Math 621 Homework 4—due Monday February 19 Spring 2018

As a reminder:

- +: we will have classes on Monday 2/12 and Monday 2/19
- —: we will not have class *Wednesday 2/14* or *Friday 2/16* (or, further ahead, *Wednesday 2/28*).

I am out of town 2/14–2/16 and 2/26–3/1 so I also won't have my usual office hours during those periods.

- 1. (a) Let E be a rank n vector bundle over a smooth manifold M. Prove that the following are equivalent:
 - E is trivial, meaning that it's bundle isomorphic to the trivial rank n vector bundle over M
 - there are n sections $\sigma_1, \ldots, \sigma_n \in \Gamma(E)$ that are linearly independent, in the sense that for all $x \in M$, $\sigma_1(x), \ldots, \sigma_n(x)$ form a basis for the vector space E_x .
 - (b) Prove that the Möbius strip is a line bundle over S^1 , and that this line bundle is not trivial.
 - (c) A manifold M is called *parallelizable* if TM is trivial. Prove that any Lie group is parallelizable.

Remark: Let Σ be any compact orientable surface except for T^2 (for example, S^2). By the "hairy ball theorem" or more generally the Poincaré–Hopf Theorem, any smooth vector field on Σ has a zero. It follows that Σ is not parallelizable.

The rest of this problem set concerns the Lie derivative. You may use the facts that if $\phi: M \to N$ is a smooth map, then

$$\phi^*(S \otimes T) = \phi^*(S) \otimes \phi^*(T)$$

for any tensors S, T on N, and

$$\phi^*(c_{ij}(S)) = c_{ij}(\phi^*(S))$$

for any $1 \le i \le p$, $1 \le j \le q$, and $S \in \Gamma(T_q^p(N))$, where $c_{ij} : \Gamma(T_q^p(M)) \to \Gamma(T_{q-1}^{p-1}(M))$ denotes contraction. (You should convince yourself that these identities hold, but don't submit written proofs.)

- 2. (a) Let X be a smooth vector field on M. Prove that \mathcal{L}_X satisfies the following properties:
 - i. For any $f \in C^{\infty}(M) = \Gamma(T_0^0(M))$,

$$\mathcal{L}_X f = X f$$
.

ii. For any $Y \in Vect(M)$,

$$\mathcal{L}_X Y = [X, Y].$$

iii. For any tensors S, T on M,

$$\mathcal{L}_X(S\otimes T)=(\mathcal{L}_XS)\otimes T+S\otimes (\mathcal{L}_XT).$$

iv. For any (p,q)-tensor S on M with p,q>0, and any contraction c_{ij} ,

$$\mathcal{L}_X(c_{ij}(S)) = c_{ij}(\mathcal{L}_X S).$$

(Some of these may be obvious.)

- (b) Let P_X be a linear operator on tensors, i.e., a linear map $\Gamma(T_q^p(M)) \to \Gamma(T_q^p(M))$ for all $p,q \geq 0$. Prove that if P_X satisfies properties (i) and (iii) from part (a), with P_X in place of \mathcal{L}_X , then P_X is a local operator: that is, if $U \subset M$ is an open set and S,T are tensors on M with S=T on U, then $P_XS=P_XT$ on U.
- 3. (a) Prove that \mathcal{L}_X is the unique linear operator on tensors satisfying properties (i) through (iv) from problem 2(a).
 - (b) Let $S \in \Gamma(T_q^0(M))$, so that if Y_1, \ldots, Y_q are in $\mathrm{Vect}(M)$ then $S(Y_1, \ldots, Y_q)$ is in $C^\infty(M)$. Let $X \in \mathrm{Vect}(M)$. Prove that the Lie derivative $\mathcal{L}_X S \in \Gamma(T_q^0(M))$ satisfies:

$$(\mathcal{L}_X S)(Y_1, \dots, Y_q) = X (S(Y_1, \dots, Y_q)) - S([X, Y_1], Y_2, \dots, Y_q) -S(Y_1, [X, Y_2], \dots, Y_q) - \dots - S(Y_1, Y_2, \dots, [X, Y_q]).$$