1. (a) If M is a Riemannian 3-manifold, prove that the Ricci tensor $Ric(X,Y)$ completely determines the Riemann curvature tensor.

(b) A Riemannian manifold is \textit{Einstein} if there is a constant λ such that $Ric(X,Y) = \lambda \langle X, Y \rangle$ for any X, Y. Prove that a connected Einstein 3-manifold has constant sectional curvature, and calculate this constant sectional curvature in terms of λ.

2. Do Carmo chapter 5 exercise 1, p. 119 (it may help to first read example 2.3, pp. 112–113).

3. (a) Let $\mathbb{H}^2 = \{y > 0\} \subset \mathbb{R}^2$ be the hyperbolic plane with metric $\frac{1}{y^2}(dx \otimes dx + dy \otimes dy)$. For an arbitrary point in \mathbb{H}^2, show directly via Christoffel symbols that the (unique) sectional curvature is -1.

(b) As we saw in HW 5, $D^2 = \{x^2 + y^2 < 1\} \subset \mathbb{R}^2$ with the metric $\frac{1}{(1-x^2-y^2)^2}(dx \otimes dx + dy \otimes dy)$ is isometric to \mathbb{H}^2. The geodesics through $(0,0)$ in D^2 are straight lines. Independent of (a), show that the sectional curvature of D^2 at $(0,0)$ is -1, using Jacobi fields and the Taylor expansion for $|J(t)|^2$.