Math 621 Homework 4-due Monday February 19 Spring 2018

As a reminder:

- +: we will have classes on Monday 2/12 and Monday 2/19
- -: we will not have class Wednesday 2/14 or Friday 2/16 (or, further ahead, Wednesday 2/28).

I am out of town $2 / 14-2 / 16$ and $2 / 26-3 / 1$ so I also won't have my usual office hours during those periods.

1. (a) Let E be a rank n vector bundle over a smooth manifold M. Prove that the following are equivalent:

- E is trivial, meaning that it's bundle isomorphic to the trivial rank n vector bundle over M
- there are n sections $\sigma_{1}, \ldots, \sigma_{n} \in \Gamma(E)$ that are linearly independent, in the sense that for all $x \in M, \sigma_{1}(x), \ldots, \sigma_{n}(x)$ form a basis for the vector space E_{x}.
(b) Prove that the Möbius strip is a line bundle over S^{1}, and that this line bundle is not trivial.
(c) A manifold M is called parallelizable if $T M$ is trivial. Prove that any Lie group is parallelizable.
Remark: Let Σ be any compact orientable surface except for T^{2} (for example, S^{2}). By the "hairy ball theorem" or more generally the Poincaré-Hopf Theorem, any smooth vector field on Σ has a zero. It follows that Σ is not parallelizable.
(More problems on the next page.)

The rest of this problem set concerns the Lie derivative. You may use the facts that if $\phi: M \rightarrow N$ is a smooth map, then

$$
\phi^{*}(S \otimes T)=\phi^{*}(S) \otimes \phi^{*}(T)
$$

for any tensors S, T on N, and

$$
\phi^{*}\left(c_{i j}(S)\right)=c_{i j}\left(\phi^{*}(S)\right)
$$

for any $1 \leq i \leq p, 1 \leq j \leq q$, and $S \in \Gamma\left(T_{q}^{p}(N)\right)$, where $c_{i j}: \Gamma\left(T_{q}^{p}(M)\right) \rightarrow \Gamma\left(T_{q-1}^{p-1}(M)\right)$ denotes contraction. (You should convince yourself that these identities hold, but don't submit written proofs.)
2. (a) Let X be a smooth vector field on M. Prove that \mathcal{L}_{X} satisfies the following properties:
i. For any $f \in C^{\infty}(M)=\Gamma\left(T_{0}^{0}(M)\right)$,

$$
\mathcal{L}_{X} f=X f
$$

ii. For any $Y \in \operatorname{Vect}(M)$,

$$
\mathcal{L}_{X} Y=[X, Y] .
$$

iii. For any tensors S, T on M,

$$
\mathcal{L}_{X}(S \otimes T)=\left(\mathcal{L}_{X} S\right) \otimes T+S \otimes\left(\mathcal{L}_{X} T\right)
$$

iv. For any (p, q)-tensor S on M with $p, q>0$, and any contraction $c_{i j}$,

$$
\mathcal{L}_{X}\left(c_{i j}(S)\right)=c_{i j}\left(\mathcal{L}_{X} S\right)
$$

(Some of these may be obvious.)
(b) Let P_{X} be a linear operator on tensors, i.e., a linear map $\Gamma\left(T_{q}^{p}(M)\right) \rightarrow \Gamma\left(T_{q}^{p}(M)\right)$ for all $p, q \geq 0$. Prove that if P_{X} satisfies properties (i) and (iii) from part (a), with P_{X} in place of \mathcal{L}_{X}, then P_{X} is a local operator: that is, if $U \subset M$ is an open set and S, T are tensors on M with $S=T$ on U, then $P_{X} S=P_{X} T$ on U.
3. (a) Prove that \mathcal{L}_{X} is the unique linear operator on tensors satisfying properties (i) through (iv) from problem 2(a).
(b) Let $S \in \Gamma\left(T_{q}^{0}(M)\right)$, so that if Y_{1}, \ldots, Y_{q} are in $\operatorname{Vect}(M)$ then $S\left(Y_{1}, \ldots, Y_{q}\right)$ is in $C^{\infty}(M)$. Let $X \in \operatorname{Vect}(M)$. Prove that the Lie derivative $\mathcal{L}_{X} S \in \Gamma\left(T_{q}^{0}(M)\right)$ satisfies:

$$
\begin{aligned}
\left(\mathcal{L}_{X} S\right)\left(Y_{1}, \ldots, Y_{q}\right)= & X\left(S\left(Y_{1}, \ldots, Y_{q}\right)\right)-S\left(\left[X, Y_{1}\right], Y_{2}, \ldots, Y_{q}\right) \\
& -S\left(Y_{1},\left[X, Y_{2}\right], \ldots, Y_{q}\right)-\cdots-S\left(Y_{1}, Y_{2}, \ldots,\left[X, Y_{q}\right]\right) .
\end{aligned}
$$

