Effective invariants of transverse knots

Lenny Ng

Duke University

Conference on contact and symplectic topology Université de Nantes 17 June 2011

Partly based on:

- joint work with Tobias Ekholm, John Etnyre, and Michael Sullivan
- preliminary joint work with Dylan Thurston

These slides available at http://www.math.duke.edu/~ng/nantes.pdf.

Outline

(1) Transverse classification
(2) Transverse homology
(3) HFK grid invariant
(4) Comparison

Transverse knots

M cooriented contact 3-manifold with contact structure $\xi=\operatorname{ker} \alpha$. Standard example: $M=\mathbb{R}^{3}, \alpha_{\text {std }}=d z-y d x$.

Definition

A knot K in (M, ξ) is transverse if $\alpha>0$ along K (in particular, $K \pitchfork \xi$). Two transverse knots are transversely isotopic if they are isotopic through transverse knots.

Transverse classification problem

Classify transverse knots of some particular topological type.
We'll restrict our attention to $\left(\mathbb{R}^{3}, \xi_{\text {std }}=\operatorname{ker} \alpha_{\text {std }}\right)$.

Relation to Legendrian knots

- There is a one-to-one correspondence
$\{$ transverse knots $\} \longleftrightarrow\{$ Legendrian knots $\} /$ (+ Legendrian stabilization/destab).
- In \mathbb{R}^{3}, the classical invariant (self-linking number) of T and the classical invariants (Thurston-Bennequin number and rotation number) of L are related by

$$
s l(T)=t b(L)-\operatorname{rot}(L)
$$

Braids and transverse knots

Theorem (Bennequin 1983)

Any braid (conjugacy class) can be closed in a natural way to produce a transverse knot in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$, and every transverse knot is transversely isotopic to a closed braid.

Braids and transverse knots

Theorem (Bennequin 1983)

Any braid (conjugacy class) can be closed in a natural way to produce a transverse knot in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$, and every transverse knot is transversely isotopic to a closed braid.

Transverse Markov Theorem (Orevkov-Shevchishin 01, Wrinkle 02)

Two braids represent the same transverse knot iff related by:

- conjugation in the braid groups
- positive stabilization $B \longleftrightarrow B \sigma_{n}$:

Cf. usual Markov Theorem: topological knots/links are equivalent to braids mod conjugation and positive/negative stabilization.

Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking number of T is

$$
s l(T)=w(B)-n(B)
$$

where $w(B)=$ algebraic crossing number of B and $n(B)=$ braid index of B.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Transverse classification

If a transverse knot T is the closure of a braid B, the self-linking number of T is

$$
s l(T)=w(B)-n(B)
$$

where $w(B)=$ algebraic crossing number of B and $n(B)=$ braid index of B.

Definition

A topological knot is transversely simple if its transverse representatives are completely determined by self-linking number; otherwise transversely nonsimple.

Examples of transversely simple knots:

- unknot (Eliashberg 1993)
- torus knots (Etnyre 1999) and the figure 8 knot (Etnyre-Honda 2000)
- some twist knots (Etnyre-N.-Vértesi 2010)

Transverse nonsimplicity

Examples of transversely nonsimple knots:

- $(2,3)$-cable of $(2,3)$ torus knot (Etnyre-Honda 2003) and other torus knot cables (Etnyre-LaFountain-Tosun 2011)
- some closed 3-braids (Birman-Menasco 2003, 2008)
- some twist knots (Etnyre-N.-Vértesi 2010): number of crossings in shaded region is odd and ≥ 5

Transversely nonsimple knots: Birman-Menasco examples

Birman-Menasco 2008: family of knots with braid index 3 that are transversely nonsimple. More precisely, they show that the transverse knots given by the closures of the 3-braids

$$
\sigma_{1}^{a} \sigma_{2}^{b} \sigma_{1}^{c} \sigma_{2}^{-1}, \quad \sigma_{1}^{a} \sigma_{2}^{-1} \sigma_{1}^{c} \sigma_{2}^{b}
$$

which are related by a "negative flype", are transversely nonisotopic for particular choices of (a, b, c).

Effective transverse invariants

Definition

A transverse invariant is effective if it can distinguish different transverse knots with the same self-linking number and topological type (i.e., prove that some topological knot is transversely nonsimple).

Not known to be effective:

- Plamenevskaya 2004: distinguished element in Khovanov homology
- Wu 2005: distinguished elements in Khovanov-Rozansky $\mathfrak{s l}_{n}$ homology
- N.-Rasmussen 2007: distinguished element in Khovanov-Rozansky HOMFLY-PT homology (known not to be effective)

Effective transverse invariants, continued

Known to be effective:

- Ozsváth-Szabó-Thurston 2006: HFK grid invariant: distinguished element in knot Floer homology via grid diagrams
- Lisca-Ozsváth-Stipsicz-Szabó 2008: LOSS invariant: distinguished element in knot Floer homology via open book decompositions
- Ekholm-Etnyre-N.-Sullivan 2010: transverse homology: filtered version of knot contact homology

The conormal construction

Idea: use the cotangent bundle to turn smooth topology into symplectic/contact topology.

- M smooth manifold \rightsquigarrow unit cotangent bundle $S T^{*} M$, which is naturally a contact manifold
- $K \subset M$ embedded submanifold \rightsquigarrow conormal bundle

$$
N^{*} K=\left\{(q, p): q \in K,\langle p, v\rangle=0 \forall v \in T_{q} K\right\} \subset S T^{*} M,
$$

which is a Legendrian submanifold of $S T^{*} M$.

Smooth isotopy of $K \subset M$ results in Legendrian isotopy of $N^{*} K \subset S T^{*} M$.

Knot contact homology

$$
\left(K \subset M \Longrightarrow N^{*} K \text { Legendrian } \subset S T^{*} M \text { contact }\right)
$$

Any Legendrian-isotopy invariant of $N^{*} K$ is a smooth-isotopy invariant of K : for instance, Legendrian contact homology
(Eliashberg-Hofer), where defined. For $M=\mathbb{R}^{n}$,
$S T^{*} M=J^{1}\left(S^{n-1}\right)$ and LCH is well-defined
(Ekholm-Etnyre-Sullivan 05).

Definition

$K \subset \mathbb{R}^{n}$. The knot contact homology of K is the Legendrian contact homology of $N^{*} K \subset S T^{*} \mathbb{R}^{n}$,

$$
H C_{*}(K):=L C H_{*}\left(N^{*} K\right) .
$$

In particular, for a knot $K \subset \mathbb{R}^{3}, H C_{*}(K)$ is a smooth knot invariant.

Form for knot contact homology

$$
\left(K \subset M \Longrightarrow N^{*} K \text { Legendrian } \subset S T^{*} M \text { contact }\right)
$$

For a knot $K \subset \mathbb{R}^{3}$, the LCH complex for $N^{*} K$ is a differential graded algebra

$$
\left(C C_{*}(K), \partial\right)
$$

generated by Reeb chords for $N^{*} K$, over the group ring

$$
R:=\mathbb{Z}\left[H_{1}\left(N^{*} K\right)\right] \cong \mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right] .
$$

The differential counts holomorphic disks in $S T^{*} \mathbb{R}^{3}$ with boundary on $N^{*} K$.

Theorem (N. 2003, 2004, Ekholm-Etnyre-N.-Sullivan in preparation)

There is a purely algebraic/combinatorial expression for the DGA $\left(C C_{*}(K), \partial\right)$.

Holomorphic disks counted in knot contact homology

The symplectization $\mathbb{R} \times S T^{*} \mathbb{R}^{3}$, and the Lagrangian cylinder $\mathbb{R} \times N^{*} K$ in the symplectization:

Holomorphic disks counted in knot contact homology

The symplectization $\mathbb{R} \times S T^{*} \mathbb{R}^{3}$, and the Lagrangian cylinder $\mathbb{R} \times N^{*} K$ in the symplectization:

This holomorphic disk contributes

$$
\partial\left(a_{i}\right)=a_{j_{1}} a_{j_{2}} a_{j_{3}}+\cdots
$$

where $a_{i}, a_{j_{1}}, a_{j_{2}}, a_{j_{3}}$ are Reeb chords of $N^{*} K$.

Properties of knot contact homology

(Recall: knot contact homology $H C_{*}(K)=$ Legendrian contact homology of conormal $N^{*} K \subset S T^{*} \mathbb{R}^{3}$.)

Theorem (N. 2004)

- $H C_{*}(K)$ can be combinatorially shown to be a knot invariant, supported in degrees $* \geq 0$.
- (Linearized) $H C_{1}(K)$ encodes the Alexander polynomial $\Delta_{K}(t)$.
- $H C_{0}(K)$ detects the unknot.

Lifting a contact structure

Given a contact manifold (M, ξ), the contact structure ξ itself has a conormal lift to $S T^{*} M$:

$$
N^{*} \xi=N_{+}^{*} \xi \cup N_{-}^{*} \xi=\left\{(q, p) \in S T^{*} M:\langle p, v\rangle=0 \forall v \in \xi_{q}\right\} .
$$

If K is transverse to ξ, then the conormal lifts of K and ξ are disjoint: $N^{*} K \cap N_{ \pm}^{*} \xi=\emptyset$.

Filtering the LCH differential

If K is transverse in $\left(\mathbb{R}^{3}, \xi\right)$, we can filter the LCH differential for $N^{*} K$ by counting intersections with the holomorphic 4-manifolds $\mathbb{R} \times N_{ \pm}^{*} \xi$ in the symplectization $\mathbb{R} \times S T^{*} \mathbb{R}^{3}$.

Filtering the LCH differential

If K is transverse in $\left(\mathbb{R}^{3}, \xi\right)$, we can filter the LCH differential for $N^{*} K$ by counting intersections with the holomorphic 4-manifolds $\mathbb{R} \times N_{ \pm}^{*} \xi$ in the symplectization $\mathbb{R} \times S T^{*} \mathbb{R}^{3}$.

This lifts the LCH complex from a DGA (\mathcal{A}, ∂) over $R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]$ to a DGA $\left(\mathcal{A}, \partial^{-}\right)$over $R[U, V]$: e.g.

$$
\partial^{-}\left(a_{i}\right)=U^{2} V^{1} a_{j_{1}} a_{j_{2}} a_{j_{3}}+\cdots
$$

Transverse homology

Definition

The (minus) transverse complex of a transverse knot $K \subset\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$ is the LCH algebra $\left(C T_{*}^{-}(K)=\mathcal{A}, \partial^{-}\right)$over the base ring $R[U, V]=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}, U, V\right]$, with the differential ∂^{-} filtered by intersections with $N_{ \pm}^{*} \xi$.

This can be viewed as a bi-filtered version of knot contact homology.

Theorem (Ekholm-Etnyre-N.-Sullivan 2010)

- There is a combinatorial formula for $\left(C T_{*}^{-}(K), \partial^{-}\right)$in terms of a braid representative of K.
- The transverse homology of $K, H T_{*}^{-}(K)=H_{*}\left(C T^{-}(K), \partial^{-}\right)$, is a transverse invariant.

Flavors of transverse homology

From $\left(C T^{-}(K), \partial^{-}\right)$chain complex over $R[U, V]$ (with $\left.R=\mathbb{Z}\left[\lambda^{ \pm 1}, \mu^{ \pm 1}\right]\right)$, obtain:

- $\left(\widehat{C T}_{*}(K), \widehat{\partial}\right)$ chain complex over R, by setting $(U, V)=(0,1)$ or $(1,0)$
- $\left(C T_{*}^{\infty}(K), \partial^{\infty}\right)$ chain complex over $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$, by tensoring with $R\left[U^{ \pm 1}, V^{ \pm 1}\right]$
- $\left(C C_{*}(K), \partial\right)$ chain complex over R, by setting $(U, V)=(1,1)$ $\widehat{H T}_{*}(K)$ is a transverse invariant, while $H T_{*}^{\infty}(K)$ and $H C_{*}(K)$ are topological invariants (the latter is knot contact homology).

Theorem (N. 2010)

$\widehat{H T}_{0}(K)$ is an effective transverse invariant.

Example: $m\left(7_{6}\right)$ knot

These two transverse $m\left(7_{6}\right)$ knots can be distinguished by $\widehat{H T}_{0}$: count number of augmentations (ring homomorphisms)

$$
\widehat{H T}_{0} \rightarrow \mathbb{Z} / 3 .
$$

This is an effective technique for distinguishing other transverse knots, as long as braid index $\lesssim 4$.

HFK grid invariant

Ozsváth-Szabó-Thurston 2006:
transverse knot T of topological type K
 distinguished element $\theta^{-}(T) \in H F K^{-}(m(K))$.

In combinatorial model for CFK via grid diagrams (Manolescu-Ozsváth-Sarkar), $\theta^{-}(T)$ is the generator given by the upper-right corners of the X's for a Legendrian approximation of T.

HFK grid invariant, continued

Result (after mapping HFK ${ }^{-} \rightarrow \widehat{H F K}$) for T transverse of type K :

$$
\widehat{\theta}(T) \in \widehat{H F K}_{s /(T)+1}\left(m(K), \frac{s l(T)+1}{2}\right) .
$$

Theorem (Ozsváth-Szabó-Thurston 2006)

The HFK grid invariant $\widehat{\theta}$ is a transverse invariant.
Crude way to apply $\widehat{\theta}$: if T_{1}, T_{2} are transverse knots with $\widehat{\theta}\left(T_{1}\right)=0$ and $\widehat{\theta}\left(T_{2}\right) \neq 0$, then they're distinct.

Theorem (N.-Ozsváth-Thurston 2007)

The HFK grid invariant $\widehat{\theta}$ is an effective transverse invariant.
E.g., can be used to recover Etynre-Honda's result that the $(2,3)$-cable of the $(2,3)$ torus knot is transversely nonsimple.

Limitations of crude approach

$$
\widehat{\theta}(T) \in \widehat{H F K}_{s l(T)+1}\left(m(K), \frac{s l(T)+1}{2}\right):
$$

- If this group is 0 , then $\widehat{\theta}(T)=0$ carries no information.
- If $\widehat{\theta}\left(T_{1}\right), \widehat{\theta}\left(T_{2}\right) \neq 0$, how to tell them apart?

Slightly more precise statement of invariance:

Theorem (Ozsváth-Szabó-Thurston 2006)

If T_{1}, T_{2} are isotopic transverse knots and G_{1}, G_{2} are grid diagrams of corresponding Legendrian approximations, then the transverse isotopy gives a sequence of grid moves from G_{1} to G_{2} inducing a combinatorially-defined isomorphism

$$
\phi: \widehat{H F K}\left(G_{1}\right) \rightarrow \widehat{H F K}\left(G_{2}\right)
$$

and $\phi\left(\widehat{\theta}\left(G_{1}\right)\right)=\widehat{\theta}\left(G_{2}\right)$.

Enter naturality

Theorem (Thurston et al., in progress)

(roughly speaking) Let G_{1}, G_{2} be grid diagrams for the same topological knot, and let γ be a sequence of grid moves from G_{1} to G_{2}. Then the isomorphism

$$
\gamma_{*}: \operatorname{HFK}^{-}\left(G_{1}\right) \rightarrow \operatorname{HFK}^{-}\left(G_{2}\right)
$$

depends only on the homotopy class of the path $\gamma \subset\{$ smooth knots $\}$.

Definition

Let K be an oriented topological knot. The mapping class group of K is

$$
M C G(K)=\pi_{1}(\{\text { smooth knots isotopic to } K\}) .
$$

Can use naturality in conjunction with $\widehat{\theta}$.

Naturality and the HFK grid invariant

Corollary

Let T_{1}, T_{2} be transverse of type K with $\operatorname{MCG}(K)=1$, and let G_{1}, G_{2} be grid diagrams for T_{1}, T_{2}. If T_{1}, T_{2} are transversely isotopic, then for any sequence γ of grid diagrams from G_{1} to G_{2},

$$
\gamma_{*}\left(\widehat{\theta}\left(G_{1}\right)\right)=\widehat{\theta}\left(G_{2}\right) .
$$

Theorem (N.-Thurston 2011, preliminary)

The Birman-Menasco pair

$$
\sigma_{1}^{5} \sigma_{2}^{3} \sigma_{1}^{3} \sigma_{2}^{-1} \quad \text { and } \quad \sigma_{1}^{5} \sigma_{2}^{-1} \sigma_{1}^{3} \sigma_{2}^{3}
$$

can be distinguished by $\widehat{\theta}$.

Birman-Menasco transverse knots

These are of topological type $11 a_{240}$, and $\operatorname{MCG}\left(11 a_{240}\right)=1$. The $\widehat{\theta}$ invariants constitute distinct nonzero elements of

$$
\widehat{\operatorname{HFK}}_{8}\left(11 a_{240}, 4\right) \cong(\mathbb{Z} / 2)^{2} .
$$

This argument can be extended to other Birman-Menasco pairs (possibly $\sigma_{1}^{a} \sigma_{2}^{b} \sigma_{1}^{c} \sigma_{2}^{-1}, \sigma_{1}^{a} \sigma_{2}^{-1} \sigma_{1}^{c} \sigma_{2}^{b}$ for $a, b, c \geq 3$ with $a \neq c$), but not all of them.

Transverse mapping class group

Definition

Let K be a transverse knot. The transverse mapping class group of K is
$T M C G(K)=\pi_{1}(\{$ transverse knots transversely isotopic to $K\})$.
For a transverse knot K, there is an obvious map

$$
\operatorname{TMCG}(K) \rightarrow M C G(K) .
$$

Naturality and $\widehat{\theta}$ can be used to show that this map is not an isomorphism for some transverse knots K.

Transverse mapping class group, continued

Theorem (N.-Thurston 2011, preliminary)

Consider any twist knot where the number of crossings in the shaded region is odd and ≥ 3.

There is a transverse knot K of this topological type such that the map

$$
\operatorname{TMCG}(K) \rightarrow M C G(K)(\cong \mathbb{Z} / 2)
$$

is not surjective.
Cf. Kálmán 2004: there are Legendrian knots K for which the map $\operatorname{LMCG}(K) \rightarrow M C G(K)$ is not injective.

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK					
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK					
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK					
HT					

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK					
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK					
HT					

N.-Ozsváth-Thurston 2007, using HFK grid invariant

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK					
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark		\checkmark	\checkmark	
$H T$					

Chongchitmate-N. 2010, using HFK grid invariant

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark				
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK		\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark		\checkmark	\checkmark	
$H T$					

Ozsváth-Stipsicz 2008, using LOSS invariant

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark			\checkmark	
$H T$					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\checkmark	\checkmark		\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark		\checkmark	\checkmark	
$H T$					

N.-Thurston 2011, using HFK grid invariant and naturality

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\checkmark	\times
HT					
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\checkmark	\checkmark	\times	\checkmark	
HT					
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$					

HFK invariants don't work: $\widehat{H F K}=0$ in relevant bidegree.

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\checkmark	\times
$H T$	\checkmark	\checkmark	\checkmark		\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\checkmark	\checkmark	\times	\checkmark	
$H T$		\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$	\checkmark		\checkmark	\checkmark	

N. 2010, using transverse homology

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\checkmark	\times
HT	\checkmark	\checkmark	\checkmark	$?$	\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\checkmark	\checkmark	\times	\checkmark	
$H T$	$?$	\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$	\checkmark	$?$	\checkmark	\checkmark	

These are "transverse mirrors", as are the Birman-Menasco knots.

Comparison of transverse invariants

Legendrian knot atlas (Chongchitmate-N. 2010): 13 knots of arc index ≤ 9 are conjectured to be transversely nonsimple.

Knot	$m\left(7_{2}\right)$	$m\left(7_{6}\right)$	9_{44}	$m\left(9_{45}\right)$	9_{48}
HFK	\checkmark	\times	\times	\checkmark	\times
$H T$	\checkmark	\checkmark	\checkmark	$?$	\checkmark
Knot	10_{128}	$m\left(10_{132}\right)$	10_{136}	$m\left(10_{140}\right)$	
HFK	\checkmark	\checkmark	\times	\checkmark	
HT	$?$	\checkmark	\checkmark	\checkmark	
Knot	$m\left(10_{145}\right)$	10_{160}	$m\left(10_{161}\right)$	$12 n_{591}$	
HFK	\checkmark	\times	\checkmark	\checkmark	
$H T$	\checkmark	$?$	\checkmark	\checkmark	

