1. (a) Do Carmo chapter 3 exercise 5(a), p. 81.
 (b) Consider S^n with the round metric as a submanifold of \mathbb{R}^{n+1} with coordinates x^1, \ldots, x^{n+1}. Show that for any i, j ($1 \leq i, j \leq n + 1$), the vector field $x^i \partial_j - x^j \partial_i$ is a Killing field on S^n. (In particular, first check that it’s a vector field on S^n.)

2. Do Carmo chapter 3 exercise 5(b,c,d), pp. 81–82. (For the \Rightarrow direction of 5(d), you could follow the hint in the book, but it’s easier just to use the formula for the Lie derivative from HW 4 # 4.)

3. Do Carmo chapter 3 exercise 7, p. 83. Hint: for standard coordinates x^1, \ldots, x^n on $T_p M$, define vector fields $E_i = (\exp_p)_* (\partial/\partial x^i)$. Show that $\nabla_{E_i} E_j(p) = 0$ for all i, j, and then use Gram–Schmidt to modify E_i to get orthonormality.