Math 621 Homework 7—due Friday March 30 Spring 2018

- 1. Let ∇ be an affine connection on M, and let $X \in \text{Vect}(M)$.
 - (a) Prove that ∇ extends to a unique linear operator

$$\nabla_X: \Gamma(T_q^p(M)) \to \Gamma(T_q^p(M))$$

for all $p, q \ge 0$ (where ∇_X is initially given for (p, q) = (1, 0)), satisfying the following properties:

i. for any tensors S, T on M,

$$\nabla_X(S\otimes T)=(\nabla_XS)\otimes T+S\otimes(\nabla_XT);$$

ii. for any (p,q)-tensor S on M with p,q>0, and any contraction c_{ij} ,

$$\nabla_X(c_{ij}(S)) = c_{ij}(\nabla_X(S)).$$

(b) If *S* is a (0,q)-tensor on *M*, and $X, X_1, \ldots, X_q \in \text{Vect}(M)$, prove that:

$$(\nabla_X S)(X_1, \dots, X_q) = X(S(X_1, \dots, X_q)) - \sum_{i=1}^q S(X_1, \dots, X_{i-1}, \nabla_X X_i, \dots, X_q).$$

Then give a similar formula for $\nabla_X S$ if S is a (1, q)-tensor.

Remarks (not to be proven):

- if we allow X to vary, then we obtain a map $\nabla: \Gamma(T_q^p(M)) \to \Gamma(T_{q+1}^p(M))$, called the "covariant derivative on tensors";
- the condition for an affine connection ∇ to be compatible with a metric g (viewed as a (0,2)-tensor) is precisely that $\nabla g=0$.
- 2. (a) Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ . For $X, Y, Z \in \text{Vect}(M)$, prove that:

$$(\mathcal{L}_X g)(Y, Z) = g(\nabla_Y X, Z) + g(\nabla_Z X, Y).$$

- (b–d) Do Carmo chapter 3 exercise 5(b,c,d), pp. 81–82. (For the \Rightarrow direction of (d), you could follow the hint in the book, but it's easier just to use part (a) above.)
- 3. Do Carmo chapter 3 exercise 7, p. 83. Hint: for standard coordinates x^1, \ldots, x^n on T_pM , define vector fields $E_i = (\exp_p)_*(\partial/\partial x^i)$. Show that $\nabla_{E_i}E_j(p) = 0$ for all i, j, and then use Gram–Schmidt to modify E_i to get orthonormality.