M embedded submanifold Ã conormal bundle

N∗K = {(q, p) : q ∈ K , 〈p, v〉 = 0∀ v ∈ TqK} ⊂ ST ∗M,

which is a Legendrian submanifold of ST ∗M.

K

N∗K

p

N∗
pK

Smooth isotopy of K ⊂ M results in Legendrian isotopy of
N∗K ⊂ ST ∗M.
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Knot contact homology

(K ⊂ M =⇒ N∗K Legendrian ⊂ ST ∗M contact)

Any Legendrian-isotopy invariant of N∗K is a smooth-isotopy
invariant of K : for instance, Legendrian contact homology
(Eliashberg–Hofer), where defined. For M = Rn,
ST ∗M = J1(Sn−1) and LCH is well-defined
(Ekholm–Etnyre–Sullivan 05).

Definition

K ⊂ Rn. The knot contact homology of K is the Legendrian
contact homology of N∗K ⊂ ST ∗Rn,

HC∗(K ) := LCH∗(N
∗K ).

In particular, for a knot K ⊂ R3, HC∗(K ) is a smooth knot
invariant.
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Form for knot contact homology

(K ⊂ M =⇒ N∗K Legendrian ⊂ ST ∗M contact)

For a knot K ⊂ R3, the LCH complex for N∗K is a differential
graded algebra

(CC∗(K ), ∂)

generated by Reeb chords for N∗K , over the group ring

R := Z[H1(N
∗K )] ∼= Z[λ±1, µ±1].

The differential counts holomorphic disks in ST ∗R3 with boundary
on N∗K .

Theorem (N. 2003, 2004, Ekholm–Etnyre–N.–Sullivan in
preparation)

There is a purely algebraic/combinatorial expression for the DGA
(CC∗(K ), ∂).
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Holomorphic disks counted in knot contact homology

The symplectization R × ST ∗R3, and the Lagrangian cylinder
R × N∗K in the symplectization:

R

R × ST ∗R3

R × N∗K

This holomorphic disk contributes

∂(ai ) = aj1aj2aj3 + · · ·

where ai , aj1 , aj2 , aj3 are Reeb chords of N∗K .
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Holomorphic disks counted in knot contact homology

The symplectization R × ST ∗R3, and the Lagrangian cylinder
R × N∗K in the symplectization:

R

ai

aj1 aj2

aj3

R × N∗K

R × ST ∗R3

This holomorphic disk contributes

∂(ai ) = aj1aj2aj3 + · · ·

where ai , aj1 , aj2 , aj3 are Reeb chords of N∗K .
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Properties of knot contact homology

(Recall: knot contact homology HC∗(K ) = Legendrian contact
homology of conormal N∗K ⊂ ST ∗R3.)

Theorem (N. 2004)

HC∗(K ) can be combinatorially shown to be a knot invariant,
supported in degrees ∗ ≥ 0.

(Linearized) HC1(K ) encodes the Alexander polynomial
∆K (t).

HC0(K ) detects the unknot.
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Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has
a conormal lift to ST ∗M:

N∗ξ = N∗

+ξ ∪ N∗

−ξ = {(q, p) ∈ ST ∗M : 〈p, v〉 = 0∀ v ∈ ξq}.

N ∗K

K
ST ∗

p M

ξp

N ∗
+ξ

N ∗
−ξ

p

If K is transverse to ξ, then the conormal lifts of K and ξ are
disjoint: N∗K ∩ N∗

±ξ = ∅.
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Filtering the LCH differential

If K is transverse in (R3, ξ), we can filter the LCH differential for
N∗K by counting intersections with the holomorphic 4-manifolds
R × N∗

±ξ in the symplectization R × ST ∗R3.

R

R × N∗K

R × ST ∗R3

R × N∗
+
ξ

R × N∗
−ξ

This lifts the LCH complex from a DGA (A, ∂) over
R = Z[λ±1, µ±1] to a DGA (A, ∂−) over R[U, V ]: e.g.

∂−(ai ) = U2V 1aj1aj2aj3 + · · · .
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Filtering the LCH differential

If K is transverse in (R3, ξ), we can filter the LCH differential for
N∗K by counting intersections with the holomorphic 4-manifolds
R × N∗

±ξ in the symplectization R × ST ∗R3.

R

R × N∗K

ai

aj1 aj2

aj3

R × ST ∗R3

R × N∗
−ξ

R × N∗
+
ξ

This lifts the LCH complex from a DGA (A, ∂) over
R = Z[λ±1, µ±1] to a DGA (A, ∂−) over R[U, V ]: e.g.

∂−(ai ) = U2V 1aj1aj2aj3 + · · · .
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Transverse homology

Definition

The (minus) transverse complex of a transverse knot
K ⊂ (R3, ξstd) is the LCH algebra (CT−

∗ (K ) = A, ∂−) over the
base ring R[U, V ] = Z[λ±1, µ±1, U, V ], with the differential ∂−

filtered by intersections with N∗
±ξ.

This can be viewed as a bi-filtered version of knot contact
homology.

Theorem (Ekholm–Etnyre–N.–Sullivan 2010)

There is a combinatorial formula for (CT−
∗ (K ), ∂−) in terms

of a braid representative of K.

The transverse homology of K, HT−
∗ (K ) = H∗(CT−(K ), ∂−),

is a transverse invariant.
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Flavors of transverse homology

From (CT−(K ), ∂−) chain complex over R[U, V ] (with
R = Z[λ±1, µ±1]), obtain:

(ĈT ∗(K ), ∂̂) chain complex over R, by setting (U, V ) = (0, 1)
or (1, 0)

(CT∞
∗ (K ), ∂∞) chain complex over R[U±1, V±1], by

tensoring with R[U±1, V±1]

(CC∗(K ), ∂) chain complex over R, by setting (U, V ) = (1, 1)

ĤT ∗(K ) is a transverse invariant, while HT∞
∗ (K ) and HC∗(K ) are

topological invariants (the latter is knot contact homology).

Theorem (N. 2010)

ĤT 0(K ) is an effective transverse invariant.
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Example: m(76) knot
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3)

These two transverse m(76) knots can be distinguished by ĤT 0:
count number of augmentations (ring homomorphisms)

ĤT 0 → Z/3.

This is an effective technique for distinguishing other transverse
knots, as long as braid index . 4.
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HFK grid invariant

Ozsváth–Szabó–Thurston 2006:

transverse knot T of topological type K

²²

distinguished element θ−(T ) ∈ HFK−(m(K )).

In combinatorial model for CFK via grid diagrams
(Manolescu–Ozsváth–Sarkar), θ−(T ) is the generator given by the
upper-right corners of the X’s for a Legendrian approximation of T .
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HFK grid invariant, continued

Result (after mapping HFK− → ĤFK ) for T transverse of type K :

θ̂(T ) ∈ ĤFK sl(T )+1(m(K ), sl(T )+1
2 ).

Theorem (Ozsváth–Szabó–Thurston 2006)

The HFK grid invariant θ̂ is a transverse invariant.

Crude way to apply θ̂: if T1, T2 are transverse knots with
θ̂(T1) = 0 and θ̂(T2) 6= 0, then they’re distinct.

Theorem (N.–Ozsváth–Thurston 2007)

The HFK grid invariant θ̂ is an effective transverse invariant.

E.g., can be used to recover Etynre–Honda’s result that the
(2, 3)-cable of the (2, 3) torus knot is transversely nonsimple.
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Limitations of crude approach

θ̂(T ) ∈ ĤFK sl(T )+1(m(K ), sl(T )+1
2 ) :

If this group is 0, then θ̂(T ) = 0 carries no information.

If θ̂(T1), θ̂(T2) 6= 0, how to tell them apart?

Slightly more precise statement of invariance:

Theorem (Ozsváth–Szabó–Thurston 2006)

If T1, T2 are isotopic transverse knots and G1, G2 are grid diagrams
of corresponding Legendrian approximations, then the transverse
isotopy gives a sequence of grid moves from G1 to G2 inducing a
combinatorially-defined isomorphism

φ : ĤFK (G1) → ĤFK (G2)

and φ(θ̂(G1)) = θ̂(G2).
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Enter naturality

Theorem (Thurston et al., in progress)

(roughly speaking) Let G1, G2 be grid diagrams for the same
topological knot, and let γ be a sequence of grid moves from G1 to
G2. Then the isomorphism

γ∗ : HFK−(G1) → HFK−(G2)

depends only on the homotopy class of the path
γ ⊂ {smooth knots}.

Definition

Let K be an oriented topological knot. The mapping class group
of K is

MCG (K ) = π1({smooth knots isotopic to K}).

Can use naturality in conjunction with θ̂.
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Naturality and the HFK grid invariant

Corollary

Let T1, T2 be transverse of type K with MCG (K ) = 1, and let
G1, G2 be grid diagrams for T1, T2. If T1, T2 are transversely
isotopic, then for any sequence γ of grid diagrams from G1 to G2,

γ∗(θ̂(G1)) = θ̂(G2).

Theorem (N.–Thurston 2011, preliminary)

The Birman–Menasco pair

σ5
1σ

3
2σ

3
1σ

−1
2 and σ5

1σ
−1
2 σ3

1σ
3
2

can be distinguished by θ̂.
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Birman–Menasco transverse knots

σ5
1σ

3
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2

These are of topological type 11a240, and MCG (11a240) = 1. The
θ̂ invariants constitute distinct nonzero elements of

ĤFK 8(11a240, 4) ∼= (Z/2)2.

This argument can be extended to other Birman–Menasco pairs
(possibly σa

1σ
b
2σc

1σ−1
2 , σa

1σ
−1
2 σc

1σb
2 for a, b, c ≥ 3 with a 6= c), but

not all of them.
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Transverse mapping class group

Definition

Let K be a transverse knot. The transverse mapping class group of
K is

TMCG (K ) = π1({transverse knots transversely isotopic to K}).

For a transverse knot K , there is an obvious map

TMCG (K ) → MCG (K ).

Naturality and θ̂ can be used to show that this map is not an
isomorphism for some transverse knots K .
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Transverse mapping class group, continued

Theorem (N.–Thurston 2011, preliminary)

Consider any twist knot where the number of crossings in the
shaded region is odd and ≥ 3.

There is a transverse knot K of this topological type such that the
map

TMCG (K ) → MCG (K ) (∼= Z/2)

is not surjective.

Cf. Kálmán 2004: there are Legendrian knots K for which the map
LMCG (K ) → MCG (K ) is not injective.
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK

HT

Knot 10128 m(10132) 10136 m(10140)

HFK

HT

Knot m(10145) 10160 m(10161) 12n591

HFK

HT
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591

HFK

HT

N.–Ozsváth–Thurston 2007, using HFK grid invariant
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591

HFK X X X

HT

Chongchitmate–N. 2010, using HFK grid invariant



Transverse classification Transverse homology HFK grid invariant Comparison

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X

HT

Knot m(10145) 10160 m(10161) 12n591

HFK X X X

HT

Ozsváth–Stipsicz 2008, using LOSS invariant
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X X

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X X

HT

Knot m(10145) 10160 m(10161) 12n591

HFK X X X

HT

N.–Thurston 2011, using HFK grid invariant and naturality
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X × × X ×

HT

Knot 10128 m(10132) 10136 m(10140)

HFK X X × X

HT

Knot m(10145) 10160 m(10161) 12n591

HFK X × X X

HT

HFK invariants don’t work: ĤFK = 0 in relevant bidegree.
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X × × X ×

HT X X X X

Knot 10128 m(10132) 10136 m(10140)

HFK X X × X

HT X X X

Knot m(10145) 10160 m(10161) 12n591

HFK X × X X

HT X X X

N. 2010, using transverse homology
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X × × X ×

HT X X X ? X

Knot 10128 m(10132) 10136 m(10140)

HFK X X × X

HT ? X X X

Knot m(10145) 10160 m(10161) 12n591

HFK X × X X

HT X ? X X

These are “transverse mirrors”, as are the Birman–Menasco knots.
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Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate–N. 2010): 13 knots of arc
index ≤ 9 are conjectured to be transversely nonsimple.

Knot m(72) m(76) 944 m(945) 948

HFK X × × X ×

HT X X X ? X

Knot 10128 m(10132) 10136 m(10140)

HFK X X × X

HT ? X X X

Knot m(10145) 10160 m(10161) 12n591

HFK X × X X

HT X ? X X
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