Math 621 Homework 7-due Friday March 30

Spring 2018

1. Let ∇ be an affine connection on M, and let $X \in \operatorname{Vect}(M)$.
(a) Prove that ∇ extends to a unique linear operator

$$
\nabla_{X}: \Gamma\left(T_{q}^{p}(M)\right) \rightarrow \Gamma\left(T_{q}^{p}(M)\right)
$$

for all $p, q \geq 0$ (where ∇_{X} is initially given for $(p, q)=(1,0)$), satisfying the following properties:
i. for any tensors S, T on M,

$$
\nabla_{X}(S \otimes T)=\left(\nabla_{X} S\right) \otimes T+S \otimes\left(\nabla_{X} T\right)
$$

ii. for any (p, q)-tensor S on M with $p, q>0$, and any contraction $c_{i j}$,

$$
\nabla_{X}\left(c_{i j}(S)\right)=c_{i j}\left(\nabla_{X}(S)\right)
$$

(b) If S is a $(0, q)$-tensor on M, and $X, X_{1}, \ldots, X_{q} \in \operatorname{Vect}(M)$, prove that:

$$
\left(\nabla_{X} S\right)\left(X_{1}, \ldots, X_{q}\right)=X\left(S\left(X_{1}, \ldots, X_{q}\right)\right)-\sum_{i=1}^{q} S\left(X_{1}, \ldots, X_{i-1}, \nabla_{X} X_{i}, \ldots, X_{q}\right)
$$

Then give a similar formula for $\nabla_{X} S$ if S is a $(1, q)$-tensor.
Remarks (not to be proven):

- if we allow X to vary, then we obtain a map $\nabla: \Gamma\left(T_{q}^{p}(M)\right) \rightarrow \Gamma\left(T_{q+1}^{p}(M)\right)$, called the "covariant derivative on tensors";
- the condition for an affine connection ∇ to be compatible with a metric g (viewed as a (0,2)-tensor) is precisely that $\nabla g=0$.

2. (a) Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. For $X, Y, Z \in$ $\operatorname{Vect}(M)$, prove that:

$$
\left(\mathcal{L}_{X} g\right)(Y, Z)=g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right) .
$$

(b-d) Do Carmo chapter 3 exercise $5(\mathrm{~b}, \mathrm{c}, \mathrm{d}), \mathrm{pp} .81-82$. (For the \Rightarrow direction of (d), you could follow the hint in the book, but it's easier just to use part (a) above.)
3. Do Carmo chapter 3 exercise 7, p. 83. Hint: for standard coordinates x^{1}, \ldots, x^{n} on $T_{p} M$, define vector fields $E_{i}=\left(\exp _{p}\right)_{*}\left(\partial / \partial x^{i}\right)$. Show that $\nabla_{E_{i}} E_{j}(p)=0$ for all i, j, and then use Gram-Schmidt to modify E_{i} to get orthonormality.

